One-Dimensional Arrays

Random-access lists of elements

CS10003 PROGRAMMING AND DATA STRUCTURES

Array

Many applications require multiple data items with common characteristics.

* In mathematics, we often express such groups of data items in indexed form:
X’la X2a X31 “e ey Xn

Array is a data structure that can represent a collection of data items with the same
data type (float / int/ char/...).

Example: Printing Numbers in Reverse

3 numbers 4 numbers
int a, b, c; int a, b, ¢, d;
scanf (“"%$d”, &a); scanf (“$d”, &a);
scanf (“sd”, &b); scanf (“sd”, &b);
scanf (“"sd”, &c); scanf (“$d”, &c);
printf(“"sd "7, c); scanf (“sd”, &d);
printf(“*%sd "7, b); printf(“*sd 7, d);
printf (“*%d \n”, a); printf(“"%d ", c);
printf(“*%sd "7, b);
printf(*3d \n”, a);

The Problem

Suppose we have 1000 numbers to handle.
Where do we store the numbers? Use 1000 variables? Sounds absurd!

Practical solution: array

Using Arrays

All the data items constituting the group share the same name

int x[10]; // to store 10 integers
Individual elements are accessed by specifying the index

x[0] x[1] x(2] \ e

x is a 10-element one
dimensional array

Declaring Arrays

Like variables, the arrays must be declared in a program before they are used.

General syntax:
type array—name [Size];
* type specifies the type of elements that will be stored in the array (int, float, char, etc.)
* size is the maximum number of elements that can be stored in the array

— Example: marks is an array that can store a maximum of 10 integers:

int marks[10];

Array Declarations: examples

Examples:
int id[10];
char name[20];

float marks[50];

If we are not sure of the exact size of the array that we will need, we can define an array of a large
enough size:

float marks[50];

though in a particular run we may only be using, say, 10 elements.

Accessing Array Elements

A particular element of the array can be accessed by specifying two things:
* Name of the array
* Index (relative position) of the element in the array

Important to remember: In C, the index of an array starts from 0, not 1

Example:
* Anarrayis definedas int x[10];

— The first element of the array x can be accessed as x[0], ithelementas x[i-1], tenth
elementas x[9].

A FirSt Example Array size should be a constant

int main () “‘data” is an array of 10 integer variables:
{ data[0], data[1], ..., data[9]

int 1i;

4L

int data[10];
for (i=0; i<10; i++)
data[i]= i; Data[O0]

for (i=0; i<1l0; i++) Data[l]
printf ("Data[%d] = %d\n", i, datal[il]);

return O;
} Data[3]

Data[2]

Data[4] Output

Data[5]

Data[6]
Data[7]

Data[8]

!
W 0 J4 oo 0 & W N B O

Data[9]

How is an array stored in memory?

Starting from a given memory location, the successive array elements are allocated space in
consecutive memory locations

Array a

Let s = starting address of the array in memory
k = number of bytes allocated per element (e.g., 4 for each int, 1 for each char)

Then, the element a[i] is allocated memory location at address s+i*k

A Special Operator: AddressOf (&)

Remember that each variable is stored at a memory location with a unique address.

Putting & before a variable name gives the starting address of the variable in the memory (where
it is stored, not the value).

Can be put before any variable (with no blank in between)
int a = 10;

printf (“Value of a = %d, address of a = %d\n”, a, &a);

Similarly, if we have an array: int Data[10];

Memory address of the first element is &Data[0]
Memory address of the second elementis &Data[1]
Memory address of the third element is &Data[2]

11

Example

int main ()
{
int 1i;
int Data[1l0];
for (i=0; i<10; i++)
printf ("&Data[%d] = %u\n", i, &Datal[i]);
return O;

}

Note: memory addresses are being printed as unsigned
integers using %u in printf.
A better format is %p that prints the address in hexadecimal.

Typically, variables are allocated memory locations whose
addresses are multiple of 4.

Output
sData[0] = 3221224480
sData[1l] = 3221224484
sData[2] = 3221224488
sData[3] = 3221224492
sData[4] = 3221224496
sData[5] = 3221224500
sData[6] = 3221224504
sData[7] = 3221224508
sData[8] = 3221224512
sData[9] = 3221224516

How to read the elements of an array?
By reading one element at a time.

Suppose we have declared an array: float a[25];

for (3=0; 7j<25; Jj++)
scanf (“%$£”, &al[j]l);

Note the ampersand (&) in scanf.

Reading into an array: example

Input = a list of marks from the user.
int main() Output = total and average.
const int MAX SIZE = 100;
int i, size;
float marks[MAX_SIZE]; OUtPUt
float total; 1
scanf ("%$d", &size); 2.5
for (i=0, total=0; i<size; i++) { 3.5
scanf ("$£f", &marks|[i]); Az
total = total + marks|[i];
} 5
printf ("Total = %f \n Avg = %$£f\n", Total = 15.500000
total, total/size); Avg = 3.875000
return O;
}

Printing in Reverse Using Arrays

int main () {

int n, A[100], 1i;

printf (“How many numbers to read? ”);

scanf (“%d”, &n);

for (i=0; i < n; ++i)
scanf (“%d”, &A[i]); // input the i-th array element

for (i=n-1; i >= 0; —-i) // note: loop counts downward
printf (“%d ”, A[i]); // output the i-th array element

printf (“\n”);

return O;

Indexes into Arrays

The array index can be any expression that evaluates to an integer between 0O
and n-1 where n is the maximum number of elements possible in the array.

Examples:

al[x+2] = 25;
b[3*x-y] = a[l1l0-x] + 5;

Remember:

Each array element is a variable in itself, and can be used anywhere a variable
can be used (in expressions, assignments, conditions,...)

Initialization of Arrays

General form:

type array name[size] = {comma-separated list of wvalues};

Examples:

{72, 83, 65, 80, 76};

char name[4] = {A’, ‘m’, ‘i’, ‘t’};

int marks|[5]

The size may be omitted if all initializers are specified. In such cases, the compiler
automatically allocates enough space for all initialized elements:

int marks[] = {72, 83, 65, 80, 76};

char name[] = {A’, ‘m’, ‘i’, ‘t’};

A Warning

In C, while accessing array elements, array bounds are not checked.

Example:
int marks|[5];

marks[0] = 87;

marks[8] = 75; // Caution: out of the array bounds!'

* The last assignment may not give any compilation error. But it may result in
unpredictable results during execution.

How to copy the elements of one array to another?

By copying individual elements:
int a[25], b[50];

for (j=0; 3j<25; j++)
a[j]l] = b[2*]];

The element assignments will follow the rules of assignment expressions.

Destination array must have sufficient size.

Things you cannot do with arrays

You cannot:

* assign one array variable to another
a =b; /* a and b are arrays */
Indeed, a or b cannot be an I-value in any assignment.

* use == to compare arrays

if (a ==b) { } Doesn’'t make element-by-element
comparison

* directly scanf or printf arrays (works, but not recommended unless
purposefully made)

printf (“....”, a);

scanf (“....”, a);

Example: Find the minimum in an array of 10 numbers

int main () {

int a[l10], i, min;

for (i=0; i<10; i++)

scanf (“%d”, &al[i]);

min = a[0];
for (i=1; i<10; i++){
if (a[i] < min)
min = a[i];
}
printf (“\nMinimum is %d”, min);

return O;

Alternate Version 1 #define size 10

int main () {

int a[size], i, min;

for (i=0; i<size; i++)

scanf (“sd”, &al[i]);

By #define:
You have to change
only one line of code

to change the problem size

min = a[0];
for (i=1l; i<size; i++) {
if (a[i] < min)
min = a[i];
}
printf (“Minimum is %d\n”, min);

return O;

Alternate Version 2

Define an array of
large size and use
only the required
number of elements

int main () {

int a[l100],

i, min, n;

scanf (“%d”, &n); //Number of elements
for (i=0; i<n; i++)
scanf (“%d”, &al[il]);
min = a[0];
for (i=1l; i<n; i++){

if (a[i] < min)

min

}

= a[i];

printf (“Minimum is %$d\n”, min);

return O;

Example: Computing Grade Point Average

const int nsub = 6;

int main ()

Handling two :

arrays

at the same time int grade_pt[nsub], cred[nsub], i, gp_sum=0, cred_sum=0;

double gpa;

for (i=0; i<nsub; i++)

: : : : scanf (“%d %d”, &grade_pt[i], &cred[i]);
cred[j] stores credit of subject |
for (i=0; i<nsub; i++)

grade_pt[j] stores grade point {

obtained by a student in subject |

gp_sum += grade_pt[i] * cred[i];
cred_sum += cred[i];

}

gpa = ((float) gp_sum) / cred_sum;

printf (“Grade point average is %$f\n”, gpa);

return O;

Example: Find largest contiguous sequence of equal numbers

#include<stdio.h>

int main|()

{
int i, n, A[20], k, maxbegin, maxcount, ssbegin, count;
scanf ("%d", &n);
for (i=0; i<n; i++) scanf ("%d", &A[i]);

printf ("A = ");
for (i=0; i<n; i++) printf ("3%d, ", A[i]); printf("\n");
maxbegin = 0; maxcount = 1;

ssbegin = 0; count = 1; k = 1;
while (k < n) {

if (A[k] == A[k-1]) {
count++;
if (count > maxcount) { 10
maxbegin = ssbegin; 1222322227
maxcount = count; A=1, 2, 2, 2, 3, 2, 2, 2, 2, 17,
} Sequence starting from A[5] of Length = 4, Value = 2
} else {
ssbegin = k; count = 1;
}
k++;

}
printf ("Sequence starting from A[%d] of Length = %d, Value = %d \n",

maxbegin, maxcount, A[maxbegin]);

Practice Problems

1.

Read in an integer n (n < 25). Read n integers in an array A. Then do the following (write separate programs for
each, only the reading part is common).

a) Find the sum of the absolute values of the integers.

b) Copy the positive and negative integers in the array into two additional arrays B and C respectively. Print A,
B, and C.

c) Exchange the values of every pair of values from the start (so exchange A[0] and A[1], A[2] and A[3] and so
on). If the number of elements is odd, the last value should stay the same.

Read in two integers n and m (n, m < 50). Read n integers in an array A. Read m integers in an array B. Then do
the following (write separate programs for each part, only the reading part is common).

a) Find if there are any two elements x, y in A and an element z in B, such that x +y =z
b) Copy in another array C all elements that are in both A and B (intersection)

c) Copy in another array C all elements that are in either A and B (union)

d) Copy in another array C all elements that are in A but not in B (difference)

	Slide 1
	Array
	Example: Printing Numbers in Reverse
	The Problem
	Using Arrays
	Declaring Arrays
	Array Declarations: examples
	Accessing Array Elements
	A First Example
	How is an array stored in memory?
	A Special Operator: AddressOf (&)
	Example
	How to read the elements of an array?
	Reading into an array: example
	Printing in Reverse Using Arrays
	Indexes into Arrays
	Initialization of Arrays
	A Warning
	How to copy the elements of one array to another?
	Things you cannot do
	Example: Find the minimum of a set of 10 numbers
	Slide 22
	Slide 23
	Example: Computing Grade Point Average
	Example: Find largest contiguous sequence of equal numbers
	Practice Problems

