
DATA TYPES AND EXPRESSIONS

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

CS10003 PROGRAMMING AND DATA STRUCTURES

Data Types in C

int :: integer quantity

 Typically occupies 4 bytes (32 bits) in memory.

char :: single character

 Typically occupies 1 byte (8 bits) in memory.

float :: floating-point number (a number with a decimal point)

 Typically occupies 4 bytes (32 bits) in memory.

double :: double-precision floating-point number

Some of the basic data types can be
augmented by using certain data type
qualifiers:

• short
• long
• signed
• unsigned

Typical examples:

• short int
• long int
• unsigned int
• unsigned char

2

Constants

Constants

Numeric
Constants

Character
Constants

stringsingle characterfloating-pointinteger

We have studied integer, floating-point, and single character constants earlier

3

Integer and Floating-point Constants

• Integer constants:

• Consists of a sequence of digits, with possibly a plus or a minus sign before it
• Embedded spaces, commas and non-digit characters are not permitted between digits
• Examples: 10, 39994, -765

• Floating point constants – Two different notations:

• Decimal notation:

• 25.0, 0.0034, .84, -2.234
• Exponential (scientific) notation:

• 3.45e23, 0.123e-12, 123e2

4

Single Character and String Constants

SINGLE CHARACTER CONSTANTS

Contains a single character enclosed within a pair of
single quote marks.

• Examples :: ‘2’, ‘+’, ‘Z’

Some special backslash characters

 ‘\n’ new line
 ‘\t’ horizontal tab
 ‘\’’ single quote
 ‘\”’ double quote
 ‘\\’ backslash
 ‘\0’ null

STRING CONSTANTS

Sequence of characters enclosed in double quotes.

• The characters may be letters, numbers, special
characters and blank spaces.

Examples:

 “nice”, “Good Morning”, “3+6”, “3”, “C”

Differences from character constants:

• ‘C’ and “C” are not equivalent.
• ‘C’ has an equivalent integer value while “C”

does not.

5

More about Character Constants and Variables

In C language, a character constant is actually a small integer (1 byte)

The character constant ‘A’ is internally an integer value 65

Character constants mapped to integers via ASCII codes (American Standard Code for Information Interchange)

‘A’: 65 ‘B’: 66 … ‘Z’: 90

‘a’: 97 ‘b’: 98 … ‘z’: 122

‘0’: 48 ‘1’: 49 … ‘9’: 57

An example:

 char cvar = ‘A’;

 printf (“%c %d”, cvar, cvar); /* Print the same value twice, once as character, second time as integer */

6

Variable Values and Variable Addresses

In C terminology, in an expression

 speed (a variable name) refers to the contents of the memory location where the variable is stored.

 &speed refers to the address of the memory location where the variable is stored.

Examples:

 printf (“%f %f %f”, speed, time, distance); /* We need only the values of the vars to print them */

 scanf (“%f %f”, &speed, &time); /* We need the address of the vars to store the values read */

7

Assignment Statement

Used to assign values to variables, using the assignment
operator (=).

General syntax:

 variable_name = expression;

Left of = is called l-value, must be a modifiable variable

Right of = is called r-value, can be any expression

Examples:

 velocity = 20;
 b = 15; temp = 12.5;
 A = A + 10;
 v = u + f * t;
 s = u * t + 0.5 * f * t * t;

A value can be assigned to a variable at the time
the variable is declared.

 int speed = 30;
 char flag = ‘y’;

Several variables can be assigned the same
value using multiple assignment operators.

 a = b = c = 5;
 flag1 = flag2 = ‘y’;
 speed = flow = 0.0;

8

Types of l-value and r-value

• Usually should be the same

• If not, the type of the r-value will be internally converted to the type of the l-value, and then assigned to it

• Example:

 double a;
 a = 2*3;

• Type of r-value is int and the value is 6
• Type of l-value is double, so stores 6.0

 int a;
 a = 2*3.2;

• Type of r-value is float/double and the value is 6.4

• Type of l-value is int, so internally converted to 6

• So a stores 6, and not 6.4

9

Operators in Expressions

Operators

Arithmetic
Operators

Relational
Operators

Logical
Operators

Assignment
Operators

1
0

EXAMPLE: Suppose x and y are two integer
variables, whose values are 13 and 5 respectively.

Arithmetic Operators

Addition :: +

Subtraction :: –

Division :: /

Multiplication :: *

Modulus :: % (remainder of division)

Examples:

distance = rate * time ;
netIncome = income - tax ;
speed = distance / time ;
area = PI * radius * radius;
y = a * x * x + b*x + c;
quotient = dividend / divisor;
remainder = dividend % divisor;

x + y 18

x – y 8

x * y 65

x / y 2

x % y 3

11

Operator Precedence of Arithmetic Operators

In decreasing order of priority

1. Parentheses :: ()
2. Unary minus :: –5
3. Multiplication, Division, and Modulus
4. Addition and Subtraction

For operators of the same priority, evaluation is from
left to right as they appear.

Parenthesis may be used to change the precedence of
operator evaluation.

EXAMPLES:

a + b * c – d / e a + (b * c) – (d / e)

a * – b + d % e – f a * (– b) + (d % e) – f

a – b + c + d (((a – b) + c) + d)

x * y * z ((x * y) * z)

a + b + c * d * e (a + b) + ((c * d) * e)

1
2

Integer, Real, and Mixed-mode Arithmetic

INTEGER ARITHMETIC

• When the operands in an
arithmetic expression are
integers, the expression is
called integer expression,
and the operation is called
integer arithmetic.

• Integer arithmetic always
yields integer values.

 For example:

25 / 10 evaluates to 2

REAL ARITHMETIC

• Arithmetic operations involving only
real or floating-point operands.

• Since floating-point values are
rounded to the number of significant
digits permissible, the final value is
an approximation of the final result.

 1.0 / 3.0 * 3.0 will have the value
0.99999 and not 1.0

• The modulus operator cannot be
used with real operands.

MIXED-MODE ARITHMETIC

• When one of the operands is
integer and the other is real, the
expression is called a mixed-
mode arithmetic expression.

• If either operand is of the real
type, then only real arithmetic is
performed, and the result is a
real number.

 25 / 10 evaluates to 2
 25 / 10.0 evaluates to 2.5

1
3

Similar code – different results !!

14

int a=10, b=4, c;

float x;

c = a / b;

x = a / b;

The value of c will be 2

The value of x will be 2.0

But we want 2.5 to be stored in x

Solution: Typecasting

• Changing the type of a variable during its use

• General form

(type_name) variable_name
• Example:

x = ((float) a) / b;

• Now x will store 2.5 (type of a is considered to be
float for this operation only, now it is a mixed-
mode expression, so real values are generated)

int a=10, b=4, c;

float x;

c = a / b;

x = ((float) a) / b;

15

Restrictions on Typecasting

• Not everything can be typecast to anything

• float/double should not be typecast to int (as an int cannot store everything a float/double can store)

• int should not be typecast to char (same reason)

16

Example: Finding Average of 2 Integers

17

int a, b;

float avg;

scanf(“%d%d”, &a, &b);

avg = (a + b)/2;

printf(“%f\n”, avg);

Wrong program !! Why?

int a, b;

float avg;

scanf(“%d%d”, &a, &b);

avg = ((float) (a + b))/2;

printf(“%f\n”, avg);

int a, b;

float avg;

scanf(“%d%d”, &a, &b);

avg = (a + b) / 2.0;

printf(“%f\n”, avg);

Correct programs

More Assignment Operators

18

+=, -=, *=, /=, %=

Operators for special type of assignments

a += b is the same as a = a + b

Same for -=, *=, /=, and %=

Exact same rules apply for multiple assignment operators

Suppose x and y are two integer variables, whose values
are 5 and 10 respectively.

x += y Stores 15 in x
Evaluates to 15

x –= y Stores -5 in x
Evaluates to -5

x *= y Stores 50 in x
Evaluates to 50

x /= y Stores 0 in x
Evaluates to 0

Increment (++) and Decrement (--) Operators

• Both of these are unary operators; they operate on a single operand.

• The increment operator causes its operand to be increased by 1.

• Example: a++, ++count

• The decrement operator causes its operand to be decreased by 1.

• Example: i--, --distance

19

Pre-increment versus Post-increment

Operator written before the operand (++i, --i))

• Called pre-increment operator.
• Operator will be altered in value before it is

utilized for its intended purpose in the
statement.

Operator written after the operand (i++, i--)

• Called post-increment operator.
• Operator will be altered in value after it is

utilized for its intended purpose in the
statement.

EXAMPLES:

Initial values :: a = 10; b = 20;

 x = 50 + ++a; a = 11, x = 61

 x = 50 + a++; x = 60, a = 11

 x = a++ + --b; b = 19, x = 29, a = 11

 x = a++ – ++a; ??

Called side effects:: while calculating some values,
something else get changed.

Best to avoid such complicated statements

20

Relational Operators

Used to compare two quantities.

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

10 > 20 is false, so value is 0
25 < 35.5 is true, so value is non-zero
12 > (7 + 5) is false, so value is 0
32 != 21 is true, so value is non-zero

• Note: The value corresponding to TRUE can be any non-
zero value, not necessarily 1; FALSE is 0

• When arithmetic expressions are used on either side of a
relational operator, the arithmetic expressions will be
evaluated first and then the results compared

 a + b > c – d is the same as (a + b) > (c – d)

21

Logical Operators

There are three logical operators in C (also
called logical connectives).

 ! : Unary negation (NOT)

 && : Logical AND
 | | : Logical OR

What do these operators do?

• They act upon operands that are
themselves logical expressions.

• The individual logical expressions get
combined into more complex conditions
that are true or false.

Unary negation operator (!)

• Single operand
• Value is 0 if operand is non-zero
• Value is 1 if operand is 0

Example: ! (grade == ‘A’)

22

Logical Operators

There are three logical operators in C (also
called logical connectives).

 ! : Unary negation (NOT)

 && : Logical AND
 | | : Logical OR

What do these operators do?

• They act upon operands that are
themselves logical expressions.

• The individual logical expressions get
combined into more complex conditions
that are true or false.

• Logical AND
• Result is true if both the

operands are true.
• Logical OR

• Result is true if at least one of
the operands are true.

X Y X && Y X | | Y

FALSE FALSE FALSE FALSE

FALSE TRUE FALSE TRUE

TRUE FALSE FALSE TRUE

TRUE TRUE TRUE TRUE

23

Examples of Logical Expressions

(count <= 100)

((math+phys+chem)/3 >= 60)

((sex == ‘M’) && (age >= 21))

((marks >= 80) && (marks < 90))

((balance > 5000) | | (no_of_trans > 25))

(! (grade == ‘A’))

Suppose we wish to express that a should not have the value of 2 or 3. Does the following expression capture this

requirement?

((a != 2) || (a != 3)) – No.

Correct is !((a == 2) || (a == 3)) which is same as ((a != 2) && (a != 3))

24

Example: AND and OR

#include <stdio.h>

int main ()

{

 int i, j;

 scanf(“%d%d”, &i, &j);

 printf (“%d AND %d = %d, %d OR %d=%d\n”, i, j, i&&j, i, j, i||j) ;

 return 0;

}

3 0
3 AND 0 = 0, 3 OR 0 = 1

Output

25

Precedence among different
operators (there are many other
operators in C, some of which we will
see later)

Operator Class Operators Associativity

Unary postfix ++, -- Left to Right

Unary prefix ++, --
─ ! &

Right to Left

Binary * / % Left to Right

Binary + ─ Left to Right

Binary < <= > >= Left to Right

Binary == != Left to Right

Binary && Left to Right

Binary || Left to Right

Assignment = += ─ =
*= /= %=

Right to Left

26

Expression Evaluation

An assignment expression evaluates to a value

Value of an assignment expression is the value assigned to the l-value

Example: value of

• a = 3 is 3
• b = 2*4 – 6 is 2
• n = 2*u + 3*v – w is whatever the arithmetic expression 2*u + 3*v – w evaluates to given the current values

stored in variables u, v, w

Consider a = b = c = 5

• Three assignment operators
• Rightmost assignment expression is c=5, evaluates to value 5
• Now you have a = b = 5
• Rightmost assignment expression is b=5, evaluates to value 5
• Now you have a = 5
• Evaluates to value 5
• So all three variables store 5, the final value the assignment expression evaluates to is 5

27

A more non-trivial example:

a = 3 && (b = 4)

• b = 4 is an assignment expression, evaluates to 4
• && has higher precedence than =
• 3 && (b = 4) evaluates to true as both operands of && are non-0, so final value of

the logical expression is true
• a = 3 && (b = 4) is an assignment expression, evaluates to 1 (true)

Note that changing to b = 0 would have made the final value 0

28

Statements and Blocks

An expression followed by a semicolon becomes a statement.

x = 5;
i++;
printf (“The sum is %d\n”, sum”) ;

Braces { and } are used to group declarations and statements together into a compound statement, or
block.

{
 sum = sum + count;

 count++;

 printf (“sum = %d\n”, sum) ;

}

29

Doing More Complex Mathematical Operations

• C provides some mathematical functions to use in the math library

• Can be used to perform common mathematical calculations
• Two steps needed:
 (1) Must include a special header file
 #include <math.h>

(2) Must tell the compiler to link the math library: gcc <program name> –lm

• Example

 printf ("%f", sqrt(900.0));

• Calls function sqrt, which returns the square root of its argument

• Return values of math functions are of type double

• Arguments may be constants, variables, or expressions

30

Math Library Functions

double acos(double x) – Compute arc cosine of x.

double asin(double x) – Compute arc sine of x.

double atan(double x) – Compute arc tangent of x.

double atan2(double y, double x) – Compute arc tangent of y/x.

double cos(double x) – Compute cosine of angle in radians.

double cosh(double x) – Compute the hyperbolic cosine of x.

double sin(double x) – Compute sine of angle in radians.

double sinh(double x) – Compute the hyperbolic sine of x.

double tan(double x) – Compute tangent of angle in radians.

double tanh(double x) – Compute the hyperbolic tangent of x.

31

Math Library Functions

double ceil(double x) – Get smallest integral value that exceeds x.

double floor(double x) – Get largest integral value less than x.

double exp(double x) – Compute exponential of x.

double fabs (double x) – Compute absolute value of x.

double log(double x) – Compute log to the base e of x.

double log10 (double x) – Compute log to the base 10 of x.

double pow (double x, double y) – Compute x raised to the power y.

double sqrt(double x) – Compute the square root of x.

32

Computing distance between two points

33

#include <stdio.h>

#include <math.h>

int main()

{

int x1, y1, x2, y2;

double dist;

printf(“Enter coordinates of first point: “);

scanf(“%d%d”, &x1, &y1);

printf(“Enter coordinates of second point: “);

scanf(“%d%d”, &x2, &y2);

dist = sqrt(pow(x1 – x2, 2) + pow(y1 – y2, 2));

printf(“Distance = %lf\n”, dist);

return 0;

}

Enter coordinates of first point: 3 4
Enter coordinates of second point: 2 7
Distance = 3.162278

Output

Practice Problems

34

1. Read in three integers and print their average

2. Read in four integers a, b, c, d. Compute and print the value of the expression

a+b/c/d*10*5-b+20*d/c

• Explain to yourself the value printed based on precedence of operators taught
• Repeat by putting parentheses around different parts (you choose) and first do by hand what should be printed, and

then run the program to verify if you got it right
• Repeat similar thing for the expression a&&b||c&&d>a||c<=b

3. Read in the coordinates (real numbers) of three points in 2-d plane, and print the area of the triangle formed by them

4. Read in the principal amount P, interest rate I, and number of years N, and print the compound interest (compounded
annually) earned by P after N years

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

