FUNCTIONS

CS10003: PROGRAMMING AND DATA STRUCTURES

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR N

Introduction

Function
* A program segment that carries out a specific, well-defined task.

* Examples
* A function to find the gcd of two numbers
* A function to find the largest of n numbers

A function will carry out its intended task whenever it is called
* Functions may call other functions (or itself)
A function may be called multiple times (with different arguments)

Every C program consists of one or more functions.
* One of these functions must be called “main”.
 Execution of the program always begins by carrying out the instructions in “main”.

Function Control Flow

Code
Execution

void print_banner ()
{ intmain() —

printf(“********\n") ; { 1
} /

/v\ print_banner {

print_banner (); 7 }
;l.'int banner (); l//' print_banner {
int main () - \

print_banner () ;

print_banner () ; If function A calls function B:
A : calling function / caller function
B : called function

Why Functions?

Functions allow one to develop a program in a modular fashion.
* Codes hecome readable
* Codes become manageable to debug and maintain

Write your own functions to avoid writing the same code segments multiple times

* If you check several integers for primality in various places of your code, just write a single
primality-testing function, and call it on all occasions

Use existing functions as building blocks for new programs
* Use functions without rewriting them yourself every time it is needed
* These functions may bhe written by you or by others (like sqrt(), printf())

Abstraction: Hide internal details (library functions)

Use of functions: Area of a circle

#include <stdio.h>

/* Function to compute the area of a circle */

RS LERAE (GIEEiS) < Function definition
{ float a; <

a = 3.14159 * r * r; _

return a; /* return result */ Function argument

main ()

{

float radius, area;

scanf (“"%f”, &radius);

area = myfunc (radius); < Function call
printf (“\n Area is %f \n”, area);

Use of functions: Area of a circle

#include <stdio.h>

/* Function to compute the area of a circle */
float myfunc (float r) < Function definition

{ float a; T

a = 3.14159 * r * r;
return a; /* retur * A called function processes information that is passed to it from the

} calling function, and the called function may return a single value (result)

to the calling function.

Tain 0 * Information passed to the function via special identifiers called
float radius, area; arguments or parameters.

* The value is returned by the return statement.

scanf (“"%f”, &radius);

area = myfunc (radius); < Function call
printf (“\n Area is %f \n”, area);

Defining a Function

#include <stdio.h>

A function definition has two parts:

 The first line return value /* Function to compute the area of a
: circle *
* The body of the function type ——w_ /
float myfunc (float r)
{
General syntax: float a;
return-value-type function-name (parameter-list) a = 3.14159 * r * r;
{ return a;
declarations and statements }
} main ()
The first line contains the return-value-type, the function name, and t foat oy
optionally a set of comma-separated arguments enclosed in (). cat radius, ared
* Each argument has an associated type declaration. scanf (“%£”, &radius);
* The arguments are called formal arguments or formal parameters. area = myfunc (radius);
Example: printf (“\n Area is %f \n”, area);

float myfunc (float r)

int gcd (int A, int B)

Calling a function

e .) _ #include <stdio.h>
 Called by specifying the function name and parameters in an

instruction in the calling function.
/* Function to compute the area of a

circle */
float myfunc (float r)
* When a function is called from some other function, the {
corresponding arguments in the function call are called actual float a;
a = 3.14159 * r * r;

arguments or actual parameters.
return a;

* The function call must include a matching actual parameter for }
each formal parameter. main ()
* Position of an actual parameters in the parameter list in the call {
must match the position of the corresponding formal parameter in Herie Rk, SRy

the function definition. scanf (“$£”, sradius);

* The formal and actual arguments would match in their data types. area = myfunc (radius);
Mismatches are auto-typecasted if possible. PTintf (F\n Area is $f \n“, area);

* The actual parameters can be expressions possibly involving
other function calls (like f(g(x)+y)).

Function Prototypes: declaring a function

Usually, a function is defined before it is called.

* main() is usually the last function in the program written.
* Easy for the compiler to identify function definitions in a single scan through the file.

Some prefer to write the functions after main(). There may be functions that call each other.

* Must be some way to tell the compiler what is a function when compilation reaches a function call.

* Function prototypes are used for this purpose
* Only needed if function definition comes after a call to that function.

* Function prototypes are usually written at the beginning of a program, ahead of any functions (including main()).
* Prototypes must specify the types. Parameter names are optional (ignored by the compiler).

* Examples:

int ged (int, int);
void div7 (int number);

* Note the semicolon at the end of the line.
* The parameter name, if specified, can be anything; but it is a good practice to use the same names as in the function

definition. S

Example:

Function prototype / declaration

#include <stdio.h> ",/””
&

int sum(int, int);

int main() This program needs a function prototype or
{ function declaration since the function call
int x, y; comes before the function definition.

scanf (“%d%sd”, &x, &y);
printf (“Sum = %$d\n”, sum(x, y));

} ﬁi“‘-._

— Function call

int sum (int a, int b)

> . . g
return a + b; Function definition

Return value

: : * Sometimes a function is not meant for returning anything
* A function can return a single value

Using retum statement * Such functions are of type void

* Like all values in C, a function return value has a type

* The return value can be assigned to a variable in the calling Example: A function which prints i a number is divisible

function by 7 or not.
void div7 (int n)
int main() (
{ if ((n $ 7) == 0)
int x, y, s; printf (“%d divisible by 7”7, n);
else

SErERe (ke By G printf (“%d not divisible by 77, n);

s = sum(x, y);
} }

int sum (int a, int b)

{

return;

* The return type is void

* The return statement for void functions is optional at
the end

return a + b;

11

The return statement

In a value-returning function, return does two distinct things:
* Specify the value returned by the execution of the
function.

* Terminate the execution of the called function and
transfer control back to the caller function.

A function can only return one value.

* The value can be any expression matching the return
type.
* It might contain more than one return statement.

In a void function:

* "return” is optional at the end of the function body.

* "return” may also be used to terminate execution of the
function explicitly before reaching the end.

* No return value should appear following “return”.

void compute_and print_itax ()

{

float income;

scanf (“%f”, &income);

if (income < 50000) {
printf (“Income tax = Nil\n”);
return;

}

if (income < 60000) {

printf (“Income tax =

/* Terminates function execution */

%$f\n”, 0.1* (income-50000));

return; /* Terminates function execution */

}

if (income < 150000) {
printf (“Income tax = %f\n”,0.2* (income-60000)+1000);

return ; /* Terminates function execution */

}

printf (“Income tax = %f\n”,0.3* (income-150000)+19000);

12

Another Example: What is happening here?

{

int main ()

int numb, flag, j=3;
scanf (“%$d”, &numb) ;
while (j <= numb) ({
flag = prime (j);
if (flag == 0)
printf(“%d is prime\n”, 3j);
J++;
}

return O;

int prime (int x)

{

int i, test;
i=2, test =0;
while ((i <= sqgrt(x)) && (test ==0))
{
if (x%i==0) test = 1,
i++;
}

return test;

13

Tracking the flow of control

int main()

{_ _ int prime(int x)
int numb, flag, j=3; {
scanf(“%d”,&numb); int i, test;

printf(“numb = %d \n”,numb); i=2; test=0;

while (j <= numb
() 7 printf(“In function, x = %d \n” x);

{ while ((i <= sqrt(x)) &&. (test == 0))
printf(“\nMain, j = %d\n" j); {
flag = prime(j); g if (x%i == 0) test = 1;
printf(“Main, flag = %d\n” flag); i++;

}

. . . _ printf(“Returning, test = %d \n” test);
if (flag == 0) printf(“%d is prime\n”,j);

't return test;

} }

return 0;

}

PROGRAM OUTPUT
5
humb =5

Main, j=3

In function, x =3
Returning, test=0
Main, flag = 0

3 is prime

Main, j=4

In function, x =4
Returning, test=1
Main, flag =1

Main, j=5

In function, x =5
Returning, test =0
Main, flag = 0

5 is prime

14

Nested Functions

A function cannot be defined within another function. It can be called within another function.
* All function definitions must be disjoint.

Nested function calls are allowed.
* Acalls B, B calls C, C calls D, etc.
* The function called last will be the first to return.

A function can also call itself, either directly or in a cycle.
* Acalls B, B calls C, C calls back A.
* Called recursive call or recursion.

Example: main() calls ncr(), ncr() calls fact()

#include <stdio.h>
int ncr (int n, int r);
int fact (int n);

main ()

{
int i, m, n, sum=0;
scanf (“'%d %d4d”, &m, &n);

for (i=1l; i<=m; i+=2)
sum = sum + ncr(n, 1i)

printf (“Result: %d \n”,

4

sum) ;

int

{

int

{

ncr (int n, int r)

return (fact (n)/fact(r)/fact (n-r));

fact (int n)
int i, temp=1;

for (i=1l; i<=n; i++)
temp *= ji;

return (temp);

16

Local variables

A function can define its own local variables.

The local variables are known (can be accessed) only within the function in which they are
declared.

* Local variables cease to exist when the function returns.

* Each execution of the function uses a new set of local variables.
Parameters are also local.

/* Find the area of a circle with / parameter

diameter d */ //////’

double circle_area (double d)‘

{

double radius, area; < local variables
radius = d4/2.0;
area = 3.l4*radius*radius;

return (area);

Revisiting nCr

int

{

ncr (int n, int r)

<

return (fact (n)/fact (r)/fact (n-r));

S

int fact (int n)
{
int

i, temp=1;

for (i=1l; i<=n; i++)
temp *= ji;

return (temp);

— The nin ncr() and
the nin fact() are

different

Scope of a variable

 Part of the program from which the value of the variable can be used (seen).

* Scope of a variable - Within the block in which the variable is defined.
* Block = group of statements enclosed within { }

* Local variable - scope is usually the function in which it is defined.

* So two local variables of two functions can have the same name, but they are different
variables

* Global variables - declared outside all functions (even main).

* Scope is entire program by default, but can be hidden in a block if local variable of same
name defined

* You are encouraged to avoid global variables

What happens here?

#include <stdio.h>
B int A; /* This A is a global variable */
void main()
{
A=1;
myProc(); — A
printf ("A = %d\n", A); —
}
Scope of —<
global A void myProc()
{
A= 2;
/* other statements */
printf ("A = %d\n", A); > A

2

Local Scope replaces Global Scope

#include <stdio.h>
- int A; /* This A is a global variable */
void main()

{

A=1;
myProc();
printf ("A = %d\n", A); > A=1
}
Scope of
glogaIA — void myProc()
{
— int A = 2; /* This A is a local variable */
Scope of /* other statements */
s
local A /* within this function, A refers to the local A */
- printf ("A = %d\n", A); > A=2

Parameter Passing

When the function is called, the value of the actual parameter is copied to the formal parameter

parameter passing

int main () \

{ . . . double area (double r)
double radius, a; {
. . . return (3.14*r*r);
a = area(radius); }

22

Parameter Passing by Value in C

* Used when invoking functions

Call by value | parameter passing by value

° Falletpl function gets a copy of the value of the actual argument passed to the
unction.

* Execution of the function does not change the actual arguments.
* All changes to a parameter done inside the function are done on the copy.
* The copy is removed when the control returns to the caller function.
* The value of the actual parameter in the caller function is not affected.

* The arguments passed may very well be expressions (example: fact(n-r)).

Call by reference

* Passes the address of the original argument to a called function.

* Execution of the function may affect the original argument in the calling function.
* Not directly supported in C, but supported in some other languages like C++.

* In C, you can pass copies of addresses to get the desired effect.

Parameter passing and return: 1

int main ()

{
int a=10, b;
printf (“Initially a = %d\n”, a);
b = change (a);

printf (“a = %d, b = %d\n”, a, b); Output
return O; ..
: Initially a = 10
Before x = 10
int change (int x)
(Afterx=5
printf (“Before x = %d\n”, x); a= 10’ b=5
x =x / 2;

printf (“After x = %d\n”, x);

return (x);

Parameter passing and return: 2

int main ()

{
int x=10, b;
printf (™M: Initially x = %d\n”, x);
b = change (x);

printf (™: x = %d, b = %d\n”, x, b); OUtpUt
return O; .
) M: Initially x = 10
F: Before x =10
int change (int x)
{ F: After x=5
printf (“F: Before x = %d\n”,x); M: X = 10’ b=5
X =x/ 2;

printf (“F: After x = %d\n”, x);
return (x);

Parameter passing and return: 3

int main|()

{ Output
int x=10, ¥=3; M1: x=10,y=5
printf ("Ml: x = %d, y = %d\n”, x, y);
interchange (x, y); = 10’ y= :
printf ("™M2: x = %d, y = %d\n”, x, y); F2: X=5,y=10
return O; M2: x=10,y=5

}

void interchange (int x, int y)

{
int temp;
printf (“Fl: x = %d, y = %d\n”, x, y); How do we write an interchange function?
temp= x; x = y; y = temp; (will see later)
printf (“F2: x = %d, y = %d\n”, x, y);

}

Header files and preprocessor

Header Files

Header files:
 Contain function declarations | prototypes for library functions.
 <stdlib.h>, <math.h> , etc.
* Load with: #include <filename>
* Example: #include <math.h>
* The function definitions of library functions are in the actual libraries (e.g., math library).

We can also create custom header files:
* Create file(s) with function prototypes / declarations.
* Save as filename.h (say).
* Load in other files with #include "filename.h"

C preprocessor

« Statements starting with # are handled by the C preprocessor

* May be done by the compiler or by a separate program
* Preprocessing is done before the actual compilation process begins

* The C preprocessor is basically a text substitution tool
* For instance, #include command is replaced by the contents of the specified header file
* Such commands are called preprocessor directives

* We will study another preprocessor directive: #define
* There are more such directives - see book

#define: Macro definition

Preprocessor directive in the following form:

#define stringl string2

* Replaces stringl by string2 wherever it occurs before compilation. For example,

#define Pl 3.1415926

#define PI 3.1415926
main ()
{

float r = 4.0, area;

area = PI * r * r;

macro pre-processing
—

main ()

{

float r = 4.0, area;

area = 3.1415926 * r * r;

30

#define with arguments

#define statement may be used with arguments.
¢ Example: #define sqgr(x) x*x
* How will macro substitution be carried out?

r = sgr(a) + sqgr(30); - r = a*a + 30*30;

r = sqgr (a+b); - r = a+b*a+b;

* The macro should better be written as:
#define sqgr (x) (x) * (x)
r = sqgr (a+b); - r = (a+b) * (a+b);

* |s this still correct?

AN

WRONG?

r = ¢ / sqr(a+b); -> r = c / (atb)*(a+b);

Macros are not functions. They are literally substituted without evaluation.

Practice Problems

No separate problems needed.

Look at everything that you did so far, such as finding sum, finding average, counting something, checking if
something is true or false (“ Is there an element in array A such that....) etc. in which the final answer is one

thing only (like sum, count, 0 or 1,...).

Then for each of them, rather than doing it inside main (as you have done so far), write it as a function with
appropriate parameters, and call from main() to find and print.

* Normally, read and print everything from main(). Do not read or print anything inside the function. This will
give you bhetter practice.
* However, you can write simple functions for printing an array.

32

Passing Arrays to a Function

How to pass arrays to a function?

An array hame can be used as an argument to a function.

* Permits the entire array (not exactly) to be passed to the function.
« The way it is passed differs from that for ordinary variables.

Rules:

* Function definition: corresponding formal argument is declared by writing the array name
followed by a pair of empty brackets.

f (int A[])
{

* Function call: the array name must appear by itself as argument, without brackets or subscripts.

<
£(a), £(B) o

We can also write
float x[100]

The compiler completely
ighores the size 100.

You can pass arrays of any size
to the function. There is no
obligation that only an array of
size 100 has to be passed.

main ()

{
int n;
float list[100], avg;

avg = average(n,list);

float average (int a, float x[])

{

sum = sum + x[i];

Example: Minimum of a set of numbers

#include <stdio.h> int minimum(int x[], int size)
int minimum (int x[], int y) {
int i, min = 99999;
main ()
{ for (i=0;i<size;i++)
int a[l100], i, n; if (min > x[1i])
min = x[1];
scanf (”%d”, &n); return (min) ;
for (i=0; i<n; i++) }

scanf (”7%d”, &al[i]):
printf (“\n Minimum is %d”,

minimum(a,n)) ;

}

Note: When a function takes an array as argument, it does not care about how big the array is declared to be.
Moreover, the user is not forced to use the entire allocated array.
The programmer must specify to the function “I am using only these many elements of the array.”

The Actual Mechanism

When an array is passed to a function, the values of the array elements are not passed
to the function.

* The array name is interpreted as the address of the first array element.
* The formal argument therefore hecomes a pointer to the first array element.

* When an array element is accessed inside the function, the address is calculated
using the formula stated before.

* Changes made to the array elements inside the called function are also reflected
in the calling function.

Parameters are passed in C using call-by-value.

Passing the starting address when an array is sent as argument simulates call-by-reference.

Basically what it means:

* [f a function changes the elements of an array that is passed as argument, these changes
will be made to the original array that is passed to the function.

 This does not apply when an individual element of an array is passed as argument.

void £ (int A[], int B)
{
A[2] = 10;
B = 10;
}
int main ()
{
int A[] = {1,2,3,4,5}, B[] = {1,2,3,4,5};
£f(A,B[2]);
printf (“A[2] = %d, B[2] = %d\n”, A[2], B[2]); A[2] =10, B[2] =3

Example: Square each element of array

#include <stdio.h>
void square (int a[], int b);

void square (int x[], int size)

main () { : i
{ int 1;
int a[l1l00], i, n;)) :)
for (i=0;i<size;i++)
scanf (”%d”, &n); x[1] = x[1]*x[1];
for (i=0; i<n; i++) . .
scanf (”%d”, &al[i]); \ return,
square (a, n);
printf (“\nNew array is: “);
for (i=0; i<n; i++) Address of parameter x (an array) is
printf (™ $d”, al[il]); passed, but parameter size is passed
printf (“\n”) ; normally by value.

Practice Problems

1.

Read in an integer n (n < 25). Read n integers in an array A. Then do the following (write separate programs for
each, only the reading part is common).

a) Find the sum of the ahsolute values of the integers.

b) Copy the positive and negative integers in the array into two additional arrays B and C respectively. Print A,
B, and C.

c) Exchange the values of every pair of values from the start (so exchange A[0] and A[1], A[2] and A[3] and so
on). If the number of elements is odd, the last value should stay the same.

Read in two integers n and m (n, m < 50). Read n integers in an array A. Read m integers in an array B. Then do
the following (write separate programs for each part, only the reading part is common).

a) Find if there are any two elements x, y in A and an element z in B, such that x +y =z
b) Copy in another array C all elements that are in both A and B (intersection)

c) Copy in another array C all elements that are in either A and B (union)

d) Copy in another array C all elements that are in A but not in B (difference)

	Slide 1
	Introduction
	Function Control Flow
	Why Functions?
	Use of functions: Area of a circle
	Use of functions: Area of a circle
	Defining a Function
	Calling a function
	Function Prototypes: declaring a function
	Example:
	Return value
	The return statement
	Another Example: What is happening here?
	Tracking the flow of control
	Nested Functions
	Example: main() calls ncr(), ncr() calls fact()
	Local variables
	Revisiting nCr
	Scope of a variable
	What happens here?
	Local Scope replaces Global Scope
	Parameter Passing
	Parameter Passing by Value in C
	Parameter passing and return: 1
	Parameter passing and return: 2
	Parameter passing and return: 3
	Slide 27
	Header Files
	C preprocessor
	#define: Macro definition
	#define with arguments
	Practice Problems
	Slide 33
	How to pass arrays to a function?
	Slide 35
	Example: Minimum of a set of numbers
	The Actual Mechanism
	Slide 38
	Example: Square each element of array
	Practice Problems

