RECURSION

CS10003: PROGRAMMING AND DATA STRUCTURES

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR N

Recursion

A process by which a function calls itself repeatedly.

* Either directly.
* FcallsF
* Orcyclically in a chain.
* Fcalls G, G calls H, and H calls F.

Used for repetitive computations in which each action is stated in terms of a previous result.

fact(n) = n * fact (n-1)

Basis and Recursion

For a problem to be written in recursive form, two conditions are to be satisfied:

* It should be possible to express the problem in recursive form.
* The problem statement must include a stopping condition

fact(n) = 1, if n=0 [* Stopping criteria */
= n*fact(n - 1), if n>0 I* Recursive form */

Examples:

* Factorial:
fact(0)=1
fact(n)=n*fact(n-1),ifn>0

* GCD (assume that m and n are non-negative and m = n):
gcd (m, 0) =m
gcd (m,n)=gcd (h,m%n) ,ifn>0

* Fibonacci sequence (0,1,1,2,3,5,8,13,21,...)
fib (0)=0
fib(1)=1
fib(n)=fib(n-1)+fib(n-2),ifn>1

Example 1 :: Factorial

int fact (intn)

{
if (n==1)
return (1);
else

return (n * fact(n — 1));

Example 1 :: Factorial Execution

fact(4) 24

ilf (4 = =1) return (1);

else return (4 * fact(3)); 6
} \
if (3==1)return (1);

else return (3 * fact(2)); 2
| \
If (2==1)return (1);
else return (2 * fact(1)); 1
int fact (int n) l ﬁ

{ if (1==1)return (1);

If (n==1)return (1); . _
else return (n * fact(n — 1)); else return (1 * fact(0));

}

Example 2 :: Fibonacci number

Fibonacci number f(n) can be defined as:
f(0) = 0
f1) = 1
f(n) = fln-1)+f(n-2), if n>1
* The successive Fibonacci numbers are:
0112358, 13,21,

int f(intn)
{

If (n <2) return (n);

else return (f(n = 1) + f(n = 2));
}

Tracing Execution

int f(int n) f(4)

{
if (n <2) return (n); / \
else return (f(n = 1) +f(n = 2)); f(3) f(2)

} /N /N

f(2) (1) 1) f(0)

How many times is the function called when evaluating
f(4) 2 / \
f(1) f(0)
Inefficiency: :
called 9 times

* Same thing is computed several times.

Some points to note

Every recursive program can also be written without recursion

* Tail Recursion: Last thing a recursive function does is making a single recursive call (of itself) at the end.
* Easy to replace tail recursion by a loop.
* In general, removal of recursion may be a very difficult task (even if you have your own recursion stack).

Recursion can be helpful in many situations

* Better readability
* Ease of programming
* Sometimes, recursion gives best-possible or best-known algorithms to solve problems

Recursion can also be a killer

* You solve the same subproblem multiple times (Example: Fibonacci numbers)
* Every recursive call incurs a (small) overhead

Use recursion with caution

Example of tail recursion

Not a tail recursion:
int suml (intn)

{
if (n == 0) return 0;

return n + suml(n-1);

}

Tail recursion:

Int sum2 (int n, int partialsum)

{
If (n == 0) return partialsum;

return sum2(n - 1, n + partialsum);

Call from main() as:
scanf(“%d”, &N);

s = sum2(N, 0);

Equivalent iterative function:

intsum3 (intn)

{
int partialsum = 0;
while (n > 0) {
partialsum = n + partialsum;
}
return partialsum;
}

10

Important things to remember

* Think how the current problem can be solved if you can solve exactly the same problem on one or more
smaller instance(s).

* Do NOT think how the problem will be solved on smaller instances, just call the function recursively and
assume that the recursive calls do their jobs correctly.

* Do NOT forget to include the base cases to solve the problem on smallest instances.

* This is basically mathematical induction applied to programming.

* When you write a recursive function

* First, write the terminating/base condition
* Then, write the rest of the function
* Always double-check that you have both

Example: Sum of Squares

Write a function that takes two integers m and n as arguments, and computes and returns the sum of
squares of every integer in the range [m:n], both inclusive.

int sumSquares (int m, int n)

{
int middle ;
if (m == n) return(m*m);
else
{

middle = (m+n)/2;
return (sumSquares(m,middle) + sumSquares(middle+1,n));

}
}

int sumSquares (int m, int n)

Annotated Call Tree (

int middle ;
if (m == n) return(m*m);
else {

middle = (m+n)/2;
return (sumSquares(m,middle)
+ sumSquares(middie+1,n));

sumSquares(5,10) }
}
sumSquares(5,7) sumSquares(8,10)
sumSquares(5,6) sumSquares(7,7) sumSquares(8,9) sumSquares(10,10)

sumSquares(5,5) | [sumSquares(6,6) sumSquares(8,8) | |sumSquares(9,9)

13

Example: Printing the digits of an integer in reverse

Print the last digit, then print the remaining number in reverse
* EX: If integer is 743, then reversed is print 3 first, then print the reverse of 74

void printReversed (inti)
{
if (1<10) {
printf(“%d\n”, i); return;
}
else {
printf(“%d”, 1%10);
printReversed(i/10);
}
}

14

Example: Printing your name in reverse

#include <stdio.h>

void readandprint ()

{

char c;

scanf("%c", &c);
if (¢ =="\n’) return;
readandprint();
printf("%c", c);

}

int main ()

{
printf("Enter your name and hit return: ");
readandprint();
printf("\n");

Output

Enter your name and hit return: Jane Doe
eoD enal

Exercise: Rewrite this code so that the output
looks as follows:

Enter your name and hit return: Jane Doe
Your name in reverse: eoD enalJ

15

Counting Zeros in a Positive Integer

Check last digit from right

* Ifitis 0, number of zeros = 1 + number of zeroes in remaining part of the number
* If it is non-0, number of zeros = number of zeroes in remaining part of the number

int zeros (int number)
{
If(number < 10) return 0;
If (humber % 10 == 0)
return(1 + zeros(number/10));
else
return(zeros(number/10));

16

Common Errors in Writing Recursive Functions

Non-terminating Recursive Function (Infinite recursion)

* No base case int badFactorial(int x) {
return x * badFactorial(x-1);
}
* The base case is never reached int badSum2(int x)
{

if(x==1) return 1;
return(badSum2(x--));
}

int anotherBadFactorial(int x) {
if(x == 0)
return 1;
else
return x*(x-1)*anotherBadFactorial(x-2);
I When X is odd, base case is never reached!!

}

Common Errors in Writing Recursive Functions

Mixing up loops and recursion

int anotherBadFactorial (int x) {
int i, fact = 0;
If (x ==0) return 1;
else {
for (i=x; i>0; i=i-1) {
fact = fact + x*anotherBadFactorial(x-1);

}

return fact;

In general, if you have recursive function calls within a loop, think carefully if you need it.

Most recursive functions you will see in this course will not need this

Example :: Towers of Hanoi Problem

The problem statement:

* Initially all the disks are stacked on the LEFT pole.
* Required to transfer all the disks to the RIGHT pole.
* Only one disk on the top can be moved at a time.

* Alarger disk cannot be placed on a smaller disk.
* CENTER pole is used for temporary storage of disks.

CENTER RIGHT

19

Recursive Formulation

Recursive statement of the general problem of n disks.
* Step 1:
* Move the top (n-1) disks from LEFT to CENTER.
* Step 2:
* Move the largest disk from LEFT to RIGHT.
* Step 3:
* Move the (n-1) disks from CENTER to RIGHT.

Phase-1: Move top n - 1 from LEFT to CENTER

I 1I_I
| 2 | I I
I 3 I

LEFT CENTER RIGHT
I ! I | l | IJ_I
| |
LEFT CENTER RIGHT

.

LEFT CENTER RIGHT

21

Phase-2: Move the n" disk from LEFT to RIGHT

I 3 I 2 I I

LEFT CENTER RIGHT
I I 2 I ! I

LEFT CENTER RIGHT

22

Phase-3: Move top n - 1 from CENTER to RIGHT

L

| | 2 | 3 | |
LEFT CENTER RIGHT
J_I | l | I ! I
I |
LEFT CENTER RIGHT

I B

LEFT CENTER RIGHT

23

#include <stdio.h>
void transfer (int n, char from, char to, char temp);

int main()

{ int n; I*Number of disks */
scanf (“%d”, &n);
transfer (n, ‘'L, ‘R’, ‘C’);

return 0;
}
void transfer (int n, char from, char to, char temp)
{
if (n>0) {
transfer (n-1, from, temp, to);
printf (“Move disk %d from %c to %c \n”, n, from, to);
transfer (n-1, temp, to, from);
}
return;
}

24

o7 Telnet 144.16.192.60

With 3 discs

1 R
> C
1 C
3 R
1 L
> R
1 R

. Telnet 144.16.192.60

M =

With 4 discs

HAEQOENEPAENEOE
#HOrmrOROOrmRIrorr
HAAOICCIICrOI/IZO

[isg@facweb

Recursion versus lteration

Repetition

* lteration: explicit loop
* Recursion: repeated nested function calls

Termination

* Iteration: loop condition fails
* Recursion: base case recognized

Both can have infinite loops
Balance
* Understand the benefits | penalties of recursion in terms of
* Ease of implementation
* Readability
* Performance degradation | performance enhancement

* Take an educated decision

26

More Examples

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

What do the following programs print?

void foo(intn)

{
int data;
if (n==0) return;
scanf(“%d”, &data);
foo(n-1);
printf(“%d\n”, data);

}

main ()

{ intk=5;
foo (k);

}

void foo(intn)

{
int data;
if (n==0) return;
foo(n-1);
scanf(“%d”, &data);
printf(“%d\n”, data);

}

main ()

{ intk=5;
foo (k);

}

void foo(intn)

{
int data;
if (n==0) return;
scanf(“%d”, &data);
printf(“%d\n”, data);
foo(n-1);

}

main ()

{ intk=5;
foo (k);

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Printing cumulative sum -- will this work?

int foo(intn)
{
int data, sum ;
if(n==0) return 0; Input: 123 45
scanf(“%d”, &data);
sum =data+foo(n-1); Output: 59 12 14 15

printf(“%d\n”, sum);
return sum; How to rewrite this so that the outputis: 1 3 6 10 15?

}

main () {
intk =5;
foo (k);

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Printing cumulative sum (two ways)

int foo(intn
() void foo(int n, int sum)

{ {
int data, sum ; .
if (n==0) return 0; Nt aata;

_ if(n==0) return 0;
sum=foo(n-1); o gdata)
Scanf(“%d", &data), Input: 123 4 5 scan (od, a a),
sum = sum + data: sum = sum + data;

g Output: 1361015 printf(“%d\n”, sum);
printf(“%d\n”, sum);
foo(k-1, sum);
return sum;
}
; main () {
main () { e
int k = 5; Ifn ;((; |
fOO(k), 00(|)1
} }

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Paying with fewest coins

* A country has coins of denomination 3, 5 and 10, respectively.

* We are to write a function canchange(k) that returns -1 if it is not possible to pay a value of k using these
coins.

* Otherwise it returns the minimum number of coins needed to make the payment.

* For example, canchange(7) will return -1.

* On the other hand, canchange(14) will return 4 because 14 can be paid as 3+3+3+5 and there is no other way
to pay with fewer coins.

* Finally, 15 can be changed as 3+3+3+3+3, 5+5+5, 5+10, so canchange(15) will return 2.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Paying with fewest coins

int canchange(int k)
{
int a;
if (k==0) return 0;
if () return 1;
if (k <3) ;

a = canchange(); if (@ > 0) return ;
a = canchange(k - 5); if (a > 0) return ;

a = canchange(); if (@ > 0) return ,
return -1;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Paying with fewest coins

int canchange(int k)

{
int a;
if (k==0) return 0;
if ((k==3) || (k==5) || (k==10)) return 1;
if (k<3) return -1 ;
a = canchange(k - 10); if (a > 0) return a+1 ;
a = canchange(k-5); if (a > 0) return a+1;
a = canchange(k - 3); if (a > 0) return a+1;
return -1;

}

Exercise: Rewrite this code if the denominations are 3, 8, and 10. Do you see a problem? Repair it.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Practice Problems

1. Write a recursive function to search for an element in an array

2. Write a recursive function to count the digits of a positive integer (do also for sum of digits)
3. Write a recursive function to reverse a null-terminated string

4. Write a recursive function to convert a decimal number to binary

5. Write a recursive function to check if a string is a palindrome or not

6. Write a recursive function to copy one array to another

Note:

* For each of the above, write the main functions to call the recursive function also
* Practice problems are just for practicing recursion, recursion is not necessarily the most efficient way
of doing them

34

Advanced topic

(optional)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

How are recursive calls implemented?

What we have seen

* Activation record gets pushed into the stack when a function call is made.
* Activation record is popped off the stack when the function returns.

In recursion, a function calls itself.

* Several function calls going on, with none of the function calls returning back.
* Activation records are pushed onto the stack continuously.
* Large stack space required.

36

* Activation records keep popping off, when the termination condition of recursion is reached.

We shall illustrate the process by an example of computing factorial.

* Activation record looks like:

Actual Parameters

Local Variables
Return Value
Return Address

37

Example:: main() calls fact(3)

main()
{
int n;
n=3;
printf (“%d \n”, fact(n)); int fact (n)
} int n;
{
if (n==0)
return (1);
else

return (n * fact(n-1));

38

TRACE OF THE STACK DURING EXECUTION

>
n=0
1
RA .. fact
n="1 n="1 n="1 £t

main() . - 171 =1 retu(rzs
calls RA .. fact RA .. fact RA .. fact to

fact() n=2 n=2 n=2 n=2 n=2 mairj()

1 - - - - 2*1 = 2 T
RA .. fact RA .. fact RA .. fact RA .. fact RA .. fact
n=3 n=3 n=3 n=3 n=3 n=3 n=3
- - - - - - 3*2=06
RA..main | | RA..main || RA..main | | RA .. main RA..main || RA..main | | RA.. main

39

Do Yourself

Trace the activation records for the following version of Fibonacci sequence.

#include <stdio.h>

int f(intn)
{
int a, b;
if (n <2) return (n);
else {
X — a=f(n-1);
Y — b =1(n-2);
return (a+b); }
}
main() {
printf(“Fib(4) is: %d \n”, f(4));
}

Actual Parameters

(n)

Local Variables
(a, b)

Return Value

Return Address
(either main or f)

40

	Slide 1
	Recursion
	Basis and Recursion
	Slide 4
	Example 1 :: Factorial
	Example 1 :: Factorial Execution
	Example 2 :: Fibonacci number
	Tracing Execution
	Some points to note
	Example of tail recursion
	Important things to remember
	Example: Sum of Squares
	Annotated Call Tree
	Example: Printing the digits of an integer in reverse
	Example: Printing your name in reverse
	Counting Zeros in a Positive Integer
	Common Errors in Writing Recursive Functions
	Common Errors in Writing Recursive Functions
	Example :: Towers of Hanoi Problem
	Recursive Formulation
	Phase-1: Move top n – 1 from LEFT to CENTER
	Phase-2: Move the nth disk from LEFT to RIGHT
	Phase-3: Move top n – 1 from CENTER to RIGHT
	Slide 24
	Slide 25
	Recursion versus Iteration
	Slide 27
	What do the following programs print?
	Printing cumulative sum -- will this work?
	Printing cumulative sum (two ways)
	Paying with fewest coins
	Paying with fewest coins
	Paying with fewest coins
	Practice Problems
	Slide 35
	How are recursive calls implemented?
	Slide 37
	Example:: main() calls fact(3)
	Slide 39
	Do Yourself

