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Recursion

A process by which a function calls itself repeatedly.

* Either directly.
* FcallsF
* Orcyclically in a chain.
* Fcalls G, G calls H, and H calls F.

Used for repetitive computations in which each action is stated in terms of a previous result.

fact(n) = n * fact (n-1)




Basis and Recursion

For a problem to be written in recursive form, two conditions are to be satisfied:

* It should be possible to express the problem in recursive form.
* The problem statement must include a stopping condition

fact(n) = 1, if n=0 [* Stopping criteria */
= n*fact(n - 1), if n>0 I* Recursive form */




Examples:

* Factorial:
fact(0)=1
fact(n)=n*fact(n-1),ifn>0

* GCD (assume that m and n are non-negative and m = n):
gcd (m, 0) =m
gcd (m,n)=gcd (h,m%n) ,ifn>0

* Fibonacci sequence (0,1,1,2,3,5,8,13,21,...)
fib (0)=0
fib(1)=1
fib(n)=fib(n-1)+fib(n-2),ifn>1




Example 1 :: Factorial

int fact (intn)

{
if (n==1)
return (1);
else

return (n * fact(n — 1));




Example 1 :: Factorial Execution

fact(4) 24

ilf (4 = =1) return (1);

else return (4 * fact(3)); 6
} \
if (3==1)return (1);

else return (3 * fact(2)); 2
| \
If (2==1)return (1);
else return (2 * fact(1)); 1
int fact (int n) l ﬁ

{ if (1==1)return (1);

If (n==1)return (1); . _
else return (n * fact(n — 1) ); else return (1 * fact(0));

}




Example 2 :: Fibonacci number

Fibonacci number f(n) can be defined as:
f(0) = 0
f1) = 1
f(n) = fln-1)+f(n-2), if n>1
* The successive Fibonacci numbers are:
0112358, 13,21, .....

int f(intn)
{

If (n <2) return (n);

else return (f(n = 1) + f(n = 2) );
}




Tracing Execution

int f(int n) f(4)

{
if (n <2) return (n); / \
else return (f(n = 1) +f(n = 2) ); f(3) f(2)

} /N /N

f(2) (1) 1)  f(0)

How many times is the function called when evaluating
f(4) 2 / \
f(1) f(0)
Inefficiency: :
called 9 times

* Same thing is computed several times.




Some points to note

Every recursive program can also be written without recursion

* Tail Recursion: Last thing a recursive function does is making a single recursive call (of itself) at the end.
* Easy to replace tail recursion by a loop.
* In general, removal of recursion may be a very difficult task (even if you have your own recursion stack).

Recursion can be helpful in many situations

* Better readability
* Ease of programming
* Sometimes, recursion gives best-possible or best-known algorithms to solve problems

Recursion can also be a killer

* You solve the same subproblem multiple times (Example: Fibonacci numbers)
* Every recursive call incurs a (small) overhead

Use recursion with caution




Example of tail recursion

Not a tail recursion:
int suml (intn)

{
if (n == 0) return 0;

return n + suml(n-1);

}

Tail recursion:

Int sum2 ( int n, int partialsum )

{
If (n == 0) return partialsum;

return sum2(n - 1, n + partialsum);

Call from main() as:
scanf(“%d”, &N);

s = sum2(N, 0);

Equivalent iterative function:

intsum3 (intn)

{
int partialsum = 0;
while (n > 0) {
partialsum = n + partialsum;
}
return partialsum;
}
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Important things to remember

* Think how the current problem can be solved if you can solve exactly the same problem on one or more
smaller instance(s).

* Do NOT think how the problem will be solved on smaller instances, just call the function recursively and
assume that the recursive calls do their jobs correctly.

* Do NOT forget to include the base cases to solve the problem on smallest instances.

* This is basically mathematical induction applied to programming.

* When you write a recursive function

* First, write the terminating/base condition
* Then, write the rest of the function
* Always double-check that you have both




Example: Sum of Squares

Write a function that takes two integers m and n as arguments, and computes and returns the sum of
squares of every integer in the range [m:n], both inclusive.

int sumSquares (int m, int n)

{
int middle ;
if (m == n) return(m*m);
else
{

middle = (m+n)/2;
return (sumSquares(m,middle) + sumSquares(middle+1,n));

}
}




int sumSquares (int m, int n)

Annotated Call Tree (

int middle ;
if (m == n) return(m*m);
else {

middle = (m+n)/2;
return (sumSquares(m,middle)
+ sumSquares(middie+1,n));

sumSquares(5,10) }
}
sumSquares(5,7) sumSquares(8,10)
sumSquares(5,6) sumSquares(7,7) sumSquares(8,9) sumSquares(10,10)

sumSquares(5,5) |  [sumSquares(6,6) sumSquares(8,8) | |sumSquares(9,9)
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Example: Printing the digits of an integer in reverse

Print the last digit, then print the remaining number in reverse
* EX: If integer is 743, then reversed is print 3 first, then print the reverse of 74

void printReversed (inti)
{
if (1<10) {
printf(“%d\n”, i); return;
}
else {
printf(“%d”, 1%10);
printReversed(i/10);
}
}
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Example: Printing your name in reverse

#include <stdio.h>

void readandprint ()

{

char c;

scanf("%c", &c);
if (¢ =="\n’) return;
readandprint();
printf("%c", c);

}

int main ()

{
printf("Enter your name and hit return: ");
readandprint();
printf("\n");

Output

Enter your name and hit return: Jane Doe
eoD enal

Exercise: Rewrite this code so that the output
looks as follows:

Enter your name and hit return: Jane Doe
Your name in reverse: eoD enalJ
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Counting Zeros in a Positive Integer

Check last digit from right

* Ifitis 0, number of zeros = 1 + number of zeroes in remaining part of the number
* If it is non-0, number of zeros = number of zeroes in remaining part of the number

int zeros (int number)
{
If(number < 10) return 0;
If (humber % 10 == 0)
return( 1 + zeros(number/10) );
else
return( zeros(number/10) );
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Common Errors in Writing Recursive Functions

Non-terminating Recursive Function (Infinite recursion)

* No base case int badFactorial(int x) {
return x * badFactorial(x-1);
}
* The base case is never reached int badSum2(int x)
{

if(x==1) return 1;
return(badSum2(x--));
}

int anotherBadFactorial(int x) {
if(x == 0)
return 1;
else
return x*(x-1)*anotherBadFactorial(x-2);
I When X is odd, base case is never reached!!

}




Common Errors in Writing Recursive Functions

Mixing up loops and recursion

int anotherBadFactorial (int x) {
int i, fact = 0;
If (x ==0) return 1;
else {
for (i=x; i>0; i=i-1) {
fact = fact + x*anotherBadFactorial(x-1);

}

return fact;

In general, if you have recursive function calls within a loop, think carefully if you need it.

Most recursive functions you will see in this course will not need this




Example :: Towers of Hanoi Problem

The problem statement:

* Initially all the disks are stacked on the LEFT pole.
* Required to transfer all the disks to the RIGHT pole.
* Only one disk on the top can be moved at a time.

* Alarger disk cannot be placed on a smaller disk.
* CENTER pole is used for temporary storage of disks.

CENTER RIGHT
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Recursive Formulation

Recursive statement of the general problem of n disks.
* Step 1:
* Move the top (n-1) disks from LEFT to CENTER.
* Step 2:
* Move the largest disk from LEFT to RIGHT.
* Step 3:
* Move the (n-1) disks from CENTER to RIGHT.




Phase-1: Move top n - 1 from LEFT to CENTER

I 1I_I
| 2 | I I
I 3 I

LEFT CENTER RIGHT
I ! I | l | IJ_I
| |
LEFT CENTER RIGHT

.

LEFT CENTER RIGHT
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Phase-2: Move the n" disk from LEFT to RIGHT

I 3 I 2 I I

LEFT CENTER RIGHT
I I 2 I ! I

LEFT CENTER RIGHT
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Phase-3: Move top n - 1 from CENTER to RIGHT

L

| | 2 | 3 | |
LEFT CENTER RIGHT
J_I | l | I ! I
I |
LEFT CENTER RIGHT

I B

LEFT CENTER RIGHT

23



#include <stdio.h>
void transfer (int n, char from, char to, char temp);

int main( )

{ int n; I*Number of disks */
scanf (“%d”, &n);
transfer (n, ‘'L, ‘R’, ‘C’);

return 0;
}
void transfer (int n, char from, char to, char temp)
{
if (n>0) {
transfer (n-1, from, temp, to);
printf (“Move disk %d from %c to %c \n”, n, from, to);
transfer (n-1, temp, to, from);
}
return;
}
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o7 Telnet 144.16.192.60

With 3 discs

1 R
> C
1 C
3 R
1 L
> R
1 R

. Telnet 144.16.192.60

M =

With 4 discs

HAEQOENEPAENEOE
#HOrmrOROOrmRIrorr
HAAOICCIICrOI/IZO

[isg@facweb




Recursion versus lteration

Repetition

* lteration: explicit loop
* Recursion: repeated nested function calls

Termination

* Iteration: loop condition fails
* Recursion: base case recognized

Both can have infinite loops
Balance
* Understand the benefits | penalties of recursion in terms of
* Ease of implementation
* Readability
* Performance degradation | performance enhancement

* Take an educated decision
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More Examples
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What do the following programs print?

void foo( intn )

{
int data;
if (n==0) return;
scanf(“%d”, &data);
foo(n-1);
printf(“%d\n”, data);

}

main ()

{ intk=5;
foo (k);

}

void foo( intn )

{
int data;
if (n==0) return;
foo(n-1);
scanf(“%d”, &data);
printf(“%d\n”, data);

}

main ()

{ intk=5;
foo (k);

}

void foo( intn )

{
int data;
if (n==0) return;
scanf(“%d”, &data);
printf(“%d\n”, data);
foo(n-1);

}

main ()

{ intk=5;
foo (k);

}
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Printing cumulative sum -- will this work?

int foo( intn )
{
int data, sum ;
if(n==0) return 0; Input: 123 45
scanf(“%d”, &data);
sum =data+foo(n-1); Output: 59 12 14 15

printf(“%d\n”, sum);
return sum; How to rewrite this so that the outputis: 1 3 6 10 15?

}

main () {
intk =5;
foo (k);
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Printing cumulative sum (two ways)

int foo( intn
( ) void foo( int n, int sum )

{ {
int data, sum ; .
if (n==0) return 0; Nt aata;

_ if(n==0) return 0;
sum=foo(n-1); o gdata)
Scanf(“%d", &data), Input: 123 4 5 scan ( od, a a),
sum = sum + data: sum = sum + data;

g Output: 1361015 printf(“%d\n”, sum);
printf(“%d\n”, sum);
foo( k-1, sum);
return sum;
}
; main () {
main () { e
int k = 5; Ifn ;( (; |
fOO(k), 00( | )1
} }
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Paying with fewest coins

* A country has coins of denomination 3, 5 and 10, respectively.

* We are to write a function canchange( k ) that returns -1 if it is not possible to pay a value of k using these
coins.

* Otherwise it returns the minimum number of coins needed to make the payment.

* For example, canchange(7) will return -1.

* On the other hand, canchange(14) will return 4 because 14 can be paid as 3+3+3+5 and there is no other way
to pay with fewer coins.

* Finally, 15 can be changed as 3+3+3+3+3, 5+5+5, 5+10, so canchange(15) will return 2.
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Paying with fewest coins

int canchange(int k)
{
int a;
if (k==0) return 0;
if ( ) return 1;
if (k <3) ;

a = canchange( ); if (@ > 0) return ;
a = canchange(k - 5); if (a > 0) return ;

a = canchange( ); if (@ > 0) return ,
return -1;
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Paying with fewest coins

int canchange( int k)

{
int a;
if (k==0) return 0;
if ((k==3) || (k==5) || (k==10)) return 1;
if (k<3) return -1 ;
a = canchange( k - 10); if (a > 0) return a+1 ;
a = canchange(k-5); if (a > 0) return a+1;
a = canchange( k - 3); if (a > 0) return a+1;
return -1;

}

Exercise: Rewrite this code if the denominations are 3, 8, and 10. Do you see a problem? Repair it.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Practice Problems

1. Write a recursive function to search for an element in an array

2. Write a recursive function to count the digits of a positive integer (do also for sum of digits)
3.  Write a recursive function to reverse a null-terminated string

4. Write a recursive function to convert a decimal number to binary

5.  Write a recursive function to check if a string is a palindrome or not

6. Write a recursive function to copy one array to another

Note:

* For each of the above, write the main functions to call the recursive function also
* Practice problems are just for practicing recursion, recursion is not necessarily the most efficient way
of doing them
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Advanced topic

(optional)
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How are recursive calls implemented?

What we have seen ....

* Activation record gets pushed into the stack when a function call is made.
* Activation record is popped off the stack when the function returns.

In recursion, a function calls itself.

* Several function calls going on, with none of the function calls returning back.
* Activation records are pushed onto the stack continuously.
* Large stack space required.
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* Activation records keep popping off, when the termination condition of recursion is reached.

We shall illustrate the process by an example of computing factorial.

* Activation record looks like:

Actual Parameters

Local Variables
Return Value
Return Address
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Example:: main() calls fact(3)

main()
{
int n;
n=3;
printf (“%d \n”, fact(n) ); int fact (n)
} int n;
{
if (n==0)
return (1);
else

return (n * fact(n-1));
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TRACE OF THE STACK DURING EXECUTION

>
n=0
1
RA .. fact
n="1 n="1 n="1 £t

main() . - 171 =1 retu(rzs
calls RA .. fact RA .. fact RA .. fact to

fact( ) n=2 n=2 n=2 n=2 n=2 mairj( )

1 - - - - 2*1 = 2 T
RA .. fact RA .. fact RA .. fact RA .. fact RA .. fact
n=3 n=3 n=3 n=3 n=3 n=3 n=3
- - - - - - 3*2=06
RA..main | | RA..main || RA..main | | RA .. main RA..main || RA..main | | RA.. main
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Do Yourself

Trace the activation records for the following version of Fibonacci sequence.

#include <stdio.h>

int f(intn)
{
int a, b;
if (n <2) return (n);
else {
X — a=f(n-1);
Y — b =1(n-2);
return (a+b); }
}
main( ) {
printf(“Fib(4) is: %d \n”, f(4));
}

Actual Parameters

(n)

Local Variables
(a, b)

Return Value

Return Address
(either main or f)
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