DATA TYPES AND EXPRESSIONS

CS10003 PROGRAMMING AND DATA STRUCTURES

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR N

Data Types in C

int :: integer quantity

Typically occupies 4 bytes (32 bits) in memory.

char :: single character

Typically occupies 1 byte (8 bits) in memory.

float :: floating-point number (a number with a decimal point)

Typically occupies 4 bytes (32 bits) in memory.

double :: double-precision floating-point number

Some of the basic data types can be
augmented by using certain data type
qualifiers:

* short

* long

* signed

* unsigned

Typical examples:

short int

long int

* unsigned int
unsigned char

Constants

Constants
Numeric Character
Constants Constants
integer floating-point single character string

We have studied integer, floating-point, and single character constants earlier

Integer and Floating-point Constants

* Integer constants:

* Consists of a sequence of digits, with possibly a plus or a minus sign before it
* Embedded spaces, commas and non-digit characters are not permitted between digits
* Examples: 10, 39994, -765

* Floating point constants - Two different notations:
* Decimal notation:

* 25.0, 0.0034, .84, -2.234
* Exponential (scientific) notation:
* 3.45e23, 0.123e-12, 123e2

Single Character and String Constants

SINGLE CHARACTER CONSTANTS

Contains a single character enclosed within a pair of
single quote marks.

* Examples :: ‘2', '+, ‘Z’

Some special backslash characters

In” new line

‘it" horizontal tab
" single quote
1”* double quote
‘W backslash
0° null

STRING CONSTANTS
Sequence of characters enclosed in double quotes.

* The characters may be letters, numbers, special
characters and blank spaces.

Examples:

Hnice”, HGOOd Morningﬂ’ H3+6”’ H3H, HC"

Differences from character constants:

* ‘C’and “C” are not equivalent.

* ‘C’ has an equivalent integer value while “C”
does not.

More about Character Constants and Variables

In C language, a character constant is actually a small integer (1 byte)

The character constant ‘A’ is internally an integer value 65

Character constants mapped to integers via ASCII codes (American Standard Code for Information Interchange)
‘A:65 ‘B:66 ..Z:90
‘a:97 ‘b:98 ...‘2":122
‘0:48 ‘1:49 ...'9":57

An example:
char cvar = ‘A’;

printf (“%c %d”, cvar, cvar); [* Print the same value twice, once as character, second time as integer */

Variable Values and Variable Addresses

In C terminology, in an expression
speed (a variable name) refers to the contents of the memory location where the variable is stored.

&speed refers to the address of the memory location where the variable is stored.

Examples:
printf (“%f %f %f”, speed, time, distance); [* We need only the values of the vars to print them */

scanf (“%f %f”, &speed, &time); [* We need the address of the vars to store the values read */

Assignment Statement

Used to assign values to variables, using the assignment
operator (=).

General syntax:

variable_name = expression;

Left of = is called |-value, must be a modifiable variable

Right of = is called r-value, can be any expression

Examples:

velocity = 20,

b = 15; temp = 12.5;
A=A+10;
v=u+f*t;
S=Uu*t+05*f*t*t;

A value can be assigned to a variable at the time
the variable is declared.

int speed = 30;
char flag ='y’;

Several variables can be assigned the same
value using multiple assignment operators.

a=b=c=5;
flagl = flag2 = ‘y’;
speed = flow = 0.0;

Types of I-value and r-value

* Usually should be the same
* If not, the type of the r-value will be internally converted to the type of the I-value, and then assigned to it
* Example:

double a;

a=2*3;

* Type of r-value is int and the value is 6
* Type of I-value is double, so stores 6.0

int a;
a=2*3.2;
* Type of r-value is float/double and the value is 6.4

* Type of |-value is int, so internally converted to 6
* So a stores 6, and not 6.4

Operators in Expressions

Assignment
Operators > Operators
4L Y N
Arithmetic Relational Logical
Operators Operators Operators

Arithmetic Operators

Addition:: +

Subtraction :: -

Division:: |
Multiplication :: * EXAMPLE: Suppose x and y are two integer
Modulus :: % (remainder of division) variables, whose values are 13 and 5 respectively.
X+y 18
Examples: X—y 3
distance = rate * time ;
X*y 65

netlncome = income - tax ;
speed = distance | time : xly 2
area = PI * radius * radius; X%y 3
yza*x*x+bh*+c;

quotient = dividend / divisor;
remainder = dividend % divisor;

11

Operator Precedence of Arithmetic Operators

In decreasing order of priority EXAMPLES:

1. Parentheses:: ()

2. Unary minus :: -5

3. Multiplication, Division, and Modulus
4, Addition and Subtraction a*-b+d%e-f a*(-b)+(d%e)-f

atb*c-dle a+(b*c)-(d/e)

For operators of the same priority, evaluation is from

left to right as they appear. a-b+c+d (((a-b)+c)+d)

Parenthesis may be used to change the precedence of X*y*z (x*y)*z)
operator evaluation.

atb+c*d*e (a+h)+((c*d)*e)

Integer, Real, and Mixed-mode Arithmetic

INTEGER ARITHMETIC

When the operands in an
arithmetic expression are
integers, the expression is
called integer expression,
and the operation is called
integer arithmetic.

Integer arithmetic always
yields integer values.

For example:

2510 evaluates to 2

REAL ARITHMETIC

Arithmetic operations involving only
real or floating-point operands.

Since floating-point values are
rounded to the number of significant
digits permissible, the final value is
an approximation of the final result.

1.0 /3.0 * 3.0 will have the value
0.99999 and not 1.0

The modulus operator cannot be
used with real operands.

MIXED-MODE ARITHMETIC

When one of the operands is
integer and the other is real, the
expression is called a mixed-
mode arithmetic expression.

If either operand is of the real
type, then only real arithmetic is
performed, and the result is a
real number.

25/10 evaluatesto 2
25/10.0 evaluatesto 2.5

Similar code - different results !!

int a=10, b=4, c;

float x;
c =a / b;
x =a / b;

The value of ¢ will be 2
The value of x will be 2.0

But we want 2.5 to be stored in x

Solution: Typecasting

int a=10, b=4, c;
float x;

c =a/ b;

x = ((float) a) / b;

Changing the type of a variable during its use
General form

(type_name) variable_name
Example:

X = ((float) a) I b;

Now x will store 2.5 (type of a is considered to be
float for this operation only, now it is a mixed-
mode expression, so real values are generated)

Restrictions on Typecasting

* Not everything can be typecast to anything
* float/double should not be typecast to int (as an int cannot store everything a float/double can store)

* int should not be typecast to char (same reason)

Example: Finding Average of 2 Integers

Wrong program !! Why?
int a, b;

float avg;

scanf (“$d%d”, &a, &b);

avg = (a + b)/2;
printf (“$£f\n”, avgqg);

int a, b;
float avg;
scanf (“%d%d”, &a, &b);

avg = ((float) (a + b))/2;

printf (“$£\n”, avgqg);

1

Correct Trograms
int a, b;
float avg;
scanf (“%d%d”, &a, &b);
avg = (a + b) / 2.0;
printf (“$£f\n”, avqg);

17

More Assignment Operators

+=, -=, *= /=, = X+=Yy Stores 15 in x

: : Evaluates to 15
Operators for special type of assignments

a+=b isthesameasa=a+bh X-=Yy | Stores-5inx
Evaluates to -5

Same for -=, *=, |=, and %=

Exact same rules apply for multiple assignment operators x*=y |Stores50in X

: : Evaluates to 50
Suppose x and y are two integer variables, whose values

are 5 and 10 respectively.

XI|=y | Stores0inx
Evaluates to 0

18

Increment (++) and Decrement (--) Operators

* Both of these are unary operators; they operate on a single operand.

* The increment operator causes its operand to be increased by 1.
* Example: a++, ++count
* The decrement operator causes its operand to be decreased by 1.

« Example: i--, --distance

Pre-increment versus Post-increment

Operator written before the operand (++i, --i))

* Called pre-increment operator.

* Operator will be altered in value before it is
utilized for its intended purpose in the
statement.

Operator written after the operand (i++, i--)

* Called post-increment operator.

* Operator will be altered in value after it is
utilized for its intended purpose in the
statement.

EXAMPLES:

Initial values :: a=10; b =20;

X =50+ ++a; a=11,x=61
X =50 + at+; X=60,a=11
X = at++ + --b; b=19,x=29,a=11

X = at+ - ++a; 2?

Called side effects:: while calculating some values,
something else get changed.

Best to avoid such complicated statements

Relational Operators

Used to compare two quantities.

<

Is less than

Is greater than

is less than or equal to

Is greater than or equal to
Is equal to

is not equal to

10>20 s false, sovalueis 0

25< 35,5 istrue, so value is non-zero

12 > (7 + 5) is false, so value is 0

321=21 Is true, so value is non-zero

Note: The value corresponding to TRUE can be any non-
zero value, not necessarily 1; FALSE is 0

When arithmetic expressions are used on either side of a
relational operator, the arithmetic expressions will be
evaluated first and then the results compared

atb>c-d isthesameas (a+b)>(c-d)

Logical Operators

There are three logical operators in C (also Unary negation operator (!)
called logical connectives). :
* Single operand
!t Unary negation (NOT) * Value is 0 if operand is non-zero
&& : Logical AND * Valueis 1if operandis 0
|| : Logical OR

Example: ! (grade =="‘A’)
What do these operators do?

* They act upon operands that are
themselves logical expressions.

* The individual logical expressions get
combined into more complex conditions
that are true or false.

Logical Operators

There are three logical operators in C (also
called logical connectives).

I : Unary negation (NOT)

&& : Logical AND
|| : Logical OR

What do these operators do?

* They act upon operands that are
themselves logical expressions.

* The individual logical expressions get

combined into more complex conditions

that are true or false.

* Logical AND

* Result is true if both the
operands are true.

* Logical OR

* Resultis true if at least one of
the operands are true.

X Y X && Y XY
FALSE FALSE FALSE FALSE
FALSE TRUE FALSE TRUE
TRUE FALSE FALSE TRUE
TRUE TRUE TRUE TRUE

Examples of Logical Expressions

(count <= 100)

((math+phys+chem)/3 >= 60)

((sex == ‘M’) && (age >= 21))

((marks >= 80) && (marks < 90))
((balance >5000) | | (no_of_trans > 25))
(! (grade =="*A"))

Suppose we wish to express that a should not have the value of 2 or 3. Does the following expression capture this
requirement?

((a!=2)]| (a'=3)) - No.

Correctis !((a==2) || (a==3)) whichis same as ((a!=2) && (a !=3))

Example: AND and OR

Output
#include <stdio.h>

int main () 30
{ SANDO=0,30R0=1

int i, j;

scanf (“%d%d”, &i, &j);

printf (“%d AND %d = %d, %d OR %d=%d\n”, i, j, i&&j, i, j, illj)
return 0O;

°
4

Precedence among different
operators (there are many other
operators in C, some of which we will
see later)

Operator Class Operators Associativity
Unary postfix ++, -- Left to Right
Unary prefix ++, -- Right to Left
— 1 &
Binary *1 % Left to Right
Binary + — Left to Right
Binary < <= > >= Left to Right
Binary == I= Left to Right
Binary && Left to Right
Binary I Left to Right
Assignment = 4= —= Right to Left

Expression Evaluation

An assignment expression evaluates to a value

Value of an assignment expression is the value assigned to the |-value
Example: value of

*a=3is3

*bh=2*4-6is2

° n=2*u + 3*v - w is whatever the arithmetic expression 2*u + 3*v - w evaluates to given the current values
stored in variables u, v, w

Considera=b=c=5

* Three assignment operators

Rightmost assignment expression is ¢=5, evaluates to value 5

Now you havea=bh =5

Rightmost assighment expression is b=5, evaluates to value 5

Now you havea=5

Evaluates to value 5

So all three variables store 5, the final value the assignment expression evaluates to is 5

A more non-trivial example:
a=3&&(b=14)
* b =4is an assignment expression, evaluates to 4

* && has higher precedence than =

* 3 && (b = 4) evaluates to true as both operands of && are non-0, so final value of
the logical expression is true

* a=3 && (b =4) is an assignment expression, evaluates to 1 (true)

Note that changing to b = 0 would have made the final value 0

Statements and Blocks

An expression followed by a semicolon becomes a statement.

x =5
i++;
printf (“The sum is %d\n”, sum”)

14

Braces { and } are used to group declarations and statements together into a compound statement, or
block.

{

sum = sum + count;
count++;

printf (“sum = %d\n”, sum) ;

Doing More Complex Mathematical Operations

C provides some mathematical functions to use in the math library

 Can be used to perform common mathematical calculations
* Two steps needed:
(1) Must include a special header file
#include <math.h>
(2) Must tell the compiler to link the math library: gcc <program name> -Im

Example
printf ("%f", sqrt(900.0));
* Calls function sqrt, which returns the square root of its argument

Return values of math functions are of type double

Arguments may be constants, variables, or expressions

Math Library Functions

double acos(double x) - Compute arc cosine of x.
double asin(double x) - Compute arc sine of x.
double atan(double x) - Compute arc tangent of x.

double atan2(double y, double x) - Compute arc tangent of yx.

double cos(double x) - Compute cosine of angle in radians.
double cosh(double x) - Compute the hyperbolic cosine of x.
double sin(double x) — Compute sine of angle in radians.
double sinh(double x) - Compute the hyperbolic sine of x.

double tan(double x) - Compute tangent of angle in radians.

double tanh(double x) - Compute the hyperbolic tangent of x.

Math Library Functions

double ceil(double x) - Get smallest integral value that exceeds x.
double floor(double x) - Get largest integral value less than x.
double exp(double x) - Compute exponential of x.

double fabs (double x) - Compute absolute value of x.

double log(double x) - Compute log to the base e of x.

double log10 (double x) - Compute log to the base 10 of x.

double pow (double x, double y) - Compute x raised to the powery.

double sqrt(double x) - Compute the square root of x.

Computing distance between two points

Output
includ dio.h
#Tnc ude <stdio.h> Enter coordinates of first point: 3 4
#include <math.h> Enter coordinates of second point: 2 7

int main() Distance = 3.162278
{

int x1, yl1, x2, y2;

double dist;

printf (“Enter coordinates of first point: “);
scanf (“%d%d”, &x1, &yl);

printf (“"Enter coordinates of second point: V) ;
scanf (“%d%d”, &x2, &y2);

dist = sqgrt(pow(xl - x2, 2) + pow(yl - y2, 2));
printf (“Distance = %1f\n”, dist);

return 0;

Practice Problems

1. Read in three integers and print their average
2. Read in four integers a, b, ¢, d. Compute and print the value of the expression

a+blc/d*10*5-b+20*d/c
* Explain to yourself the value printed based on precedence of operators taught
* Repeat by putting parentheses around different parts (you choose) and first do by hand what should be printed, and
then run the program to verify if you got it right
* Repeat similar thing for the expression a&&b||c&&d>al|c<=b
3. Read in the coordinates (real numbers) of three points in 2-d plane, and print the area of the triangle formed by them
4. Read in the principal amount P, interest rate I, and number of years N, and print the compound interest (compounded
annually) earned by P after N years

34

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

