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Lecture 1: Introduction to Computational Geometry
What is Computational Geometry? “Computational geometry” is a term claimed by a number of different groups.

The term was coined perhaps first by Marvin Minsky in his book “Perceptrons”, which was about pattern
recognition, and it has also been used often to describe algorithms for manipulating curves and surfaces in solid
modeling. Its most widely recognized use, however, is to describe the subfield of algorithm theory that involves
the design and analysis of efficient algorithms for problems involving geometric input and output.
The field of computational geometry developed rapidly in the late 70’s and through the 80’s and 90’s, and it
still continues to develop. Historically, computational geometry developed as a generalization of the study of
algorithms for sorting and searching in 1-dimensional space to problems involving multi-dimensional inputs.
Because of its history, the field of computational geometry has focused mostly on problems in 2-dimensional
space and to a lesser extent in 3-dimensional space. When problems are considered in multi-dimensional spaces,
it is usually assumed that the dimension of the space is a small constant (say, 10 or lower). Nonetheless, recent
work in this area has considered a limited set of problems in very high dimensional spaces, particularly with
respect to approximation algorithms. In this course, our focus will be largely on problems in 2-dimensional
space, with occasional forays into spaces of higher dimensions.
Because the field was developed by researchers whose training was in discrete algorithms (as opposed to nu-
merical analysis) the field has also focused more on the discrete nature of geometric problems (combinatorics
and topology, in particular), as opposed to continuous issues. The field primarily deals with straight or flat
objects (lines, line segments, polygons, planes, and polyhedra) or simple curved objects such as circles. This is
in contrast, say, to fields such as solid modeling, which focus on issues involving curves and surfaces and their
representations.
There are many fields of computer science that deal with solving problems of a geometric nature. These include
computer graphics, computer vision and image processing, robotics, computer-aided design and manufacturing,
computational fluid-dynamics, and geographic information systems, to name a few. One of the goals of com-
putational geometry is to provide the basic geometric tools needed from which application areas can then build
their programs. There has been significant progress made towards this goal, but it is still far from being fully
realized.

A Typical Problem in Computational Geometry: Here is an example of a typical problem, called the shortest path
problem. Given a set polygonal obstacles in the plane, find the shortest obstacle-avoiding path from some given
start point to a given goal point (see Fig. 1). Although it is possible to reduce this to a shortest path problem on
a graph (called the visibility graph, which we will discuss later this semester), and then apply a nongeometric
algorithm such as Dijkstra’s algorithm, it seems that by solving the problem in its geometric domain it should
be possible to devise more efficient solutions. This is one of the main reasons for the growth of interest in
geometric algorithms.

s t s t

Fig. 1: Shortest path problem.

The measure of the quality of an algorithm in computational geometry has traditionally been its asymptotic
worst-case running time. Thus, an algorithm running in O(n) time is better than one running in O(n log n)
time which is better than one running in O(n2) time. (This particular problem can be solved in O(n2 log n)
time by a fairly simple algorithm, in O(n log n) by a relatively complex algorithm, and it can be approximated
quite well by an algorithm whose running time is O(n log n).) In some cases average case running time is
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considered instead. However, for many types of geometric inputs (this one for example) it is difficult to define
input distributions that are both easy to analyze and representative of typical inputs.

Strengths Computational Geometry:

Development of Geometric Tools: Prior to computational geometry, there were many ad hoc solutions to ge-
ometric computational problems, some efficient, some inefficient, and some simply incorrect. Because of
its emphasis of mathematical rigor, computational geometry has made great strides in establishing correct,
provably efficient algorithmic solutions to many of these problems.

Emphasis on Provable Efficiency: Prior to the development of computational geometry little was understood
about the computational complexity of many geometric computations. For example, given an encoding of
all the zip code regions in the USA, and given a latitude and longitude from a GPS device, how long should
it take to compute the zip code associated with the location? How should the computation time depend on
the amount of preprocessing time and space available? Computational geometry put such questions on the
firm grounding of asymptotic complexity, and in some cases it has been possible to prove that algorithms
discovered in this area are optimal solutions.

Emphasis on Correctness/Robustness: Prior to the development of computational geometry, many of the soft-
ware systems that were developed were troubled by bugs arising from the confluence of the continuous
nature of geometry and the discrete nature of computation. For example, given two line segments in the
plane, do they intersect? This problem is remarkably tricky to solve since two line segments may arise
from many different configurations: lying on parallel lines, lying on the same line, touching end-to-end,
touching as in a T-junction. Software that is based on discrete decisions involving millions of such inter-
section tests may very well fail if any one of these tests is computed erroneously. Computational geometry
research has put the robust and correct computing of geometric primitives on a solid mathematical foun-
dations.

Linkage to Discrete Combinatorial Geometry: The study of new solutions to computational problems has
given rise to many new problems in the mathematical field of discrete combinatorial geometry. For ex-
ample, consider a polygon bounded by n sides in the plane. Such a polygon might be thought of as the
top-down view of the walls in an art gallery. As a function of n, how many “guarding points” suffice so that
every point within the polygon can be seen by at least one of these guards. Such combinatorial questions
can have profound implications on the complexity of algorithms.

Limitations of Computational Geometry:

Emphasis on discrete geometry: There are some fairly natural reasons why computational geometry may
never fully address the needs of all these applications areas, and these limitations should be understood
before undertaking this course. One is the discrete nature of computational geometry. There are many
applications in which objects are of a very continuous nature: computational physics, computational fluid
dynamics, motion planning.

Emphasis on flat objects: Another limitation is the fact that computational geometry deals primarily with
straight or flat objects. To a large extent, this is a consequence of CG’ers interest in discrete geomet-
ric complexity, as opposed to continuous mathematics. Another issues is that proving the correctness and
efficiency of an algorithm is only possible when all the computations are well defined. Many computations
on continuous objects (e.g., solving differential and integral equations) cannot guarantee that their results
are correct nor that they converge in specified amount of time. Note that it is possible to approximate
curved objects with piecewise planar polygons or polyhedra. This assumption has freed computational
geometry to deal with the combinatorial elements of most of the problems, as opposed to dealing with
numerical issues.

Emphasis on low-dimensional spaces: One more limitation is that computational geometry has focused pri-
marily on 2-dimensional problems, and 3-dimensional problems to a limited extent. The nice thing about
2-dimensional problems is that they are easy to visualize and easy to understand. But many of the daunting
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applications problems reside in 3-dimensional and higher dimensional spaces. Furthermore, issues related
to topology are much cleaner in 2- and 3-dimensional spaces than in higher dimensional spaces.

Overview of the Semester: Here are some of the topics that we will discuss this semester.

Convex Hulls: Convexity is a very important geometric property. A geometric set is convex if for every two
points in the set, the line segment joining them is also in the set. One of the first problems identified in
the field of computational geometry is that of computing the smallest convex shape, called the convex hull,
that encloses a set of points (see Fig. 2).

Convex hull Polygon triangulation

Fig. 2: Convex hulls and polygon triangulation.

Intersections: One of the most basic geometric problems is that of determining when two sets of objects in-
tersect one another. Determining whether complex objects intersect often reduces to determining which
individual pairs of primitive entities (e.g., line segments) intersect. We will discuss efficient algorithms for
computing the intersections of a set of line segments.

Triangulation and Partitioning: Triangulation is a catchword for the more general problem of subdividing a
complex domain into a disjoint collection of “simple” objects. The simplest region into which one can
decompose a planar object is a triangle (a tetrahedron in 3-d and simplex in general). We will discuss
how to subdivide a polygon into triangles and later in the semester discuss more general subdivisions into
trapezoids.

Low-dimensional Linear Programming: Many optimization problems in computational geometry can be stated
in the form of a linear programming problem, namely, find the extreme points (e.g. highest or lowest) that
satisfies a collection of linear inequalities. Linear programming is an important problem in the com-
binatorial optimization, and people often need to solve such problems in hundred to perhaps thousand
dimensional spaces. However there are many interesting problems (e.g. find the smallest disc enclosing
a set of points) that can be posed as low dimensional linear programming problems. In low-dimensional
spaces, very simple efficient solutions exist.

Voronoi Diagrams and Delaunay Triangulations: Given a set S of points in space, one of the most important
problems is the nearest neighbor problem. Given a point that is not in S which point of S is closest to it?
One of the techniques used for solving this problem is to subdivide space into regions, according to which
point is closest. This gives rise to a geometric partition of space called a Voronoi diagram (see Fig. 3).
This geometric structure arises in many applications of geometry. The dual structure, called a Delaunay
triangulation also has many interesting properties.

Line Arrangements and Duality: Perhaps one of the most important mathematical structures in computational
geometry is that of an arrangement of lines (or generally the arrangement of curves and surfaces). Given n
lines in the plane, an arrangement is just the graph formed by considering the intersection points as vertices
and line segments joining them as edges (see Fig. 4). We will show that such a structure can be constructed
in O(n2) time.
The reason that this structure is so important is that many problems involving points can be transformed
into problems involving lines by a method of point-line duality. In the plane, this is a transformation that
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Fig. 3: Voronoi diagram and Delaunay triangulation.

Fig. 4: An arrangement of lines in the plane.

maps lines to points and points to lines (or generally, (d − 1)-dimensional hyperplanes in dimension d to
points, and vice versa). For example, suppose that you want to determine whether any three points of a
planar point set are collinear. This could be determined in O(n3) time by brute-force checking of each
triple. However, if the points are dualized into lines, then (as we will see later this semester) this reduces
to the question of whether there is a vertex of degree greater than four in the arrangement.

Search: Geometric search problems are of the following general form. Given a data set (e.g. points, lines, poly-
gons) which will not change, preprocess this data set into a data structure so that some type of query can
be answered as efficiently as possible. For example, consider the following problem, called point location.
Given a subdivision of space (e.g., a Delaunay triangulation), determine the face of the subdivision that
contains a given query point. Another geometric search problem is the nearest neighbor problem: given a
set of points, determine the point of the set that is closest to a given query point. Another example is range
searching: given a set of points and a shape, called a range, either count of report the subset of points lie
within the given region. The region may be a rectangle, disc, or polygonal shape, like a triangle.

q

point location

q

p

nearest neighbor searhcing

Fig. 5: Geometric search problems. The point-location query determines the triangle containing q. The nearest-
neighbor query determines the point p that is closest to q.

Approximation: In many real-world applications geometric inputs are subject to measurement error. In such
cases it may not be necessary to compute results exactly, since the input data itself is not exact. Often the
ability to produce an approximately correct solution leads to much simpler and faster algorithmic solutions.
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Consider for example the problem of computing the diameter (that is, the maximum pairwise distance)
among a set of n points in space. In the plane efficient solutions are known for this problem. In higher
dimensions it is quite hard to solve this problem exactly in much less than the brute-force time ofO(n2). It
is easy to construct input instances in which many pairs of points are very close to the diametrical distance.
Suppose however that you are willing to settle for an approximation, say a pair of points at distance at least
(1 − ε)∆, where ∆ is the diameter and ε > 0 is an approximation parameter set by the user. There exist
algorithms whose running time is nearly linear in n, assuming that ε is a fixed constant. As ε approaches
zero, the running time increases.

Lecture 2: Warm-Up Problem: Computing Slope Statistics
Slope Statistics: Today, we consider a simple warm-up exercise as an example of a typical problem in computational

geometry. To motivate the problem, imagine that a medical experiment is run, where the therapeutic benefits of
a certain treatment regimen is being studied. A set of n points in real 2-dimensional space, R2, is given. We
denote this set by P = {p1, . . . , pn}, where pi = (ai, bi), where ai indicates the amount of treatment and bi
indicates the therapeutic benefit. The hypothesis is that increasing the amount of treatment by ∆a units results
in an increase in therapeutic benefit of ∆b = s(∆a), where s is an unknown scale factor.
In order to study the properties of s, a statistician considers the set of slopes of the lines joining pairs of a
points (since each slope represents the increase in benefit for a unit increase in the amount of treatment). For
1 ≤ i < j ≤ n, define

si,j =
bj − bi
aj − ai

,

(see Fig. 6(a)). So that we don’t need to worry about infinite slopes, let us make the simplifying assumption that
the a-coordinates of the points are pairwise distinct, and to avoid ties, let us assume that the slopes are distinct.
Let S = {si,j | 1 ≤ i < j ≤ n}. Clearly |S| =

(n
2

)

= n(n − 1)/2 = O(n2). Although the set S of slopes is
of quadratic size, it is defined by a set of n points. Thus, a natural question is whether we can answer statistical
questions about the set S in time O(n) or perhaps O(n log n), rather than O(n2).

pi

pj

aj − ai

bj − bi

si,j =
bj−bi
aj−ai

maximumminimum

8th smallest slope

slopeslope
minimum

slope
minimum

slope
minimum

slope

(a) (b)

Fig. 6: The slope si,j and the slope set S = {si,j | 1 ≤ i < j ≤ n}.

Here are some natural questions we might ask about the set S (see Fig. 6(b)):

Min/Max: Compute the minimum or maximum slope of S.
k-th Smallest: Compute the k-smallest element of S, given any k, 1 ≤ k ≤

(n
2

)

.
Average: Compute the average of the elements of S.
Range counting: Given a pair of reals s− ≤ s+, return a count of the number of elements of S that lie in the

interval [s−, s+].
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Counting Negative Slopes and Inversions: In this lecture we will consider the last problem, that is, counting the
number of slopes that lie within a given interval [s−, s+]. Before considering the general problem, let us consider
a simpler version by considering the case where s− = 0 and s+ = +∞. In other words, we will count the
number of pairs (i, j) where si,j is nonnegative. This problem is interesting statistically, because it represents
the number of instances in which increasing the amount of treatment results in an increase in the therapeutic
benefit.
Our approach will be to count the number of pairs such that si,j is strictly negative. There is no loss of generality
in doing this, since we can simply subtract the count from

(n
2

)

to obtain the number of nonnegative slopes. (The
reason for this other formulation is that it will allow us to introduce the concept of inversion counting, which
will be useful for the general problem.) It will simplify the presentation to make the assumption that the sets of
a-coordinates and b-coordinates are distinct.
Suppose we begin by sorting the points of P in increasing order by their a-coordinates. Let P = 〈p1, . . . , pn〉 be
the resulting ordered sequence, and let B = 〈b1, . . . , bn〉 be the associated sequence of b-coordinates. Observe
that, for 1 ≤ i < j ≤ n, bi > bj if and only if si,j is negative. For 1 ≤ i < j ≤ n, we say that the pair (i, j) is
an inversion forB if bi > bj . Clearly, our task reduces to counting the number of inversions ofB (see Fig. 7(a)).

(a) (b)

a1 a2 a3 a4

b2
b4

b1
b3

3 inversions

3 negative slopes
i j

51042 986

0 1 2 4 5 6

3 inversions
6 induces

BL: BR:

M :

Fig. 7: Inversion counting and application to counting negative slopes.

Inversion Counting: Counting the number of inversions in a sequence of n numbers is a simple exercise, which can
be solved in O(n log n) time. Normally, such exercises will be left for you to do, but since this is the first time
to present an algorithm, let’s do it in full detail.
The algorithm is a simple generalization of the MergeSort algorithm. Recall that MergeSort is a classical
example of divide-and-conquer. The sequence is partitioned into a left and right subsequence, denoted BL and
BR, each of size roughly n/2. These two subsequences are sorted recursively, and then the resulting sorted
sequences are then merged to form the final sorted sequence.
To generalize this to inversion counting, in addition to returning the sorted subsequences, the recursive calls
return the counts IL and IR of the inversions within each of the subsequences. In the merging process we count
the inversions I that occur between the two subsequences. That is, for each element of BL, we compute the
number of smaller elements in BR, and add these to I . In the end, we return the total number of inversions,
IL + IR + I .
The algorithm is presented in the code block below. To merge the subsequences, we maintain two indices i and
j, which indicate the current elements of the respective subsequences BL and BR. We repeatedly2 copy the
smaller of BL[i] and BR[j] to the merged sequenceM . Because both subsequences are sorted, when we copy
BL[i] toM , BL[i] is inverted with respect to the elements BR[1 . . . j − 1], whose values are smaller than it (see
Fig. 7(b)). Therefore, we add j − 1 to the count I of inversions.
The main loop stops either when i or j exceeds the number of elements in its subsequence. When we exit, one
of the two subsequences is exhausted. We append the remaining elements of the other subsequence to M . In

2More formally, we maintain the invariant that BL[i] > BR[j′] for 1 ≤ j′ ≤ j − 1 and BR[j] ≥ BL[i′] for 1 ≤ i′ ≤ i− 1.
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particular, if i ≤ |BL|, we append the remaining |BL| − i + 1 elements of BL toM . Since these elements are
all larger than any element of BR, we add (|BL| − i + 1)|BR| to the inversion counter. (When copying the
remaining elements from BR, there is no need to modify the inversion counter.) See the code block below for
the complete code.

Inversion Counting
InvCount(B) [Input: a sequence B; Output: sorted sequenceM and inversion count I .]

(1) Partition B into disjoint subsets BL and BR, each of size at most !n/2", where n = |B|;
(2) (BL, IL)← InvCount(BL);

(BR, IR)← InvCount(BR);
(3) Let i← j ← 1; I ← 0;M ← ∅;
(4) While (i ≤ |BL| and j ≤ |BR|)

(a) if (BL[i] ≤ BR[j]) append BL[i++] toM and I ← I + (j − 1);
(b) else append BR[j++] toM ;
On exitting the loop, either i > |BL| or j > |BR|.

(5) If i ≤ |BL|, append BL[i . . . ] toM and I ← I + (|BL|− i+ 1)|BR|;
(6) Else (we have j ≤ |BR|), append BR[j . . . ] toM ;
(7) return (M, IL + IR + I);

The running time exactly matches that of MergeSort. It obeys the well known recurrence T (n) = 2T (n/2)+n,
which solves to O(n log n).
By combining this with the above reduction from slope range counting over negative slopes, we obtain an
O(n log n) time algorithm for counting nonnegative slopes.

General Slope Range Counting and Duality: Now, let us consider the general range counting problem. Let [s−, s+]
be the range of slopes to be counted. It is possible to adapt the above inversion-counting approach, subject to
an appropriate notion of “order”. In order to motivate this approach, we will apply a geometric transformation
that converts the problem into a form where this order is more apparent. This transformation, called point-line
duality will find many uses later in the semester.
To motivate duality, observe that a point in R2 is defined by two coordinates, say (a, b). A nonvertical line
line in R2 can also be defined by two parameters, a slope and y-intercept. In particular, we associate a point
p = (a, b) with the line y = ax − b, whose slope is a and whose y-intercept is −b. This line is called p’s dual
and is denoted by p∗. (The reason for the negating the intercept will become apparent shortly.) Similarly, given
any nonvertical line in R2, say " : y = ax− b, we define its dual to be the point "∗ = (a, b). Note that the dual
is a involutory (self-inverse) mapping, in the sense that (p∗)∗ = p and ("∗)∗ = ".
Later in the semester we will discuss the various properties of the dual transformation. For now, we need only a
property. Consider two points pi = (ai, bi) and pj = (aj , bj). The corresponding dual lines are p∗i : y = aix−bi
and p∗j : y = ajx− bj , respectively. Assuming that ai &= aj (that is, the lines are not parallel), we can compute
the x-coordinate of their intersection point by equating the right-hand sides of these two equations, which yields

aix− bi = ajx− bj ⇒ x =
bj − bi
aj − ai

.

Interestingly, this is just si,j . In other words, we have the following nice relationship: Given two points, the
x-coordinate of the intersection of their dual lines is the slope of the line passing through the points (see Fig. 8).
(The reason for negating the b coordinate is now evident. Otherwise, we would get the negation of the slope.)

Slope Range Counting in the Dual: Based on the above observations, we see that the problem of counting the slopes
of S that lie within the interval [s−, s+] can be reinterpreted in the following equivalent form. Given a set of n
nonvertical lines in R2 and given an interval [s−, s+], count the pairs of lines whose intersections lie within the
vertical slab whose left side is x = s− and whose right side is s+ (see Fig. 9(a)).
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(a) (b)

ai aj

bi

bj
si,j =

bj−bi
aj−ai

si,j =
bj−bi
aj−ai

p∗j : y = ajx− bj

p∗i : y = aix− bi
pj

pi
x

y

Fig. 8: Point-line duality and the relationship between the slope of a line between two points and the x-coordinate of
the duals of the two points.
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Fig. 9: Intersections in the vertical slab [s−, s+] and inversion counting.
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How can we count the number of such intersection points efficiently? Again, this can be done through inversion
counting. To see this, observe that two lines intersect within the slab if and only if the order of their intersection
with the left side of the slab is the inverse of their intersection with the right side of the slab.
We can reduce the problem to inversion counting, therefore, as follows. First, consider the order in which the
lines intersect the left side of the slab (taken from top to bottom). In particular, the line y = aix−bi intersects at
the point y = ais− − bi. Sort the lines according in decreasing order of these y-coordinates, thus obtaining the
order from top to bottom, and renumber them from 1 to n according to this order (see Fig. 9(a)). Next, compute
the order in which the (renumbered) lines intersect the right side of the slab. In particular, line i is associated
with the value y = ais+ − bi. Letting Y = 〈y1, . . . , yn〉 denote the resulting sequence, it is easy to see that
the number of inversions in −Y is equal to the number of pairs of lines that intersect within the slab. The time
to compute the intersection along the left side and sort according to this order is O(n log n), and the time to
compute the intersections with the right side and count the inversions is also O(n log n). Therefore, the total
running time is O(n log n).

Negative Slope Range Counting Revisited: By the way, you might wonder what the earlier instance of counting
negative slopes maps to in this instance. In this case the interval is [−∞, 0]. Observe that a vertical line at
x = −∞ (from top to bottom) intersects the lines in increasing order of slope, or equivalently, in order of a-
coordinates. Thus, sorting the points from top to bottom order by their intersection with s− = −∞ is equivalent
to the sorting by a-coordinates, which is just what we we did in the case of negative slopes.
The right side of the slab is determined by the top-to-bottom order of intersections of the lines with vertical line
at x = 0. Clearly, line i intersects this vertical at y = −bi. Therefore, counting the inversions of the sequence
−Y = 〈−y1, . . . ,−yn〉 is equivalent to the process of counting inversions in the sequence B = 〈b1, . . . , bn〉,
exactly as we did before. Thus, the case of counting negative slopes can indeed be seen to be a special case of
this algorithm.

Review: In summary, we have seen how an apparently 2-dimensional geometric problem involving O(n2) (implicitly
defined) objects can be solved inO(n log n) time through reduction to simple 1-dimensional sorting algorithms.
Namely, we showed how to solve the slope range counting problem in O(n log n) time. The problems of
computing the minimum and maximum slopes can also be solved inO(n log n) time. We will leave this problem
as an exercise. The problem of computing the k-th smallest slope is a considerably harder problem. It is not
too hard to devise a randomized algorithm whose running time is O(n log2 n). Such an algorithm applies a
sort of “randomized binary search” in dual space to locate the intersection point of the desired rank. Improving
the expected running time to O(n log n) time is a nontrivial exercise, and making the algorithm deterministic is
even more challenging. I do not know of an efficient solution to the problem of computing the average slope.
The reduction of a geometric problem to 1-dimensional sorting and searching is quite common in computational
geometry. We will see other examples of this later in the semester. We have also seen a nice application of the
notion of point-line duality, which will be seen many more times this semester.

Lecture 3: Convex Hulls
Convexity: Let us consider a fundamental structure in computational geometry, called the convex hull. We will give

a more formal definition later, but, given a set P of points in the plane, the convex hull of P , denoted conv(P ),
can be defined intuitively by surrounding a collection of points with a rubber band and then letting the rubber
band “snap” tightly around the points (see Fig. 10).
There are a number of reasons that the convex hull of a point set is an important geometric structure. One is
that it is one of the simplest shape approximations for a set of points. (Other examples include minimum area
enclosing rectangles, circles, and ellipses.) It can also be used for approximating more complex shapes. For
example, the convex hull of a polygon in the plane or polyhedron in 3-space is the convex hull of its vertices.
Also many algorithms compute the convex hull as an initial stage in their execution or to filter out irrelevant
points. For example, the diameter of a point set is the maximum distance between any two points of the set. It
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P conv(P )

Fig. 10: A point set and its convex hull.

can be shown that the pair of points determining the diameter are both vertices of the convex hull. Also observe
that minimum enclosing convex shapes (such as the minimum area rectangle, circle, and ellipse) depend only
on the points of the convex hull.

Convexity: A setK is convex if given any points p, q ∈ K, the line segment pq is entirely contained withinK.
Boundedness: A convex body may be bounded, meaning that it can be enclosed within a sphere of a fixed

radius or unbounded, meaning that it extends to infinity. Examples of unbounded convex sets in the plane
include lines, rays, halfplanes, the region lying to one side of a line, and infinite cones. Given a line ", the
set of points lying entirely to one side of " (possibly including " itself) is called a halfplane.

Support: An important property of any convex set K in the plane is that at every point p on the boundary of
K, there exists a line " (or generally in hyperplane in higher dimensions) that passes through p such that
K lies entirely in one of the closed halfplanes defined by ".

Convex hull: The convex hull of any set P is the intersection of all convex sets that contains P , or more
intuitively, the smallest convex set that contains P . We will denote this conv(P ).

When computing convex hulls, we will usually take P to be a finite set of points. In such a case, conv(P ) will be
a convex polygon. Generally P could be an infinite set of points. For example, we could talk about the convex
hull of a collection of circles. The boundary of such a shape would consist of a combination of circular arcs and
straight line segments.

Convex Hull Problem: The (planar) convex hull problem is, given a set of n points P in the plane, output a rep-
resentation of P ’s convex hull. The convex hull is a closed convex polygon, the simplest representation is a
counterclockwise enumeration of the vertices of the convex hull. (Although points of P might lie in the interior
of an edge of the boundary of the convex hull, such a point is not considered a vertex. Since we will assume that
the points are in general position, and in particular, no three are collinear, this issue does not arise.) Although
the output consists only of the boundary of the hull, the convex hull of P is a convex polygon, which means that
it includes both the boundary and interior of this polygon.

Graham’s scan: We will present an O(n log n) algorithm for convex hulls. It is a simple variation of a famous
algorithm for convex hulls, called Graham’s scan. This algorithm dates back to the early 70’s. The algorithm is
loosely based on a common approach for building geometric structures called incremental construction. In such
a algorithm object (points here) are added one at a time, and the structure (convex hull here) is updated with
each new insertion.
An important issue with incremental algorithms is the order of insertion. If we were to add points in some
arbitrary order, we would need some method of testing whether the newly added point is inside the existing
hull. It will simplify things to add points in some appropriately sorted order, in our case, in increasing order
of x-coordinate. This guarantees that each newly added point is outside the current hull. (Note that Graham’s
original algorithm sorted points in a different way. It found the lowest point in the data set and then sorted points
cyclically around this point. Sorting by x-coordinate seems to be a bit easier to implement, however.)
Since we are working from left to right, it would be convenient if the convex hull vertices were also ordered from
left to right. As mentioned above, the convex hull is a convex polygon, which can be represented as a cyclic
sequence of vertices. It will make matters a bit simpler for us to represent this convex polygon as two chains,
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one representing its upper part, called the upper hull and one representing the lower part, called the lower hull
(see Fig. 11(a)).

pnp1

upper hull

lower hull

(b)(a)

H [top]
H [top− 1]

H [top− 2]

Fig. 11: Upper and lower hulls.

The break points common to both hulls will be the leftmost and rightmost vertices of the convex hull, that is, the
points of P having the smallest and largest x-coordinates, respectively. (By general position, we may assume
there are no duplicate x-coordinates, and so there will be a unique leftmost point and unique rightmost points.)
After building both, the two hulls can be concatenated into a single cyclic counterclockwise list.
Let us just consider how to compute the upper hull, since the lower hull is similar. Recall that the points of P are
first sorted in increasing order of their x-coordinates, and they will be added one-by-one. We store the vertices
of the current upper hull in a stack H , where the top of the stack corresponds to the most recently added point
of P . Let H[top] denote the top of the stack, and let and H[top− 1] denote the element immediately below the
top. Observe that as we read the stack elements from top to bottom (that is, from right to left) consecutive triples
of points of the upper hull will make a (strict) “left-hand turn” (see Fig. 11(b)). As we push new points on the
stack, we will maintain this property, by popping points off of the stack if they fail to satisfy this property.

Turning and orientations: Before proceeding with the presentation of the algorithm, we should first make a short
digression to discuss the meaning of “left-hand turn.” Given an ordered triple of points 〈p, q, r〉 in the plane,
we say that they have positive orientation if they define a counterclockwise oriented triangle (see Fig. 12(a)),
negative orientation if they define a clockwise oriented triangle (see Fig. 12(b)), and zero orientation if they are
collinear, which includes as well the case where two or more of the points are identical (see Fig. 12(c)). Note
that orientation depends on the order in which the points are given.

(a) (b) (c)

p

q

r

p

q
r

p

q

r
p = r

q

orient(p, q, r) > 0 orient(p, q, r) < 0 orient(p, q, r) = 0

Fig. 12: Orientations of the ordered triple (p, q, r).

Orientation is formally defined as the sign of the determinant of the points given in homogeneous coordinates,
that is, by prepending a 1 to each coordinate. For example, in the plane, we define

Orient(p, q, r) = det





1 px py
1 qx qy
1 rx ry



 .
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Observe that in the 1-dimensional case, Orient(p, q) is just q−p. Hence it is positive if p < q, zero if p = q, and
negative if p > q. Thus orientation generalizes <,=, > in 1-dimensional space. Also note that the sign of the
orientation of an ordered triple is unchanged if the points are translated, rotated, or scaled (by a positive scale
factor). A reflection transformation, e.g., f(x, y) = (−x, y), reverses the sign of the orientation. In general,
applying any affine transformation to the point alters the sign of the orientation according to the sign of the
matrix used in the transformation.
Given a sequence of three points p, q, r, we say that the sequence 〈p, q, r〉 makes a (strict) left-hand turn if
Orient(p, q, r) > 0.

Graham’s algorithm continued: Let pi denote the next point to be added in the left-to-right ordering of the points
(see Fig. 13(a)). If the triple 〈pi, H[top], H[top − 1]〉 forms a strict left-hand turn, then we can simply push pi
onto the stack. Otherwise, we can infer that the middle point of the triple H[top] cannot be on the upper hull,
and so we pop it off the stack. We repeat this until reaching a positively oriented triple (see Fig. 13(b)), or there
are fewer than two elements on the stack. The popping process ends when pi’s predecessor on the stack is its
predecessor on the convex hull (see Fig. 13(c)). The algorithm is presented in the code block below.

(b)

pipj

(c)

pop

pipj

(a)

processing pi after adding pi

pipj

pop

before adding pi

Fig. 13: Graham’s scan.

Graham’s Scan
(1) Sort the points according to increasing order of their x-coordinates, denoted 〈p1, p2, . . . , pn〉.
(2) push p1 and then p2 ontoH .
(3) for i← 3, . . . , n do:

(a) while (|H| ≥ 2 and Orient(pi, H[top], H[top− 1]) ≤ 0) popH .
(b) push pi ontoH .

Correctness: Why is Graham’s algorithm correct? We can show inductively that the contents of H at any stage of
the algorithm constitute the upper hull of the points that have been processed so far. For the induction basis
(H = {p1, p2}) this is trivially true. For the induction step, observe that pi is the rightmost point among the
points processed so far, and therefore it must lie on the upper hull. Let pj be the neighboring vertex to pi on
the upper hull of the first i points (see Fig. 13(a)). It is easy to see that pj must be in H prior to the addition
of pi. Each point pk in H that lies between pj and pi lies beneath the edge pjpi, and so pk should not be part
of the upper hull after pi is added. For each such point it is easy to see that Orient(pi, pk, pj) ≤ 0. It follows
that, as each of these points pk is tested within the while loop, it will be deleted. (We are being a bit sloppy
here, because this is not exactly the same orientation test made by the algorithm, since pj is not necessarily pk’s
predecessor on the stack. We’ll leave fixing this proof up as an exercise.)
Finally, when pj reaches the top of the stack either find that pj = p1, and hence there are less than two elements
on the stack, or we find that we finally have the triple that satisfies the orientation test. In either case, the loop
terminates and pi is pushed on the stack, as desired.
The lower hull can be computed by an essentially symmetric algorithm, but working from right to left instead.
Once the two hulls are computed, we simply concatenate the two hulls into a single circular list.
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Running-time analysis: We will show that Graham’s algorithm runs in O(n log n) time. Clearly, it takes this much
time for the initial sorting. After this, we will show that O(n) time suffices for the rest of the computation.
Let di denote the number of points that are popped (deleted) on processing pi. Because each orientation test
takes O(1) time, the amount of time spent processing pi is O(di + 1). (The extra +1 is for the last point tested,
which is not deleted.) Thus, the total running time is proportional to

n
∑

i=1

(di + 1) = n+
n
∑

i=1

di.

To bound
∑

i di, observe that each of the n points is pushed onto the stack once. Once a point is deleted it can
never be deleted again. Since each of n points can be deleted at most once,

∑

i di ≤ n. Thus after sorting, the
total running time is O(n). Since this is true for the lower hull as well, the total time is O(2n) = O(n).

Convex Hull by Divide-and-Conquer: As with sorting, there are many different approaches to solving the convex
hull problem for a planar point set P . Next we will consider another O(n log n) algorithm, which is based on
the divide-and-conquer design technique. It can be viewed as a generalization of the famous MergeSort sorting
algorithm (see any standard algorithms text). Here is an outline of the algorithm. It begins by sorting the points
by their x-coordinate, in O(n log n) time. The remainder of the algorithm is shown in the code section below.

Divide-and-Conquer Convex Hull
(1) If |P | ≤ 3, then compute the convex hull by brute force in O(1) time and return.
(2) Otherwise, partition the point set P into two sets A and B, where A consists of half the points with the lowest x-coordinates

and B consists of half of the points with the highest x-coordinates.
(3) Recursively computeHA = conv(A) andHB = conv(B).
(4) Merge the two hulls into a common convex hull, H , by computing the upper and lower tangents for HA and HB and

discarding all the points lying between these two tangents.

The asymptotic running time of the algorithm can be expressed by a recurrence. Given an input of size n,
consider the time needed to perform all the parts of the procedure, ignoring the recursive calls. This includes the
time to partition the point set, compute the two tangents, and return the final result. Clearly the first and third of
these steps can be performed in O(n) time, assuming a linked list representation of the hull vertices. Below we
will show that the tangents can be computed in O(n) time. Thus, ignoring constant factors, we can describe the
running time by the following recurrence.

T (n) =

{

1 if n ≤ 3
n+ 2T (n/2) otherwise.

This is the same recurrence that arises in Mergesort. It is easy to show that it solves to T (n) ∈ O(n log n) (see
any standard algorithms text). All that remains is showing how to compute the two tangents.
One thing that simplifies the process of computing the tangents is that the two point sets A and B are separated
from each other by a vertical line (assuming no duplicate x-coordinates). Let’s concentrate on the lower tangent,
since the upper tangent is symmetric. The algorithm operates by a simple “walking” procedure. We initialize
a to be the rightmost point of HA and b is the leftmost point of HB (see Fig. 14(a)). These two points can be
computed in linear time.
Lower tangency is a condition that can be tested locally by an orientation test involving the two vertices and
neighboring vertices on the hull. We iterate the following two loops, which march a and b down, until they
reach the points lower tangency (see Fig. 14(a)–(c)). Given a point a on the hull, let a.succ and a.pred denote
its successor and predecessor in CCW order about the hull.
The condition “ab is not the lower tangent ofHA” can be implemented with the orientation test Orient(b, a, a.pred) ≥
0, and the other test for HB is analogous. Proving the correctness of this procedure is a little tricky, but not too
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upper tangent

A

a

Fig. 14: Computing the lower tangent.

Finding the Lower Tangent
LowerTangent(HA, HB) :

(1) Let a be the rightmost point ofHA.
(2) Let b be the leftmost point ofHB .
(3) While (ab is not a lower tangent forHA andHB) do

(a) While (ab is not a lower tangent toHA) do a← a.pred (move a clockwise).
(b) While (ab is not a lower tangent toHB) do b← b.succ (move b counterclockwise).

(4) Return ab.

hard. (The issue is proving that the two inner while loops never go beyond the lower tangent points.) See
O’Rourke’s book out for a careful proof. The important thing is that each vertex on each hull can be visited at
most once by the search, and hence its running time is O(m), where m = |HA| + |HB | ≤ |A| + |B|. This is
exactly what we needed to get the overall O(n log n) running time.

Gift-Wrapping and Jarvis’s March: The next algorithm that we will consider is a variant on anO(n2) sorting algo-
rithm called SelectionSort. For sorting, this algorithm repeatedly finds the next element to add to the sorted order
from the remaining items. The corresponding convex hull algorithm is called Jarvis’s march. which builds the
hull in O(nh) time by a process called “gift-wrapping”. The algorithm operates by considering any one point
that is on the hull, say, the lowest point. We then find the “next” edge on the hull in counterclockwise order.
Assuming that pk and pk−1 were the last two points added to the hull, compute the point q that maximizes the
angle ∠pk−1pkq (see Fig. 15). Clearly, we can find the point q in O(n) time.

p0 = (−∞, 0) p1

p2

p3

q

Fig. 15: Jarvis’s march.

After repeating this h times, we will return back to the starting point and we are done. Thus, the overall running
time is O(nh). Note that if h is o(log n) (asymptotically smaller than log n) then this is a better method than
Graham’s algorithm.
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One technical detail is that when we to find an edge from which to start. One easy way to do this is to let p1 be
the point with the lowest y-coordinate, and let p0 be the point (−∞, 0), which is infinitely far to the right. The
point p0 is only used for computing the initial angles, after which it is discarded (see Fig. 15).

Lecture 4: More on Convex Hulls
Output Sensitive Convex Hull Algorithms: We have seen two algorithms for planar convex hull, Graham’s algo-

rithm and the divide-and-conquer algorithm, that both run in O(n log n) time. We have also seen Jarvis’s
algorithm, which runs in O(hn) time, where h is the number of vertices on the hull.
Traditionally, algorithms are analyzed in terms of their running time as a function of input size alone. However,
many geometric algorithms produce outputs whose sizes vary greatly (from a constant up to a large polynomial
in n). For such problems, it is common to express running time as a function of both the input and the output
sizes. Such an algorithm is said to be output sensitive. Jarvis’s algorithm is such an example.
When h is asymptotically smaller than log n, Jarvis’s algorithm is superior to Graham’s algorithm. Since neither
algorithm is optimal in all cases, it is natural to wonder whether there is some “ultimate” planar convex hull
algorithm that is optimal with respect to both n and h.
Since the objective is to output the points on the hull in cyclic order, it is pretty easy to see that this requires sort-
ing the points of the hull. It is well known that any comparison-based algorithm for sorting requires Ω(n log n)
time.3 If we ignore h and consider the worst case in which all of the points are vertices of the convex hull, then
it is pretty easy to prove that the Ω(n log n) lower bound cannot be beaten. (We leave the proof of this as an
easy exercise. Later in these notes we present an output sensitive lower bound.)
Today, we present a planar convex hull algorithm, called Chan’s algorithm, whose running time is O(n log h),
and we show that this is essentially the best possible. While this algorithm is too small an improvement over
Graham’s algorithm to be practical, it is quite interesting nonetheless from the perspective of the techniques that
it uses.

• It is derived based on a combination of two slower algorithms, Graham’s and Jarvis’s.
• It is based on “knowing” the final number of vertices on the convex hull. Since this number is not known,
it adopts an interesting guessing process to determine its value (roughly). It is remarkable that the time to
run the guessing version is asymptotically the same as if you had known the number in advance!

How to Beat Graham and Jarvis: To motivate Chan’s algorithm, observe that the problem with Graham’s scan is
that it sorts all the points, and hence is doomed to having an Ω(n log n) running time, irrespective of the size
of the hull. On the other hand, Jarvis’s algorithm is not limited in this way. Unfortunately, it is way too slow if
there are many points on the hull.So, how can we combine these two insights to produce a faster solution?
The first observation needed for a better approach is that, if we hope to achieve a running time of O(n log h),
we can only afford a log factor depending on h. So, if we run Graham’s algorithm, we are limited to sorting
sets of size at most h. (Actually, any polynomial in h will work as well. The reason is that, for any constant c,
log(hc) = c log h = O(log h). For example, log h and log(h2) are asymptotically equivalent. This observation
will come in handy later on.)
How can we use this observation? Suppose that we partitioned the set into roughly n/h subsets, each of size h.
We could compute the convex hull of each subset in time O(h log h), which we’ll call a convex mini-hull. The
total time to compute all the mini-hulls would be O((n/h)h log h) = O(n log h). We are within our overall
time budget, but of course we would still have to figure out how to merge these mini-hulls into the final global
convex hull.

3Recall that asymptotic Ω-notation is the lower-bound analog to theO-notation upper bound. Formally, we say that a function f(n) is Ω(g(n))
if, as n tends to infinity, the ratio g(n)/f(n) is bounded. That is, f grows at least as fast as g. There are faster sorting algorithms that are not
comparison based, but they apply to discrete objects such as small integers and strings, not to real numbers.
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But wait! We do not know the value of h in advance, so it would seem that we are stuck before we even get
started. We will deal with this conundrum later, but, just to get the ball rolling, suppose for now that we had an
estimate for h, call it h∗, whose value is at least as large as h, but not too much larger (say h ≤ h∗ ≤ h2). If we
run the above partitioning process using h∗ rather than h, the total running time to compute all the mini-hulls is
O(n log h∗) = O(n log h).

Original point set

(a) (b)

Partition (h∗ = 8) and mini-hulls

Fig. 16: Partition and mini-hulls.

The partitioning of the points is done by any arbitrary method (e.g., just break the input up into groups of size
roughly h∗). Of course, the resulting mini-hulls might overlap one another (see Fig. 16(a) and (b)). Although
we presume that h∗ is a rough approximation to h, we cannot infer anything about the numbers of vertices on
the various mini-hulls. They could range from 3 up to h∗.

Merging the minis: The question that remains is how to merge the mini-hulls into a single global hull. The idea is to
run Jarvis’s algorithm, but we treat each mini-hull as if it is a “fat point”. At each step, rather than computing
the angle from the current hull vertex to every point of the set, we compute the tangent lines of the current hull
vertex to each of the mini-hulls, including the mini-hull containing this vertex. (There are two tangents from a
point to a mini-hull, and we need to take care to compute the proper one.) Note that the current vertex is on the
global convex hull, so it cannot lie in the interior of any of the mini-hulls. Among all these tangents, we take
the one that yields the smallest external angle. (The process is illustrated in Fig. 17(a).) Note that, even though
a point can appear only once on the final global hull, a single mini-hull may contribute many points to the final
hull.
You might think that, since a mini-hull may have as many as h∗ vertices, there is nothing to be saved in com-
puting these tangents over the straightforward method. The key is that each mini-hull is a convex polygon, and
hence it has quite a bit more structure than an arbitrary collection of (unsorted) points. In particular, we make
use of the following lemma:

Lemma: Consider a convex polygon K in the plane and a point p that is external to K, such that the vertices
of K are stored in cyclic order in an array. Then the two tangents from p to K (more formally, the two
supporting lines for K that pass through p) can each be computed in time O(logm), where m is the
number of vertices ofK.

We will leave the proof of this lemma as an exercise, but the key idea is that, since the vertices of the hull form
a cyclically sorted sequence, it is possible to adapt binary search to find the desired points of tangency with p
(Fig. 17(b)). Using the above lemma, it follows that we can compute the tangent from an arbitrary point to a
single mini-hull in time O(log h∗) = O(log h).
The final “restricted algorithm” (since we assume we have the estimate h∗) is presented in the code block below.
(The kth stage is illustrated in Fig. 17(c).) Since we do not generally know what the value of h is, it is possible
that our restricted algorithm may be run with a value of h∗ that is not within the prescribed range, h ≤ h∗ ≤ h2.
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Jarvis’s algorithm on mini-hulls kth stage of Jarvis’s algorithm

(a) (c)(a) (b)

binary
search

p

K

tangent

Fig. 17: Using Jarvis’s algorithm to merge the mini-hulls.

(In particular, our final algorithm will maintain the guarantee that h∗ ≤ h2, but the lower bound of h may not
hold.) If h∗ < h, when we are running the Jarvis phase, we will discover the error as soon as we encounter
more than h∗ vertices on the hull. If this happens, we immediately terminate the algorithm and announce the
algorithm has “failed”. If we succeed in completing the hull with h∗ points or fewer, we return the final hull.

Chan’s Algorithm for the Restricted Hull Problem
RestrictedHull(P, h∗) :

(1) Let r ← !n/h∗".
(2) Partition P into disjoint subsets P1, P2, . . . , Pr , each of size at most h∗.
(3) For (i← 1 to r)

compute Hull(Pi) using Graham’s scan and store the vertices in an ordered array.
(4) Let p0 ← (−∞, 0) and let p1 be the bottommost point of P .
(5) For (k ← 1 to h∗)

(a) For (i← 1 to r)
compute point tangent qi ∈ Hull(Pi), that is, the vertex of Hull(Pi) that maximizes the angle ∠pk−1pkqi.

(b) Let pk+1 be the point q ∈ {q1, . . . , qr} that maximizes the angle ∠pk−1pkq.
(c) If pk+1 ← p1 then return 〈p1, . . . , pk〉 (success).

(6) (Unable to complete the hull after h∗ iterations.) Return “Failure: h∗ is too small.”

The upshots of this are: (1) the Jarvis phase never performs for more than h∗ stages, and (2) if h ≤ h∗, the
algorithm succeeds in finding the hull. To analyze its running time, recall that each partition has roughly h∗

points, and so there are roughly n/h∗ mini-hulls. Each tangent computation takes O(log h∗) time, and so each
stage takes a total of O((n/h∗) log h∗) time. By (1) the number of Jarvis stages is at most h∗, so the total
running time of the Jarvis phase is O(h∗(n/h∗) log h∗) = O(n log h∗).
Combining this with the fact that the Graham phase takes O(n log h∗) time, the total time of the restricted
algorithm is O(n log h∗). If we maintain the condition that h∗ ≤ h2 then, irrespective of success or failure, the
running time will be O(n log h).

Guessing the Hull’s Size: The only question remaining is how do we know what value to give to h∗? Remember that,
if h∗ ≥ h, the algorithm will succeed in computing the hull, and if h∗ ≤ h2, the running time of the restricted
algorithm is O(n log h). Clearly we do not want to try a value of h∗ that is way too high, or we are doomed to
having an excessively high running time. So, we should start our guess small, and work up to larger values until
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we achieve success. Each time we try a test value h∗ < h, the restricted hull procedure may tell us we have
failed, and so we need to increase the value if h∗.
As a start, we could try h∗ = 1, 2, 3, . . . , i, until we luck out as soon as h∗ = h. Unfortunately, this would take
way too long. (Convince yourself that this would result in a total time of O(nh log h), which is even worse than
Jarvis’s march.)
The next idea would be to perform a doubling search. That is, let’s try h∗ = 1, 2, 4, 8, . . . , 2i. When we first
succeed, we might have overshot the value of h, but not by more than a factor of 2, that is h ≤ h∗ ≤ 2h. The
convex hull will have at least three points, and clearly for h ≥ 3, we have 2h ≤ h2. Thus, this value of h∗

will satisfy our requirements. Unfortunately, it turns out that this is still too slow. (You should do the analysis
yourself and convince yourself that it will result in a running time of O(n log2 h). Better but still not the best.)
So if doubling is not fast enough, what is next? Recall that we are allowed to overshoot the actual value of
h by as much as h2. Therefore, let’s try repeatedly squaring the previous guess. In other words, let’s try
h∗ = 2, 4, 16, . . . , 22

i . Clearly, as soon as we reach a value for which the restricted algorithm succeeds, we have
h ≤ h∗ ≤ h2. Therefore, the running time for this stage will be O(n log h). But what about the total time for
all the previous stages?

To analyze the total time, consider the ith guess, h∗
i = 22

i . The ith trial takes timeO(n log h∗
i ) = O

(

n log 22
i)

=
O(n2i). We know that we will succeed as soon as h∗

i ≥ h, that is if i = *lg lg h+. (Throughout the semester,
we will use lg to denote logarithm base 2 and log when the base does not matter.4 ) Thus, the algorithm’s total
running time (up to constant factors) is

T (n, h) =
lg lg h
∑

i=1

n2i = n
lg lg h
∑

i=1

2i.

This is a geometric series. Let us use the well known fact that
∑k

i=0 2
i = 2k+1 − 1. We obtain a total running

time of
T (n, h) < n · 21+lg lg h = n · 2 · 2lg lg h = 2n lg h = O(n log h),

which is just what we want. In other words, by the “miracle” of the geometric series, the total time to try all the
previous failed guesses is asymptotically the same as the time for the final successful guess. The final algorithm
is presented in the code block below.

Chan’s Complete Convex Hull Algorithm
Hull(P ) :

(1) h∗ ← 2. L← fail.
(2) while (L ,= fail)

(a) Let h∗ ← min((h∗)2, n).
(b) L← RestrictedHull(P, h∗).

(3) Return L.

Lower Bound (Optional): Next we will show that Chan’s result is asymptotically optimal in the sense that any algo-
rithm for computing the convex hull of n points with h points on the hull requires Ω(n log h) time. The proof is
a generalization of the proof that sorting a set of n numbers requires Ω(n log n) comparisons.
If you recall the proof that sorting takes at least Ω(n log n) comparisons, it is based on the idea that any sorting
algorithm can be described in terms of a decision tree. Each comparison has at most 3 outcomes (<, =, or >).
Each such comparison corresponds to an internal node in the tree. The execution of an algorithm can be viewed
as a traversal along a path in the resulting 3-ary tree. The height of the tree is a lower bound on the worst-case
running time of the algorithm. There are at least n! different possible inputs, each of which must be reordered

4When logn appears as a factor within asymptotic big-O notation, the base of the logarithm does not matter provided it is a constant. This is
because loga n = logb n/ logb a. Thus, changing the base only alters the constant factor.
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differently, and so you have a 3-ary tree with at least n! leaves. Any such tree must have Ω(log3(n!)) height.
Using Stirling’s approximation for n!, this solves to Ω(n log n) height. (For further details, see the algorithms
book by Cormen, Leiserson, Rivest, and Stein.)
We will give an Ω(n log h) lower bound for the convex hull problem. In fact, we will give an Ω(n log h) lower
bound on the following simpler decision problem, whose output is either yes or no.

Convex Hull Size Verification Problem (CHSV): Given a point set P and integer h, does the convex hull of
P have h distinct vertices?

Clearly if this takes Ω(n log h) time, then computing the hull must take at least as long. As with sorting, we
will assume that the computation is described in the form of a decision tree. The sorts of decisions that a
typical convex hull algorithm will make will likely involve orientation primitives. Let’s be even more general,
by assuming that the algorithm is allowed to compute any algebraic function of the input coordinates. (This will
certainly be powerful enough to include all the convex hull algorithms we have discussed.) The result is called
an algebraic decision tree.
The input to the CHSV problem is a sequence of 2n = N real numbers. We can think of these numbers
as forming a vector in real N -dimensional space, that is, (z1, z2, . . . , zN ) = #z ∈ RN , which we will call a
configuration. Each node of the decision tree is associated with a multivariate algebraic formula of degree at
most d, where d is any fixed constant. For example,

f(#z) = z1z4 − 2z3z6 + 5z26 ,

would be an algebraic function of degree 2. The node branches in one of three ways, depending on whether
the result is negative, zero, or positive. Each leaf of the resulting tree corresponds to a possible answer that the
algorithm might give.
For each input vector #z to the CHSV problem, the answer is either “yes” or “no”. The set of all “yes” points
is just a subset of points Y ⊂ RN , that is a region in this space. Given an arbitrary input #z the purpose of the
decision tree is to tell us whether this point is in Y or not. This is done by walking down the tree, evaluating
the functions on #z and following the appropriate branches until arriving at a leaf, which is either labeled “yes”
(meaning #z ∈ Y ) or “no”. An abstract example (not for the convex hull problem) of a region of configuration
space and a possible algebraic decision tree (of degree 1) is shown in the following figure. (We have simplified
it by making it a binary tree.) In this case the input is just a pair of real numbers.

1
2

3

4

5

6

no

Y

Y

no

no

no

no
Y

Y

1
2 3

4

5
6Y

Y

The set Hierarchical partition Decision tree

(a) (b) (c)

Fig. 18: The geometric interpretation of an algebraic decision tree.

We say that two points #u,#v ∈ Y are in the same connected component of Y if there is a path in RN from #u to
#v such that all the points along the path are in the set Y . (There are two connected components in the figure.)
We will make use of the following fundamental result on algebraic decision trees, due to Ben-Or. Intuitively, it
states that if your set has M connected components, then there must be at least M leaves in any decision tree
for the set, and the tree must have height at least the logarithm of the number of leaves.
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Theorem: Let Y ∈ RN be any set and let T be any d-th order algebraic decision tree that determines member-
ship inW . IfW hasM disjoint connected components, then T must have height at least Ω((logM)−N).

We will begin our proof with a simpler problem.

Multiset Size Verification Problem (MSV): Given a multiset of n real numbers and an integer k, confirm that
the multiset has exactly k distinct elements.

Lemma: The MSV problem requires Ω(n log k) steps in the worst case in the d-th order algebraic decision tree
Proof: In terms of points in Rn, the set of points for which the answer is “yes” is

Y = {(z1, z2, . . . , zn) ∈ R
n : |{z1, z2, . . . , zn}| = k}.

It suffices to show that there are at least k!kn−k different connected components in this set, because by
Ben-Or’s result it would follow that the time to test membership in Y would be

Ω(log(k!kn−k)− n) = Ω(k log k + (n− k) log k − n) = Ω(n log k).

Consider the all the tuples (z1, . . . , zn)with z1, . . . zk set to the distinct integers from 1 to k, and zk+1 . . . zn
each set to an arbitrary integer in the same range. Clearly there are k! ways to select the first k elements
and kn−k ways to select the remaining elements. Each such tuple has exactly k distinct items, but it is
not hard to see that if we attempt to continuously modify one of these tuples to equal another one, we
must change the number of distinct elements, implying that each of these tuples is in a different connected
component of Y .

To finish the lower bound proof, we argue that any instance of MSV can be reduced to the convex hull size
verification problem (CHSV). Thus any lower bound for MSV problem applies to CHSV as well.

Theorem: The CHSV problem requires Ω(n log h) time to solve.
Proof: Let Z = (z1, . . . , zn) and k be an instance of the MSV problem. We create a point set {p1, . . . , pn}

in the plane where pi = (zi, z2i ), and set h = k. (Observe that the points lie on a parabola, so that all
the points are on the convex hull.) Now, if the multiset Z has exactly k distinct elements, then there are
exactly h = k points in the point set (since the others are all duplicates of these) and so there are exactly
h points on the hull. Conversely, if there are h points on the convex hull, then there were exactly h = k
distinct numbers in the multiset to begin with in Z.
Thus, we cannot solve CHSV any faster than Ω(n log h) time, for otherwise we could solve MSV in the
same time.

The proof is rather unsatisfying, because it relies on the fact that there are many duplicate points. You might
wonder, does the lower bound still hold if there are no duplicates? Kirkpatric and Seidel actually prove a stronger
(but harder) result that the Ω(n log h) lower bound holds even you assume that the points are distinct.

Lecture 5: Line Segment Intersection
Geometric intersections: One of the most basic problems in computational geometry is that of computing intersec-

tions. Intersection computation in 2- and 3-space is central to many different application areas.

• In solid modeling complex shapes are constructed by applying various boolean operations (intersection,
union, and difference) to simple primitive shapes. The process is called constructive solid geometry (CSG).
Computing intersections of model surfaces is an essential part of the process.

• In robotics and motion planning it is important to know when two objects intersect for collision detection
and collision avoidance.
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• In geographic information systems it is often useful to overlay two subdivisions (e.g. a road network and
county boundaries to determine where road maintenance responsibilities lie). Since these networks are
formed from collections of line segments, this generates a problem of determining intersections of line
segments.

• In computer graphics, ray shooting is an important method for rendering scenes. The computationally
most intensive part of ray shooting is determining the intersection of the ray with other objects.

Line segment intersection: The problem that we will consider is, given a set S of n line segments in the plane,
report (that is, output) all points where a pair of line segments intersect. We assume that each line segment is
represented by giving the coordinates of its two endpoints.
Observe that n line segments can intersect in as few as zero and as many as

(n
2

)

= O(n2) different intersection
points. We could settle for anO(n2) time algorithm, claiming that it is worst-case asymptotically optimal, but it
would not be very useful in practice, since in many instances of intersection problems intersections may be rare.
Therefore, it seems reasonable to design an output sensitive algorithm, that is, one whose running time depends
not only on the input size, but also on the output size.
Given a set S of n line segments, let I = I(S) denote the number of intersections. We will express the running
time of our algorithm in terms of both n and I . As usual, we will assume that the line segments are in general
position. In particular, we assume:

(1) The x-coordinates of the endpoints and intersection points are all distinct. (This implies that no line
segment is vertical.)

(2) If two segments intersect, then they intersect in a single point. (They are not collinear.)
(3) No three line segments intersect in a common point.

Generalizing the algorithm to handle degeneracies efficiently is an interesting exercise. (See our book for more
discussion of this.)

Plane Sweep Algorithm: Let us now consider the algorithm for reporting the segment intersections. Let S =
{s1, . . . , sn} denote the line segments whose intersections we wish to compute. The method, called plane
sweep, is a fundamental technique in computational geometry. We solve a 2-dimensional problem by simulating
the process of sweeping a 1-dimensional line across the plane. The intersections of the sweep line with the seg-
ments defines a collection of points along the sweep line. We will store these points in a data structure, which
we call the sweep-line status.
Although we might visualize the sweeping process as a continuous one, there is a discrete set of event points
where important things happen. As the line sweeps from left to right, points are inserted, deleted, and may
swap order along the sweep line. Thus, we reduce a static 2-dimensional problem to a dynamic 1-dimensional
problem.
There are three basic elements that are maintained at any time in any plane-sweep algorithm: (1) the partial
solution that has already been constructed to the left of the sweep line, (2) the current status of objects along the
sweep line itself, and (3) a (sub)set of the future events to be processed (see Fig. 19).
The key to designing an efficient plane-sweep algorithm involves determining the best way to store and update
these three elements as each new event is process. Let’s consider each of these elements in greater detail in the
context of line-segment intersection.

Sweep line status: We will simulate the sweeping of a vertical line " from left to right. The sweep-line status will
consist of the line segments that intersect the sweep line sorted, say, from top to bottom. In order to maintain
this set dynamically, we will store them in a data structure, which will be described below.
Note that each time the sweep line moves, all the y-coordinates of the intersection points change as well. It will
be too inefficient to continually update all the y-coordinates each time the sweep line moves. We exploit the fact
that it is not the actual y-coordinates that we really care about, just their order. To do this, rather than storing
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future event point

discovered intersection

!

sweep line

Fig. 19: Plane sweep.

y-coordinates, for each line segment si that intersects the sweep line, we store the coefficients (ai, bi) of the
equation of the line, e.g., y = aix+ bi. (These coefficients can easily be derived from the segment endpoints.)
In this way, whenever the sweep line arrives at a new x-coordinate, say x = x0, we can determine the current
y-coordinate at which segment si intersects the sweep line as y(x0) = aix0 + bi (see Fig. 20). As we shall see,
only a constant number of such intersections need to be evaluated at each event point.

!
(a2, b2)
s2

s1
(a1, b1)

y1(x0) = a1x0 + b1

y2(x0) = a2x0 + b2

x = x0

Fig. 20: The sweep-line status stores coefficients of the line equations, and the y-coordinates of the intersections are
computed as needed.

Events and Detecting Intersections: It suffices to process events only when there is a change in the sweep-line
status. These x-coordinates are called event points. For our application, we have three types of event points,
corresponding to when the sweep line encounters (1) the left endpoint of a segment, (2) the right endpoint of a
segment, and (3) an intersection point between two segments.
Note that endpoint events can be presorted before the sweep runs. In contrast, intersection events will be
discovered as the sweep executes. It is important that each event be detected before the actual event occurs. Our
strategy will be as follows. Whenever two line segments become adjacent along the sweep line, we will check
whether they have an intersection occurring to the right of the sweep line. If so, we will add this new event to a
priority queue of future events. This priority queue will be sorted in left-to-right order by x-coordinates.
A natural question is whether this is sufficient. In particular, if two line segments do intersect, is there necessarily
some prior placement of the sweep line such that they are adjacent? Happily, this is the case, but it requires a
proof.

Lemma: Consider a set S of line segments in general position, and consider two segments si, sj ∈ S that
intersect in some point p = (px, py). There is a placement of the sweep line prior to this event, such that
si and sj are adjacent along the sweep line.
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Proof: By general position, it follows that no three lines intersect in a common point. Therefore if we consider
a placement of the sweep line that is infinitesimally to the left of the intersection point, the line segments si
and sj will be adjacent along this sweep line. Consider the event point q with the largest x-coordinate that
is strictly less than px. Since there are no events between qx and px, there can be no segment intersections
within the vertical slab bounded by q on the left and p on the right (the shaded region of Fig. 20), and
therefore the order of lines along the sweep line after processing q will be identical the order of the lines
along the sweep line just prior p. Therefore, si and sj are adjacent immediately after processing event q.

!

adjacent

si

sj

q

p

Fig. 21: Correctness of the “adjacent segment rule”.

When two formerly adjacent segments cease to be adjacent (e.g., because a new segment is discovered between
them), we will delete the event from the queue. While this is not formally necessary, it keeps us from inserting
the same event point over and over again, and hence we do not need to worry about the existence of duplicate
events from the priority queue.

Data structures: In order to perform the sweep, we will need two data structures.

Event queue: This holds the set of future events, sorted by increasing x-coordinate. Each event in this set con-
tains the auxiliary information of what type of event this is (left-endpoint, right-endpoint, or intersection)
and which segment(s) are involved. The operations that this data structure should support are:
• insert a new event with a given x-coordinate
• extract the event with the smallest x-coordinate
• delete an existing event

A typical priority queue data structure (e.g., a binary heap sorted on x) is adequate for performing the first
two operations, but deletion is a problem. Instead, we store the events in a sorted dictionary (e.g., either a
balanced binary tree or a skip list) sorted by x-coordinates. Each of the above operations can be performed
in O(logm) time, wherem is the current number of events.
The number of events is never more than O(n), since there are at most n left endpoints, n right endpoints,
and n − 1 pairs of adjacent segments on the sweep line. Therefore, each event-queue operation can be
performed in time O(log n).

Sweep-line status: To store the sweep-line status, we maintain an ordered dictionary (e.g., a balanced binary
tree or skip-list) which contains the lines that intersect the sweep line sorted from top to bottom. As
mentioned earlier, each entry stores the coefficients of the line equation, not the actual intersection point.
(You may want to take a moment to convince yourself that the operations of maintaining the dictionary
can be performed “on the fly” given the x-coordinate of the current sweep line.)
This data structure needs to support the following operations, given the x-coordinate of the current sweep
line:

• insert a new line segment (whose left endpoint coincides with x).
• delete an existing line segment (whose right endpoint coincides with x).
• swap two adjacent entries (whose intersection point coincides with x).
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• determine the segment immediately above or below any given segment on the sweep line.
Since there are at most n segments on the sweep line at any time, the dictionary contains at most n
elements, and so these operations can be performed in O(log n) time each.

Processing Events: All that remains is explaining how to process the events. This is presented in the code block
below. (See our text for a more careful implementation.) The various cases are illustrated in Fig. 21.

Line Segment Intersection Reporting
(1) Insert all of the endpoints of the line segments of S into the event queue. The initial sweep-line status is empty.
(2) While the event queue is nonempty, extract the next event in the queue. There are three cases, depending on the type of event:

Left endpoint:
(a) Insert this line segment s into the sweep-line status, based on the y-coordinate of this endpoint.
(b) Let s′ and s′′ be the segments immediately above and below s on the sweep line. If there is an event associated

with this pair, remove it from the event queue.
(c) Test for intersections between s and s′ and between s and s′′ to the right of the sweep line. If so, add the corre-

sponding event(s) to the event queue.
Right endpoint:

(a) Let s′ and s′′ be the segments immediately above and below s on the sweep line.
(b) Delete segment s from the sweep-line status.
(c) Test for intersections between s′ and s′′ to the right of the sweep line. If so, add the corresponding event to the

event queue.
Intersection:

(a) Report this intersection.
(b) Let s′ and s′′ be the two intersecting segments. Swap these two line segments in the sweep-line status (they must

be adjacent to each other).
(c) As a result, s′ and s′′ have changed which segments are immediately above and below them. Remove any old

events due to adjacencies that have ended and insert any new intersection events from adjacencies that have been
created.

Observe that our algorithm is very careful about storing intersection events only for adjacent elements in the
priority queue. For example, consider two segments s and s′ that intersect at a segment p, such that, when
the two are initially added to the sweep-line status, they are adjacent. Therefore, the intersection point p is
added to event queue (see Fig. 23). As intervening segments are seen between them, they successfully become
non-adjacent and then adjacent again. Because our algorithm is careful about deleting intersections between
non-adjacent entries in the sweep-line status, the event p is repeated deleted and reinserted. If we had not done
this, we would have many duplicate events in the queue.

Analysis: Altogether, there are 2n+I events processed. Each event involves a constant amount of work and a constant
number of accesses to our data structures. As mentioned above, each access to either of the data structures takes
O(log n) time. Therefore, the total running time is O((2n+ I) log n) = O(n log n+ I log n).
Is this the best possible? There is an algorithm that achieves a running time of O(n log n + I). It can be
shown that this is asymptotically optimal. Clearly Ω(I) time is needed to output the intersections. The lower
bound of Ω(n log n) results from a reduction from the element uniqueness problem. Given a list of n numbers
〈x1, . . . , xn〉 the element uniqueness problem asks whether these numbers are all distinct. Element uniqueness
is known to have a lower bound of Ω(n log n) in the algebraic decision tree model of computation. (It can be
solved in O(n) time using hashing, but the algebraic decision tree model does not allow integer division, which
is needed by hashing.)
The reduction is as follows. Convert each xi into a vertical segment passing through the point (xi, 0), clearly
two segments intersect if and only if two elements of the list are identical. You might complain that this lower-
bound example violates our general position assumptions, but note that if you were to apply an very tiny random
rotation to each line segment, the segments would now be in general position.
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Fig. 22: Plane-sweep algorithm event processing.

s

s
′

p

insert event p

delete event p

Fig. 23: An intersection event that is repeatedly inserted and deleted from the event queue
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Computing Segment Intersections (Optional): We have assumed that the primitive of computing the intersection
point of two line segments can be performed exactly in O(1) time. Let us see how to do this. Let ab and cd
be two line segments in the plane, given by their endpoints, for example a = (ax, ay). First observe that it is
possible to determine whether these line segments intersect, simply by applying an appropriate combination of
orientation tests. (We will leave this as an exercise.) However, this alone is not sufficient for the plane-sweep
algorithm.
One way to determine the point at which the segments intersect is to use a parametric representation of the
segments. Any point on the line segment ab can be written as a convex combination involving a real parameter
s:

p(s) = (1− s)a+ sb for 0 ≤ s ≤ 1.

Similarly for cd we may introduce a parameter t:

q(t) = (1− t)c+ td for 0 ≤ t ≤ 1.

An intersection occurs if and only if we can find s and t in the desired ranges such that p(s) = q(t). Thus we
obtain the two equations:

(1− s)ax + sbx = (1− t)cx + tdx and (1− s)ay + sby = (1− t)cy + tdy.

The coordinates of the points are all known, so it is just a simple exercise in linear algebra to solve for s and t.
In general, such a linear system could be solved using Gauss elimination and floating-point computations. If the
denominator of the result is 0, the line segments are either parallel or collinear. These special cases can be dealt
with some care. If the denominator is nonzero, then we obtain values for s and t as rational numbers (the ratio
of two integers). Once the values of s and t have been computed all that is needed is to check that both are in
the interval [0, 1].

Exact Computation (Optional): The above approach is fine for producing a floating-point representation of the fi-
nal result. Floating-point calculations are intrinsically approximate, and so the question arises of whether the
algorithm is formally correct.
It is noteworthy that our plane-sweep algorithm does not actually require computing the coordinates of the inter-
section points. Two discrete primitives suffice: (1) the ability to compare the x-coordinates of two intersection
points (for ordering intersection events) and (2) the ability to compare the y-coordinates of the intersection
points of two segments with the vertical sweep line (for ordering segments on the plane-sweep status).
If the input coordinates are integers, it is possible to perform rational number calculations and comparisons
exactly using multiple-precision integer arithmetic. In particular, each rational number q/r is maintained as
a pair (q, r), by explicitly storing the numerator and denominator as integers. It is possible add, subtract,
multiply and divide rational numbers in this form, by purely integer operations. (For example, q1/r1 + q2/r2 =
(q1r2+q2r1)/r1r2.) In this way, we never need to perform divisions. We can compute the solutions to the above
system of linear equations applying Cramer’s rule, which expresses the solution as a ratio of two determinants
with integer coordinates. Thus, the comparisons required by the algorithm can be computed exactly, if desired.
The price we pay is the need to implement some form of multiple precision integer arithmetic.

Lecture 6: Polygon Triangulation
The Polygon Triangulation Problem: Triangulation is the general problem of subdividing a spatial domain into sim-

plices, which in the plane means triangles. In its simplest form, a simple polygon is given (that is, a planar region
that is defined by a closed, simple polygonal curve), and the objective is to subdivide the polygon into triangles
(see Fig. 24). Such a subdivision is not necessarily unique, and there may be other criteria to be optimized in
computing the triangulation.
Triangulating simple polygons is important for many reasons. This operation useful, for example, whenever it
is needed to decompose a complex shapes a set of disjoint simpler shapes. Note that in some applications it is
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Simple polygon A triangulation Dual graph

Fig. 24: Polygon triangulation.

desirable to produce “fat” (nearly equilateral) triangles, but we will not worry about this issue in this lecture. A
triangulation provides a simple graphical representation of the polygon’s interior, which is useful for algorithms
that operate on polygons. In particular, consider a graph whose vertices are the triangles of the triangulation and
two vertices of this graph are adjacent if the associated triangles are adjacent (see Fig. 24(c)). This is called the
dual graph of the triangulation. It is easy to show that such a graph is a free tree, that is, it is an acylic, connected
graph.
This simple problem has been the focus of a remarkably large number of papers in computational geometry
spanning a number of years. There is a simple naive polynomial-time algorithm for the planar case (as opposed
to possibly nonconvex polyhedra in higher dimensions). The idea is based on repeatedly adding “diagonals.” We
say that two points on the boundary of the polygon are visible if the interior of the line segment joining them lies
entirely within the interior of the polygon. Define a diagonal of the polygon to be the line segment joining any
pair of visible vertices. Observe that the addition of a diagonal splits the polygon into two polygons of smaller
size. In particular, if the original polygon has n vertices, the diagonal splits the polygon into two polygons with
n1 and n2 vertices, respectively, where n1, n2 < n, and n1 + n2 = n + 2. Any simple polygon with at least
four vertices has at least one diagonal. (This seemingly obvious fact is not that easy to prove. You might try it.)
A simple induction argument shows that the final number of diagonals is n− 3 and the final number of triangles
is n− 2.
The naive algorithm operates by repeatedly adding diagonals. Unfortunately, this algorithm is not very efficient
(unless the polygon has special properties, for example, convexity) because of the complexity of the visibility
test.
There are very simple O(n log n) algorithms for this problem that have been known for many years. A long-
standing open problem was whether there exists an O(n) time algorithm. (Observe that the input polygon is
presented as a cyclic list of vertices, and hence the data is in some sense “pre-sorted”, which precludes an
Ω(n log n) lower bound.) The problem of a linear time polygon triangulation was solved by Bernard Chazelle
in 1991, but the algorithm is so amazingly complicate. Unless other properties of the triangulation are desired,
theO(n log n) algorithm that we will present in this lecture is quite practical and probably preferable in practice
to any of the “theoretically” faster algorithms.
Our approach is based on a two-step process (although with a little cleverness, both steps could be combined
into one algorithm).

• First, the simple polygon is decomposed into a collection of simpler polygons, called monotone polygons.
This step takes O(n log n) time.

• Second, each of the monotone polygons is triangulated separately, and the result are combined. This step
takes O(n) time.

The triangulation results in a planar subdivision. Such a subdivision could be stored as a planar graph or simply
as a set of triangles, but there are representations that are more suited to representing planar subdivisions. One
of these is called double-connect edge list (or DCEL). This is a linked structure whose individual entities con-
sist of the vertices (0-dimensional elements), edges (1-dimensional elements), triangular faces (2-dimensional
elements). Each entity is joined through links to its neighboring elements. For example, each edge stores the
two vertices that form its endpoints and the two faces that lie on either side of it.
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We refer the reader to Chapter 2 of our text for a more detailed description of the DCEL structure. Henceforth,
we will assume that planar subdivisions are stored in a manner than allows local traversals of the structure to be
performed O(1) time.

Monotone Polygons: Let’s begin with a few definitions. A polygonal curve is a collection of line segments, joined
end-to-end. If the last endpoint is equal to the first endpoint, the polygonal curve is said to be closed. The line
segments are called edges. The endpoints of the edges are called the vertices of the polygonal curve. Each edge
is incident to two vertices (its endpoints), and each vertex is incident (to up) two edges. A polygonal curve is said
to be simple if no two nonincident elements intersect each other. A closed simple polygonal curve decomposes
the plane into two parts, its interior and exterior. Such a polygonal curve is called a simple polygon. When we
say “polygon” we mean simple polygon.
A polygonal chain C is monotone with respect to " if each line that is orthogonal to " intersects C in a single
connected component. (It may intersect, not at all, at a single point, or along a single line segment.) A polygonal
chain C is said to be strictly monotone with respect to a given line ", if any line that is orthogonal to " intersects
C in at most one point. A simple polygon P is said to be monotone with respect to a line " if its boundary,
(sometimes denoted bnd(P ) or ∂P ), can be split into two chains, each of which is monotone with respect to "
(see Fig. 25(a)).

Splitting diagonals

(b)

Monotone decomposition

(c)

x-monotone polygon

(a)

Splitting diagonals

(b)

!

Fig. 25: Monotonicity.

Henceforth, let us consider monotonicity with respect to the x-axis. We will call these polygons horizontally
monotone. It is easy to test whether a polygon is horizontally monotone. How?

(a) Find the leftmost and rightmost vertices (min and max x-coordinate) in O(n) time.
(b) These vertices split the polygon’s boundary into two chains, an upper chain and a lower chain. Walk from

left to right along each chain, verifying that the x-coordinates are nondecreasing. This takes O(n) time.

(As an exercise, consider the problem of determining whether a polygon is monotone in any direction. This can
be done in O(n) time.)

Triangulation of Monotone Polygons: We begin by showing how to triangulate a monotone polygon by a simple
variation of the plane-sweep method. We will return to the question of how to decompose a polygon into
monotone components later.
We begin with the assumption that the vertices of the polygon have been sorted in increasing order of their
x-coordinates. (For simplicity we assume no duplicate x-coordinates. Otherwise, break ties between the upper
and lower chains arbitrarily, and within a chain break ties so that the chain order is preserved.) Observe that
this does not require sorting. We can simply extract the upper and lower chain, and merge them (as done in
MergeSort) in O(n) time.
The idea behind the triangulation algorithm is quite simple: Try to triangulate everything you can to the left of
the current vertex by adding diagonals, and then remove the triangulated region from further consideration.
Consider the example shown in Fig. 26. There is obviously nothing to do until we have at least 3 vertices. With
vertex 3, it is possible to add the diagonal to vertex 2, and so we do this. In adding vertex 4, we can add the
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Fig. 26: Triangulating a monotone polygon.

diagonal to vertex 2. However, vertices 5 and 6 are not visible to any other nonadjacent vertices so no new
diagonals can be added. When we get to vertex 7, it can be connected to 4, 5, and 6. The process continues until
reaching the final vertex.
The important thing that makes the algorithm efficient is the fact that when we arrive at a vertex the untrian-
gulated region that lies to the left of this vertex always has a very simple structure. This structure allows us
to determine in constant time whether it is possible to add another diagonal. And in general we can add each
additional diagonal in constant time. Since any triangulation consists of n − 3 diagonals, the process runs in
O(n) total time. This structure is described in the lemma below.

Lemma: (Main Invariant) For i ≥ 2, let vi be the vertex just processed by the triangulation algorithm. The
untriangulated region lying to the left of vi consists of two x-monotone chains, a lower chain and an upper
chain each containing at least one edge. If the chain from vi to u has two or more edges, then these edges
form a reflex chain (that is, a sequence of vertices with interior angles all at least 180 degrees). The other
chain consists of a single edge whose left endpoint is u and whose right endpoint lies to the right of vi (see
Fig. 27(a)).

We will prove the invariant by induction. As the basis case, consider the case of v2. Here u = v1, and one chain
consists of the single edge v2v1 and the other chain consists of the other edge adjacent to v1. To complete the
proof, we will give a case analysis of how to handle the next event, involving vi, assuming that the invariant
holds at vi−1, and see that the invariant is satisfied after each event has been processed. There are the following
cases that the algorithm needs to deal with.

Case 1: vi lies on the opposite chain from vi−1: In this case we add diagonals joining vi to all the vertices on
the reflex chain, from vi−1 back to (but not including) u (see Fig. 27(b)). Note that all of these vertices are
visible from vi. Certainly u is visible to vi. Because the chain is reflex, x-monotone, and lies to the left
of vi it follows that the chain itself cannot block the visibility from vi to some other vertex on the chain.
Finally, the fact that the polygon is x-monotone implies that the unprocessed portion of the polygon (lying
to the right of vi) cannot “sneak back” and block visibility to the chain.
After doing this, we set u = vi−1. The invariant holds, and the reflex chain is trivial, consisting of the
single edge vivi−1.

Case 2: v is on the same chain as vi−1. There are two subcases to be considered:
Case 2(a): The vertex vi−1 is a nonreflex vertex (that is, its interior angle is less than 180 degrees): We

walk back along the reflex chain adding diagonals joining vi to prior vertices until we find the last
vertex vj of the chain that is visible to vi. As can be seen in Fig. 27(c), this will involve connecting vi
to one or more vertices of the chain. Remove these vertices from vi−1 back to, but not including vj
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Fig. 27: Triangulation cases.

from the reflex chain. Add vi to the end of reflex chain. (You might observe a similarity between this
step and the inner loop of Graham’s scan.)

Case 2(b): The vertex vi−1 is a reflex vertex. In this case vi cannot see any other vertices of the chain. In
this case, we simply add vi to the end of the existing reflex chain (see Fig. 27(d)).

In either case, when we are done the remaining chain from vi to u is a reflex chain.

How is this implemented? The vertices on the reflex chain can be stored in a stack. We keep a flag indicating
whether the stack is on the upper chain or lower chain, and assume that with each new vertex we know which
chain of the polygon it is on. Note that decisions about visibility can be based simply on orientation tests
involving vi and the top two entries on the stack. When we connect vi by a diagonal, we just pop the stack.

Analysis: We claim that this algorithm runs in O(n) time. As we mentioned earlier, the sorted list of vertices can be
constructed in O(n) time through merging. The reflex chain is stored on a stack. In O(1) time per diagonal,
we can perform an orientation test to determine whether to add the diagonal and the diagonal can be added in
constant time. Since the number of diagonals is n− 3, the total time is O(n).

Monotone Subdivision: In order to run the above triangulation algorithm, we first need to subdivide an arbitrary
simple polygon P into monotone polygons. This is also done by a plane-sweep approach. We will add a set of
nonintersecting diagonals that partition the polygon into monotone pieces (recall Fig. 25).
Observe that the absence of x-monotonicity occurs only at vertices in which the interior angle is greater than
180 degrees and both edges lie either to the left of the vertex or both to the right. We call such a vertex a scan
reflex vertex. Following our book’s notation, we call the first type a merge vertex (since as the sweep passes over
this vertex the edges seem to be merging) and the latter type a split vertex.
Our approach will be to apply a left-to-right plane sweep (see Fig. 28(a)), which will add diagonals to all the
split and merge vertices. We add a diagonal to each split vertex as soon as we reach it. We add a diagonal to
each merge vertex when we encounter the next visible vertex to its right.
The key is storing enough information in the sweep-line status to allow us to determine where this diagonal will
go. When a split vertex v is encountered in the sweep, there will be an edge ea of the polygon lying above and
an edge eb lying below. We might consider attaching the split vertex to left endpoint of one of these two edges,
but it might be that neither endpoint is visible to the split vertex. Instead, we need to maintain a vertex that is
visible to any split vertex that may arise between ea and eb. To do this, imagine a sweeping a vertical segment
between ea and eb to the left until it hits a vertex. Called this helper(ea) (see Fig. 28(b)).

helper(ea) : Let eb be the edge of the polygon lying just below ea on the sweep line. The helper is the rightmost
vertically visible vertex below ea on the polygonal chain between ea and eb.

Observe that helper(ea) is defined with respect to the current location of the sweep line. As the sweep line
moves, its value changes. The helper is defined only for those edges intersected by the sweep line. Our approach
will be to join each split vertex to helper(ea), where ea is the edge of P immediately above the split vertex.
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Fig. 28: Split vertices, merge vertices, and helpers.

(Note that it is possible that the helper is the left endpoint of ea.) When we hit a merge vertex, we cannot add a
diagonal right away. Instead, our approach is to take note of any time a helper is a merge vertex. The diagonal
will be added when the very next visible vertex is processed.

Events: The endpoints of the edges of the polygon. These are sorted by increasing order of x-coordinates.
Since no new events are generated, the events may be stored in a simple sorted list (i.e., no priority queue
is needed).

Sweep status: The sweep line status consists of the list of edges that intersect the sweep line, sorted from top
to bottom. (Our book notes that we actually only need to store edges such that the interior of the polygon
lies just below this edge, since these are the only edges that we evaluate helper() from.)
These edges are stored in a dictionary (e.g., a balanced binary tree), so that the operations of insert, delete,
find, predecessor and successor can be evaluated in O(log n) time each.

Event processing: There are six event types based on a case analysis of the local structure of edges around
each vertex. Let v be the current vertex encountered by the sweep (see Fig. 29). Recall that, whenever
we see a split vertex, we add a diagonal to the helper of the edge immediately above it. We defer adding
diagonals to merge vertices until the next opportunity arises. To help with this, we define a common action
called “Fix-up.” It is given a vertex v and an edge e (either above v or incident to its left). Fix-up adds a
diagonal to helper(e), if helper(e) is a merge vertex.
Fix-up(v, e): If helper(e) is a merge vertex, add a diagonal from v to this merge vertex.
Split vertex(v): Search the sweep line status to find the edge e lying immediately above v. Add a diagonal

connecting v to helper(e). Add the two edges incident to v into the sweep line status. Let e′ be the
lower of these two edges. Make v the helper of both e and e′.

Merge vertex(v): Find the two edges incident to this vertex in the sweep line status (they must be adja-
cent). Let e′ be the lower of the two. Delete them both. Let e be the edge lying immediately above v.
Fix-up(v, e) and Fix-up(v, e′).

Start vertex(v): (Both edges lie to the right of v, but the interior angle is less than 180 degrees.) Insert
this vertex’s edges into the sweep line status. Set the helper of the upper edge to v.

End vertex(v): (Both edges lie to the left of v, but the interior angle is less than 180 degrees.) Let e be
the upper of the two edges. Fix-up(v, e). Delete both edges from the sweep line status.

Upper-chain vertex(v): (One edge is to the left, and one to the right, and the polygon interior is below.)
Let e be the edge just to the left of v. Fix-up(v, e). Replace the edge to v’s left with the edge to its
right in the sweep line status. Make v the helper of the new edge.

Lower-chain vertex(v): (One edge is to the left, and one to the right, and the polygon interior is above.)
Let e be the edge immediately above v. Fix-up(v, e). Replace the edge to v’s left with the edge to its
right in the sweep line status. Make v the helper of the new edge.
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There are many special cases (what a pain!), but each one is fairly easy to deal with, so the algorithm is quite
efficient. As with previous plane sweep algorithms, it is not hard to show that the running time isO(log n) times
the number of events. In this case there is one event per vertex, so the total time is O(n log n). This gives us an
O(n log n) algorithm for polygon triangulation.

Lecture 7: Linear Programming
Linear Programming: One of the most important computational problems in science and engineering is linear pro-

gramming, or LP for short. LP is a special case of multi-dimensional constrained optimization problems. In
constrained optimization, the objective is to find a point in d-dimensional space that minimizes (or maximizes)
some function, subject to various constraints on the set of allowable solutions. Linear programming is perhaps
the simplest example of such a problem, since the constraints and the objective function are all linear. In spite of
this apparent limitation, linear programming is a very powerful way of modeling optimization problems. Typi-
cally, linear programming is performed in spaces of very high dimension (hundreds to thousands or more), but
because the focus of this course is on algorithms for low-dimensional geometric problems, we will assume that
the dimension d is a constant, independent of the number of constraints.
Formally, in linear programmingwe are given a set of linear inequalities, called constraints, in real d-dimensional
space Rd. Given a point (x1, . . . , xd) ∈ Rd, we can express such a constraint as a1x1+ . . .+adxd ≤ b, by spec-
ifying the coefficient ai and b. (Note that there is no loss of generality in assuming that the inequality relation is
≤, since we can convert a ≥ relation to this form by simply negating the coefficients on both sides.) Geometri-
cally, each constraint defines a closed halfspace in Rd. The intersection of these halfspaces intersection defines
a (possibly empty or possibly unbounded) polyhedron in Rd, called the feasible polytope5 (see Fig. 30(a)).

feasible
polytope

optimal

c c

vertex

c

optimum

(a) (b) (c)

feasible infeasible unbounded

Fig. 30: 2-dimensional linear programming.

We are also given a linear objective function, which is to be minimized or maximized subject to the given
constraints. We can express such as function as c1x1 + . . . cdxd, by specifying the coefficients ci. (Again, there

5To some geometric purists this an abuse of terminology, since a polytope is often defined to be a closed, bounded convex polyhedron, and
feasible polyhedra need not be bounded.
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is no essential difference between minimization and maximization, since we can simply negate the coefficients
to simulate the other.) We will assume that the objective is to maximize the objective function. If we think
of (c1, . . . , cd) as a vector in Rd, the value of the objective function is just the projected length of the vector
(x1, . . . , xd) onto the direction defined by the vector c (see Fig. 30(a)). It is not hard to see that (assuming
general position), if a solution exists, it will be achieved by a vertex of the feasible polytope, called the optimal
vertex.
In general, a d-dimensional linear programming problem can be expressed as:

Maximize: c1x1 + c2x2 + · · ·+ cdxd

Subject to: a1,1x1 + · · ·+ a1,dxd ≤ b1
a2,1x1 + · · ·+ a2,dxd ≤ b2
...
an,1x1 + · · ·+ an,dxd ≤ bn,

where ai,j , ci, and bi are given real numbers. This can be also be expressed in matrix notation:

Maximize: cTx,
Subject to: Ax ≤ b.

where c and x are d-vectors, b is an n-vector and A is an n× d matrix. Note that c should be a nonzero vector,
and n should be at least as large as d and may generally be much larger.
There are three possible outcomes of a given LP problem:

Feasible: The optimal point exists (and assuming general position) is a unique vertex of the feasible polytope
(see Fig. 30(a)).

Infeasible: The feasible polytope is empty, and there is no solution (see Fig. 30(b)).
Unbounded: The feasible polytope is unbounded in the direction of the objective function, and so no finite

optimal solution exists (see Fig. 30(c)).

In our figures (in case we don’t provide arrows), we will assume the feasible polytope is the intersection of
upper halfspaces. Also, we will usually take the objective vector c to be a vertical vector pointing down. (It can
point in any direction, but, if we wished, we could rotate space to make it point any direction we want.) In this
setting, the problem is just that of finding the lowest vertex (minimum y-coordinate) of the feasible polytope.

Linear Programming in High Dimensional Spaces: As mentioned earlier, typical instances of linear programming
may involve hundreds to thousands of constraints in very high dimensional space. It can be proved that the
combinatorial complexity (total number of faces of all dimensions) of a polytope defined by n halfspaces can
be as high as Ω(n$d/2%). In particular, the number of vertices alone might be this high. Therefore, building a
representation of the entire feasible polytope is not an efficient approach (except perhaps in the plane).
The principal methods used for solving high-dimensional linear programming problems are the simplex algo-
rithm and various interior-point methods. The simplex algorithm works by finding a vertex on the feasible
polytope, then walking edge by edge downwards until reaching a local minimum. (By convexity, any local
minimum is the global minimum.) It has been long known that there are instances where the simplex algorithm
runs in exponential time, but in practice it is quite efficient.
The question of whether linear programming is even solvable in polynomial time was unknown until Khachiyan’s
ellipsoid algorithm (late 70’s) and Karmarkar’s more practical interior-point algorithm (mid 80’s). Both algo-
rithms are polynomial in the total number of bits needed to describe the input. This is called a weakly polynomial
time algorithm. It is not known whether there is a strongly polynomial time algorithm, that is, one whose running
time is polynomial in both n and d, irrespective of the number of bits used for the input coefficients.
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Solving LP in Spaces of Constant Dimension: There are a number of interesting optimization problems that can be
posed as a low-dimensional linear programming problem. This means that the number of variables (the xi’s) is
constant, but the number of constraints n may be arbitrarily large.
The algorithms that we will discuss for linear programming are based on a simple method called incremental
construction. Incremental construction is among the most common design techniques in computational geome-
try, and this is another important reason for studying the linear programming problem.

Deterministic Incremental Algorithm: Recall our geometric formulation of the LP problem. We are given n halfs-
paces {h1, . . . , hd} in Rd and an objective vector c, and we wish to compute the vertex of the feasible polytope
that is most extreme in direction c. Our incremental approach will be based on starting with an initial solution to
the LP problem for a small set of constraints, and then we will successively add one new constraint and update
the solution.
In order to get the process started, we need to assume (1) that the LP is bounded and (2) we can find a set of
d halfspaces that provide us with an initial feasible point. Getting to this starting point is actually not trivial.6
For the sake of focusing on the main elements of the algorithm, we will skip this part and just assume that the
first d halfspaces define a bounded feasible polytope (actually it will be a polyhedral cone). The the unique
point where all d bounding hyperplanes, h1, . . . , hd, intersect will be our initial feasible solution. We denote
this vertex as vd (see Fig. 31).

c

h1
h2

h3

v3

Fig. 31: Starting point of the incremental construction in R3.

We will then add halfspaces one by one, hd+1, hd+2, . . ., and with each addition we update the current optimum
vertex, if necessary. Let vi denote the optimal feasible vertex after the addition of {h1, h2, . . . , hi}. Notice that
with each new constraint, the feasible polytope generally becomes smaller, and hence the value of the objective
function at optimum vertex can only decrease. (In terms of our illustrations, the y-coordinate of the feasible
vertex increases.)
There are two cases that can arise when hi is added. In the first case, vi−1 lies within the halfspace hi, and so
it already satisfies this constraint (see Fig. 32(a)). If so, then it is easy to see that the optimum vertex does not
change, that is vi = vi−1. In the second case vi−1 violates constraint hi. In this case we need to find a new
optimum vertex (see Fig. 32(b)). Let us consider this case in greater detail.

Updating the Optimum Vertex: The important observation is that (assuming that the feasible polytope is not empty)
the new optimum vertex must lie on the (d − 1)-dimensional hyperplane that bounds hi. Our book presents a
formal proof of this fact.7 In general, the problem can be reduced to an LP problem in one lower dimension.
First, project the objective vector c onto "i, letting c′ be the resulting vector (see Fig. 32(c)). Next, intersect each
of the halfspaces {h1, . . . , hi−1} with "i. Each intersection is a (d − 1)-dimensional halfspace that lies on "i.
We then recursively solve the (d − 1)-dimensional LP involving these i − 1 halfspaces with respect to c′. The
resulting optimum vertex vi is the desired solution.

6Our text book explains how to overcome these assumptions in O(n) additional time.
7Here is an intuitive argument. Let !i denote the bounding hyperplane. Suppose that the new optimum vertex does not lie on !i. Draw a

line segment from vi−1 to the new optimum. Observe (1) that, by linearity, as you walk along this segment the value of the objective function
decreases monotonically, and (2) that this segment must cross !i (because it goes from being infeasible with respect to hi to being feasible). Thus,
the objective function is maximized at the crossing point, which lies on !i.
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Fig. 32: Incremental construction.

Suppose for the sake of illustration that d = 2. In this case "i is a line (see Fig. 32(c)). The projected objective
vector c′ is a vector pointing one way or the other on "i. The intersection of each halfspace with "i is a ray,
which can be thought of as an interval on the line that is bounded on one side and unbounded on the other.
Computing the intersection of a collection of intervals on a line, is very easy and can be done in linear time, that
is, O(i− 1) time in this case. (This interval is the heavy solid line in Fig. 32(c).) We return whichever vertex of
this interval is extreme in the direction of c′ as the desired vertex vi. If the interval is empty, then it follows that
the feasible polytope is also empty, and we may terminate the algorithm immediately and report that there is no
solution. Because, by assumption, the original LP is bounded, it follows that the (d− 1)-dimensional LP is also
bounded.

Worst-Case Analysis: What is the running time of this algorithm? Ignoring the initial d halfspaces, there are n − d
halfspace insertions performed. In step i, we may find that the current optimum vertex is feasible. This takes
O(d) time. The alternative is that we need to solve a (d − 1)-dimensional LP with i − 1 constraints. It takes
O(d(i−1)) to intersect each of the constraints with "i andO(d) time to project c onto "i. If we let Td(n) denote
the time to run this algorithm in dimension d with n constraints. In this case the time is O(di + Td−1(i − 1)).
Since there are two alternatives, the running time is the maximum of the two. Ignoring constant factors, the
running time can be expressed by the following recurrence formula:

Td(n) =
n
∑

i=d+1

(

max
(

d, di+ Td−1(i− 1)
)

)

.

Since d is a constant, we can simplify this to:

Td(n) =
n
∑

i=d+1

(

i+ Td−1(i− 1)
)

.

The basis case of the recurrence occurs when d = 1, and we just solve the interval intersection problem described
above in O(n) time by brute force. Thus, we have T1(n) = n.
Unfortunately, this recurrence solves to Td(n) = O(nd), which is not very efficient. We can see this by induc-
tion. In particular, let’s try to prove that, for some constant α, we have Td(n) ≤ αnd. We’ll skip the basis case
(which is easy). In general, for d ≥ 2, we have

Td(n) =
n
∑

i=d+1

(

i+ Td−1(i− 1)
)

≤
n
∑

i=d+1

(

i+ α(i− 1)d−1
)

≤
n
∑

i=1

αnd−1 ≤ αnd.

(Although this analysis is quite crude, it can be shown to be asymptotically tight.)
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Notice that this worst-case analysis is based on the rather pessimistic assumption that the current vertex is always
infeasible. Although there may exist insertion orders for which this might happen, we might wonder whether
we can arrange the insertion order so this worst case does not occur. We’ll consider this alternative next.

Randomized Algorithm: Suppose that we apply the above algorithm, but we insert the halfspaces in random order
(except for the first d, which need to be chosen to provide an initial feasible vertex.) This is an example of a
general class of algorithms called randomized incremental algorithms. There is only one difference between this
algorithm and the deterministic one, namely, just prior to running the incremental algorithm, we call a procedure
that randomly permutes the initial input list (excluding the first d halfspaces). A description is given in the code
block below.

Randomized Incremental d-Dimensional Linear Programming
Input: Let H be a set of n (d− 1)-dimensional halfspaces, such that the first d define an initial feasible vertex vd, and let c be the
objective function vector.
(1) Let vd be the intersection point of the hyperplanes bounding h1, . . . , hd, which we assume define an initial feasible vertex.

Randomly permute the remaining halfspaces, and let 〈hd+1, . . . , hn〉 denote the resulting sequence.
(2) For i = d+ 1 to n do:

(a) If (vi−1 ∈ hi) then vi ← vi−1.
(b) Otherwise, intersect {h1, h2, . . . , hi−1} with the (d − 1)-dimensional hyperplane !i that bounds hi. Let c′ be the

projection of c onto !i. Solve the resulting (d− 1)-dimensional LP recursively. (When the dimension falls to 1, we can
just solve the problem brute force by intersecting up to n intervals.)
(i) If the (d− 1)-dimensional LP is infeasible, terminate and report that the LP is infeasible.
(ii) Otherwise, let vi be the solution to the (d− 1)-dimensional LP.

(3) Return vn as the final solution.

What is the expected case running time of this randomized incremental algorithm? Note that the expectation is
over the random permutation of the insertion order. We make no assumptions about the distribution of the input.
(Thus, the analysis is in the worst-case with respect to the input, but in the expected case with respect to random
choices.)
The number of random permutations is (n − d)!, but it will simplify things to pretend that we permute all the
halfspaces, and so there are n! permutations. Each permutation has an equal probability of 1/n! of occurring,
and an associated running time. However, presenting the analysis as sum of n! terms does not lead to something
that we can easily simplify. We will apply a technique called backwards analysis, which is quite useful.

Warm-Up Exercise for Backwards Analysis: To motivate how backwards analysis works, let us consider a much
simpler example, namely the problem of computing the minimum of a set of n distinct numbers. We permute
the numbers and inspect them one-by-one. We maintain a variable that holds the minimum value seen so far.
If we see a value that is smaller than the current minimum, then we update the minimum. The question we
will consider is, on average how many times is the minimum value updated? Below are three sequences that
illustrate that the minimum may updated once (if the numbers are given in increasing order), n times (if given
in decreasing order). Observe that in the third sequence, which is random, the minimum does not change very
often at all.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 9 4 11 2 6 8 14 0 3 13 12 1 7 10

Let pi denote the probability that the minimum value changes on inspecting the ith number of the random
permutation. Thus, with probability pi the minimum changes (and we add 1 to the counter for the number of
changes) and with probability 1 − pi it does not (and we add 0 to the counter for the number of changes). The

Lecture Notes 37 CMSC 754



total expected number of changes is

C(n) =
n
∑

i=1

(pi · 1 + (1− pi) · 0) =
n
∑

i=1

pi.

It suffices to compute pi. We might be tempted to reason as follows. Let us consider a random subset of the first
i − 1 values, and then consider all the possible choices for the ith value. However, this leads to a complicated
analysis involving conditional probabilities. Let us instead consider an alternative approach, in which we work
backwards. In particular, let us consider a random set of i values, and consider the probability the last value
added to this set resulted in a change in the minimum.
To make this more formal, let Si be an arbitrary subset of i numbers from our initial set of n. (In theory, the
probability is conditional on the fact that the elements of Si represent the first i elements to be chosen, but since
the analysis will not depend on the particular choice of Si, it follows that the probability that we compute will
hold unconditionally.) Among all i! permutations of the elements of Si, in how many of these does the minimum
change in the transition from the (i− 1)-st stage to the ith stage? The key observation is that the minimum only
changes for those sequences in which the minimum element was the last (ith) element of the sequence. Since the
minimum item appears with equal probability in each of the i positions of a random sequence, the probability
that it appears last is exactly 1/i. Thus, pi = 1/i. From this we have

C(n) =
n
∑

i=1

pi =
n
∑

i=1

1

i
= lnn+O(1).

This summation
∑

i(1/i) is called the Harmonic series and the fact that it is nearly equal to lnn is a well known
fact. (See any text on probability theory.)
This is called a backwards analysis because the analysis works by considering the possible random transitions
that brought us to Si from Si−1, as opposed to working forward from Si−1 to Si. Of course, the probabilities
are no different whether we consider the random sequence backwards rather than forwards, so this is a perfectly
accurate analysis. It’s arguably simpler and easier to understand.

Backwards Analysis for Randomized LP: Let us apply this same approach to the analysis of the running time of
the randomized incremental linear programming algorithm. We will do the analysis in d-dimensional space. Let
Td(n) denote the expected running time of the algorithm on a set of n halfspaces in dimension d. We will prove
by induction that Td(n) ≤ γd! n, where γ is some constant that does not depend on dimension. It will make the
proof simpler if we start by proving that Td(n) ≤ γdd! n, where γd does depend on dimension, and later we will
eliminate this dependence.
For d + 1 ≤ i ≤ n, let pi denote the probability that the insertion of the ith hyperplane in the random order
results in a change in the optimum vertex.

Case 1: With probability (1− pi) there is no change. It takes us O(d) time to determine that this is the case.
Case 2: With probability pi, there is a change to the optimum. First we project the objective vector onto "i

(which takes O(d) time), next we intersect the existing i− 1 halfspaces with "i (which takes O(d(i− 1))
time). Together, these last two steps take O(di) time. Finally we invoke a (d − 1)-dimensional LP on a
set of i− 1 halfspaces in dimension d− 1. By the induction hypothesis, the running time of this recursive
call is Td−1(i− 1).

Combining the two cases, up to constant factors (which don’t depend on dimension), we have a total expected
running time of

Td(n) ≤
n
∑

i=d+1

(

(1− pi)d+ pi
(

di+ Td−1(i)
)

)

≤
n
∑

i=d+1

(

d+ pi
(

di+ Td−1(i)
))

.
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It remains is to determine what pi is. To do this, we will apply the same backward-analysis technique as above.
Let Si denote an arbitrary subset consisting of i of the original halfspaces. Again, it will simplify things to
assume that all the i hyperplanes are being permuted (not just the last i − d). Among all i! permutations of Si,
in how many does the optimum vertex change with the ith step? Let vi denote the optimum vertex for these i
halfspaces. It is important to note that vi only depends on the set Si and not on the order of their insertion. (You
might think about why this is important.)
Assuming general position, there are d halfspaces whose intersection defines vi. (For example, in Fig. 33(a), we
label these halfspaces as h4 and h7.)

• If none of these d halfspaces were the last to be inserted, then vi = vi−1, and there is no change. (As is
the case in Fig. 33(b), where h5 is the last to be inserted.)

• On the other hand, if any of them were the last to be inserted, then vi did not exist yet, and hence the
optimum must have changed as a result of this insertion. (As is the case in Fig. 33(c), where h7 is the last
to be inserted.)

c

(a)

vi

h5

h4

h7
h6

h3

h1

h3

h2

c

(b)

vi
vi−1

h5

h4

h6

h3

h1

h3

h2

c

(c)

vi = vi−1

h4

h7
h6

h3

h1

h3

h2

h7

h5

Fig. 33: Backwards analysis for the randomized LP algorithm.

Thus, the optimum changes if and only if either one of the d defining halfspaces was the last halfspace inserted.
Since all of the i halfspaces are equally likely to be last, this happens with probability d/i. Therefore, pi = d/i.
This probabilistic analysis has been conditioned on the assumption that Si was the subset of halfspace seen so
far, but since the final probability does not depend on any properties of Si (just on d and i), the probabilistic
analysis applies unconditionally to all subsets of size i.
Returning to our analysis, since pi = d/i, and applying the induction hypothesis that Td−1(i) = γd−1(d− 1)! i,
we have

Td(n) ≤
n
∑

i=d+1

(

d+ pi
(

di+ Td−1(i)
))

≤
n
∑

i=d+1

(

d+
d

i

(

di+ γd−1(d− 1)! i
)

)

≤
n
∑

i=d+1

(d+ d2 + γd−1d!) ≤ (d+ d2 + γd−1d!)n.

To complete the proof, we just need to select γd so that the right hand side is at most γdd!. To achieve this, it
suffices to set

γd =
d+ d2

d!
+ γd−1.

Plugging this value into the above formula yields

Td(n) ≤ (d+ d2 + γd−1d!)n ≤
(

d+ d2

d!
+ γd−1

)

d! n ≤ γdd! n,
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as desired.
As mentioned above, we don’t like the fact that the “constant” γd changes with the dimension. To remedy this,
note that because d! grows so rapidly compared to either d or d2, it is easy to show that (d + d2)/d! ≤ 1/2d

for almost all sufficiently large values of d. Because the geometric series
∑∞

d=1 1/2
d, converges, it follows that

there is a constant γ (independent of dimension) such that γd ≤ γ for all d. Thus, we have that Td(n) ≤ O(d! n),
where the constant factor hidden in the big-Oh does not depend on dimension.
In summary, we have presented a simple and elegant randomized incremental algorithm for solving linear pro-
gramming problems. The algorithm runs in O(n) time in expectation. (Remember that expectation does not
depend on the input, only on the random choices.) Unfortunately, our assumption that the dimension d is a
constant is crucial. The factor d! grows so rapidly (and it seems to be an unavoidable part of the analysis) that
this algorithm is limited to fairly low dimensional spaces.
You might be disturbed by the fact that the algorithm is not deterministic, and that we have only bounded the
expected case running time. Might it not be the case that the algorithm takes ridiculously long, degenerating
to the O(nd) running time, on very rare occasions? The answer is, of course, yes. In his original paper, Seidel
proves that the probability that the algorithm exceeds its running time by a factor b is O((1/c)bd!), for any
fixed constant c. For example, he shows that in 2-dimensional space, the probability that the algorithm takes
more than 10 times longer than its expected time is at most 0.0000000000065. You would have a much higher
probability be being struck by lightning twice in your lifetime!

Lecture 8: Halfplane Intersection and Point-Line Duality
Halfplane Intersection: Today we begin studying another very fundamental topic in geometric computing, and along

the way we will show a rather surprising connection between this topic and the topic of convex hulls. Any line
in the plane splits the plane into two regions, one lying on either side of the line. Each such region is called a
halfplane. (In d-dimensional space the corresponding notion is a halfspace, which consists of the space lying to
one side of a (d − 1)-dimensional hyperplane.) We say that a halfplane is either closed or open depending on
whether or not it contains the line itself. For this lecture we will be dealing entirely with closed halfplanes.
How do we represent lines and halfplanes? For our purposes (since, by general position, we may assume we are
dealing only with nonvertical lines), it will suffice to represent lines in the plane using the following equation:

y = ax− b,

where a denotes the slope and b denotes the negation of the y-intercept. (We will see later why it is convenient
to negate the intercept value.) Note that this is not fully general, since it cannot handle vertical lines (which have
infinite slope). Each nonvertical line defines two closed halfplanes, consisting of the points on or below the line
and the points on or above the line:

lower (closed) halfplane: y ≤ ax− b upper (closed) halfplane: y ≥ ax− b.

Halfplane intersection problem: The halfplane intersection problem is, given a set of n closed halfplanes, H =
{h1, h2, . . . , hn} compute their intersection. A halfplane (closed or open) is a convex set, and hence the inter-
section of any number of halfplanes is also a convex set. (Fig. 34 illustrates the intersection of a collection of
upper halfspaces.) Unlike the convex hull problem, the intersection of n halfplanes may generally be empty or
even unbounded. A natural output representation might be to list the lines bounding the intersection in counter-
clockwise order.
How many sides can bound the intersection of n halfplanes in the worst case? Observe that by convexity, each
of the halfplanes can appear only once as a side, and hence the maximum number of sides is n. How fast can we
compute the intersection of halfplanes? As with the convex hull problem, it can be shown, through a suitable
reduction from sorting, that the problem has a lower bound of Ω(n log n).
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y ≥ aix− bi

Fig. 34: Halfplane intersection.

Who cares about this problem? Halfplane intersection and halfspace intersection in higher dimensions are also
used in generating convex shape approximations. For example, in robotics and computer graphics, rather than
computing collisions with a complex shape, it is easier to first check for collisions with a enclosing convex
approximation to the shape. Also, many optimization problems can be expressed as minimization problems
over a convex domain, and these domains are represented by the intersection of halfspaces.
Solving the halfspace intersection problem in higher dimensions is quite a bit more challenging than in the plane.
In general, the worst-case total combinatorial complexity the intersection of n halfspaces inRd can be as high as
Θ(n$d/2%). For example, the boundary of the intersection of halfspaces in dimension d is a (d− 1)-dimensional
cell complex, and would require an appropriate data structure for storing such objects.
We will discuss two algorithms for the halfplane intersection problem. The first is given in the text, and involves
an interesting combination of two techniques we have discussed for geometric problems, geometric divide-and-
conquer and plane sweep. For the other, we will consider somewhat simpler problem of computing something
called the lower envelope of a set of lines, and show that it is closely related to the convex hull problem.

Divide-and-Conquer Algorithm: We begin by sketching a divide-and-conquer algorithm for computing the inter-
section of halfplanes. The basic approach is very simple:

(1) If n = 1, then just return this halfplane as the answer.
(2) Split the n halfplanes ofH into subsets H1 and H2 of sizes /n/20 and *n/2+, respectively.
(3) Compute the intersection of H1 andH2, each by calling this procedure recursively. LetK1 andK2 be the

results.
(4) Intersect the convex polygons K1 and K2 (which might be unbounded) into a single convex polygon K,

and returnK.

The running time of the resulting algorithm is most easily described using a recurrence, that is, a recursively
defined equation. If we ignore constant factors, and assume for simplicity that n is a power of 2, then the running
time can be described as:

T (n) = =

{

1 if n = 1,
2T (n/2) +M(n) if n > 1,

where M(n) is the time required to merge the two results, that is, to compute the intersection of two convex
polygons whose total complexity is n. We will show below thatM(n) = O(n), and so it follows by standard
results in recurrences that the overall running time T (n) is O(n log n). (See any standard algorithms textbook.)

Intersecting Two Convex Polygons: The only nontrivial part of the process is implementing an algorithm that inter-
sects two convex polygons, K1 and K2, into a single convex polygon. Note that these are somewhat special
convex polygons because they may be empty or unbounded.
We know that it is possible to compute the intersection of line segments in O((n + I) log n) time, where I is
the number of intersecting pairs. Two convex polygons cannot intersect in more than I = O(n) pairs. (As an
exercise, try to prove this.) This would given O(n log n) algorithm for computing the intersection. This is too
slow, however, and would result in an overall time of O(n log2 n) for T (n).
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There are two common approaches for intersecting convex polygons. Both essentially involve merging the two
boundaries. One works by a plane-sweep approach. The other involves a simultaneous counterclockwise sweep
around the two boundaries. The latter algorithm is described in O’Rourke’s book. We’ll discuss the plane-sweep
algorithm.

K2

K1

K = K1 ∩K2

Fig. 35: Intersecting two convex polygons by plane sweep.

We perform a left-to-right plane sweep to compute the intersection (see Fig. 35). We begin by breaking the
boundaries of the convex polygons into their upper and lower chains. (This can be done in O(n) time.) By
convexity, the sweep line intersects the boundary of each convex polygon Ki in at most two points, and hence,
there are at most four points in the sweep line status at any time. Thus, we do not need a ordered dictionary for
storing the sweep line status—a simple 4-element list suffices. Also, our event queue need only be of constant
size. At any point there are at most 8 possible candidates for the next event, namely, the right endpoints of the
four edges stabbed by the sweep line and the (up to four) intersection points of these upper and lower edges of
K1 with the upper and lower edges of K2. Since there are only a constant number of possible events, and each
can be handled in O(1) time, the total running time is O(n).

Lower Envelopes and Duality: Next we consider a slight variant of this problem, to demonstrate some connections
with convex hulls. These connections are very important to an understanding of computational geometry, and
we see more about them in the future. These connections have to do with a concept called point-line duality.
In a nutshell there is a remarkable similarity between how points interact with each other an how lines interact
with each other. Sometimes it is possible to take a problem involving points and map it to an equivalent problem
involving lines, and vice versa. In the process, new insights to the problem may become apparent.
The problem to consider is called the lower envelope problem, and it is a special case of the halfplane intersection
problem. We are given a set of n lines L = {"1, "2, . . . , "n} where "i is of the form y = aix− bi. Think of these
lines as defining n halfplanes, y ≤ aix − bi, each lying below one of the lines. The lower envelope of L is the
boundary of the intersection of these half planes (see Fig. 36). The upper envelope is defined symmetrically.

upper envelope

lower envelope

Fig. 36: Lower and upper envelopes.
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The lower envelope problem is a restriction of the halfplane intersection problem, but it an interesting restriction.
Notice that any halfplane intersection problem that does not involve any vertical lines can be rephrased as the
intersection of two envelopes, a lower envelope defined by the lower halfplanes and an upper envelope defined
by the upward halfplanes.
We will see that solving the lower envelope problem is very similar to solving the upper convex hull problem.
In fact, they are so similar that exactly the same algorithm will solve both problems, without changing even a
single character of code! All that changes is the way in which you interpret the inputs and the outputs.

Lines, Points, and Incidences: In order to motivate duality, let us discuss the representation of lines in the plane.
Each line can be represented in a number of ways, but for now, let us assume the representation y = ax− b, for
some scalar values a and b. (Why −b rather than +b? The distinction is unimportant, but it will simplify some
of the notation defined below.) We cannot represent vertical lines in this way, and for now we will just ignore
them.
Therefore, in order to describe a line in the plane, you need only give its two coefficients (a, b). Thus, lines in
the plane can be thought of as points in a new 2-dimensional space, in which the coordinate axes are labeled
(a, b), rather than (x, y). For example, the line " : y = 2x + 1 corresponds to the point (2,−1) in this space,
which we denote by "∗. Conversely, each point p = (a, b) in this space of “lines” corresponds to a nonvertical
line, y = ax− b in the original plane, which we denote by p∗. We will call the original (x, y)-plane the primal
plane, and the new (a, b)-plane the dual plane.
This insight would not be of much use unless we could say something about how geometric relationships in one
space relate to the other. The connection between the two involves incidences between points and line. Two lines
determine a point through intersection. Two points determine a line, by taking their affine combination. Later,
we’ll show that these relationships are preserved by duality. For example, consider the two lines "1 : y = 2x+1
and the line "2 : y = −x

2 + 6 (see Fig. 37(a)). These two lines intersect at the point p = (2, 5). The duals of
these two lines are "∗1 = (2,−1) and "∗2 =

(

− 1
2 ,−6

)

. The line in the (a, b) dual plane passing through these
two points is easily verified to be b = 2a−5. Observe that this is exactly the dual of the point p (see Fig. 37(b)).
(As an exercise, prove this for two general lines.)

!1 : y = 2x + 1

!2 : y = −
x
2 + 6

p = (2, 5)

x

y

!∗2 =


−
1
2,−6





a

b

!∗1 = (2,−1)

p∗ : b = 2a− 5

(a) (b)

Primal Dual

Fig. 37: The primal and dual planes.

Point-Line Duality: Let us explore this dual transform more formally. Duality (or more specifically point-line dual-
ity) is a transformation that maps points in the plane to lines and lines to point. (More generally, it maps points
in d-space to hyperplanes dimension d.) We denote this transformation using a asterisk (∗) as a superscript.
Thus, given point p and line " in the primal plane we define "∗ and p∗ to be a point and line, respectively, in the
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dual plane defined as follows.8

" : y = "ax− "b ⇒ "∗ = ("a, "b)
p = (px, py) ⇒ p∗ : b = pxa− py.

It is convenient to define the dual transformation so that it is its own inverse (that is, it is an involution). In
particular, it maps points in the dual plane to lines in the primal, and vice versa. For example, given a point
p = (pa, pb) in the dual plane, its dual is the line y = pax − pb in the primal plane, and is denoted by p∗. It
follows that p∗∗ = p and "∗∗ = ".

Properties of Point-Line Duality: Duality has a number of interesting properties, each of which is easy to verify by
substituting the definition and a little algebra.

Self Inverse: p∗∗ = p.
Order reversing: Point p is above/on/below line " in the primal plane if and only if line p∗ is below/on/above

point "∗ in the dual plane, respectively (see Fig. 38).
Intersection preserving: Lines "1 and "2 intersect at point p if and only if the dual line p∗ passes through points

"∗1 and "∗2.
Collinearity/Coincidence: Three points are collinear in the primal plane if and only if their dual lines intersect

in a common point.

!1 : y = 2x + 1

!2 : y = −
x
2 + 6

x

y

a

b

(a) (b)

Order reversing

p = (1, 4)

!∗2 =


−
1
2,−6





!∗1 = (2,−1)

p∗ : b = a− 4
p is above !1 and below !2

p∗ is below !∗1 and above !∗2

Fig. 38: The order-reversing property.

The self inverse property was already established (essentially by definition). To verify the order reversing
property, consider any point p and any line ".

p is on or above " ⇐⇒ py ≥ "apx − "b ⇐⇒ "b ≥ px"a − py ⇐⇒ p∗ is on or below "∗

(From this is should be apparent why we chose to negate the y-intercept when dualizing points to lines.) The
other two properties (intersection preservation and collinearity/coincidence are direct consequences of the order
reversing property.)

Convex Hulls and Envelopes: Let us return now to the question of the relationship between convex hulls and the
lower/upper envelopes of a collection of lines in the plane. The following lemma demonstrates the, under the
duality transformation, the convex hull problem is dually equivalent to the problem of computing lower and
upper envelopes.

8Duality can be generalized to higher dimensions as well. In Rd, let us identify the y axis with the d-th coordinate vector, so that an arbitrary
point can be written as p = (x1, . . . , xd−1, y) and a (d − 1)-dimensional hyperplane can be written as h : y =

∑d−1
i=1

aixi − b. The dual of
this hyperplane is h∗ = (a1, . . . , ad−1,−b) and the dual of the point p is p∗ : b =

∑d−1
i=1

xiai − y. All the properties defined for point-line
relationships generalize naturally to point-hyperplane relationships.
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Fig. 39: Equivalence of hulls and envelopes.

Lemma: Let P be a set of points in the plane. The counterclockwise order of the points along the upper (lower)
convex hull of P (see Fig. 39(a)), is equal to the left-to-right order of the sequence of lines on the lower
(upper) envelope of the dual P ∗ (see Fig. 39(b)).

Proof: We will prove the result just for the upper hull and lower envelope, since the other case is symmetrical.
For simplicity, let us assume that no three points are collinear.
Consider a pair of points pi and pj that are consecutive vertices on the upper convex hull. This is equivalent
to saying that all the other points of P lie beneath the line "ij that passes through both of these points.
Consider the dual lines p∗i and p∗j . By the incidence preserving property, the dual point "∗ij is the inter-
section point of these two lines. (By general position, we may assume that the two points have different
x-coordinates, and hence the lines have different slopes. Therefore, they are not parallel, and the intersec-
tion point exists.)
By the order reversing property, all the dual lines of P ∗ pass above point "∗ij . This is equivalent to saying
the "∗ij lies on the lower envelope of P ∗.
To see how the order of points along the hulls are represented along the lower envelope, observe that
as we move counterclockwise along the upper hull (from right to left), the slopes of the edges increase
monotonically. Since the slope of a line in the primal plane is the a-coordinate of the dual point, it follows
that as we move counterclockwise along the upper hull, we visit the lower envelope from left to right.

One rather cryptic feature of this proof is that, although the upper and lower hulls appear to be connected, the
upper and lower envelopes of a set of lines appears to consist of two disconnected sets. To make sense of this,
we should interpret the primal and dual planes from the perspective of projective geometry, and think of the
rightmost line of the lower envelope as “wrapping around” to the leftmost line of the upper envelope, and vice
versa. The places where the two envelopes wraps around correspond to the vertical lines (having infinite slope)
passing through the left and right endpoints of the hull. (As an exercise, can you see which is which?)

Lecture 9: Trapezoidal Maps
Trapezoidal Map: Many techniques in computational geometry are based on generating some sort of organizing

structure to an otherwise unorganized set of geometric objects. We have seen triangulations as one example,
where the interior of a simple polygon is subdivided into triangles. Today, we will consider a considerably more
general method of defining a subdivision of the plane into simple regions. It works not only for simple polygons
but for much more general inputs as well.
Let S = {s1, . . . , sn} be a set of line segments in the plane, such that the segments do not intersect one another,
except where the endpoint of one segment intersect the endpoint of another segment. (Note that any planar
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straight-line subdivision could be expressed in this form.) Let us assume that no two segment endpoints share
the same x-coordinate (except when two or more segments share a common endpoint). This implies that there
are no vertical segments.
We wish to produce a subdivision of space that “respects” these line segments. To do so, we start by enclosing all
the segments within a large bounding rectangle (see Fig. 40(a)). This is mostly a convenience, so we don’t have
to worry about unbounded regions. Next, imagine shooting a bullet path vertically upwards and downwards from
the endpoints of each segment of S until it first hits another segment of S or the top or bottom of the bounding
rectangle. The combination of the original segments and these vertical bullet paths defines a subdivision of the
bounding rectangle called the trapezoidal map of S (see Fig. 40(b)).

∆

Line segments Trapezoidal map

(a) (b)

Fig. 40: A set of segments and the associated trapezoidal map.

The faces of the resulting subdivision are generally trapezoids with vertical sides, but they may degenerate to
triangles in some cases. The vertical sides are sometimes called walls. Also observe that it is possible that the
nonvertical side of a trapezoid may have multiple vertices along the interior of its top or bottom side. (See the
trapezoid labeled ∆ in Fig. 40.)
We claim that the process of converting an arbitrary polygonal subdivision into a trapezoidal decomposition
increases its size by at most a constant factor. We derive the exact expansion factor in the next claim.

Claim: Given a polygonal subdivision with n segments, the resulting trapezoidal map has at most 6n + 4
vertices and 3n+ 1 trapezoids.

Proof: To prove the bound on the number of vertices, observe that each vertex shoots two bullet paths, each of
which will result in the creation of a new vertex. Thus each original vertex gives rise to three vertices in
the final map. Since each segment has two vertices, this implies at most 6n vertices. The remaining four
come from the bounding rectangle.
To bound the number of trapezoids, observe that for each trapezoid in the final map, its left side (and its
right as well) is bounded by a vertex of the original polygonal subdivision. The left endpoint of each line
segment can serve as the left bounding vertex for two trapezoids (one above the line segment and the other
below) and the right endpoint of a line segment can serve as the left bounding vertex for one trapezoid.
Thus each segment of the original subdivision gives rise to at most three trapezoids, for a total of 3n
trapezoids. The last trapezoid is the one bounded by the left side of the bounding box.

An important fact to observe about each trapezoid is that it is defined (that is, its existence is determined) by
exactly four entities from the original subdivision: a segment on top, a segment on the bottom, a bounding vertex
on the left, and a bounding vertex on the right. The bounding vertices may be endpoints of the upper or lower
segments, or they may below to completely different segments. This simple observation will play an important
role later in the analysis.

Construction: We could construct the trapezoidal map easily by plane sweep. (This should be an easy exercise by
this point. You might think about how you would do it.) Instead, we will build the trapezoidal map by a different
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approach, namely a randomized incremental algorithm.9 Later, when we discuss the point-location problem, we
will see the advantages of this approach.
The incremental algorithm starts with the initial bounding rectangle (that is, one trapezoid) and then we add
the segments of the polygonal subdivision one by one in random order. As each segment is added, we update
the trapezoidal map. Let Si denote the subset consisting of the first i (random) segments, and let Ti denote the
resulting trapezoidal map.
To perform this update, we need to know which trapezoid the left endpoint of the segment lies in. We will
address this question later when we discuss point location. We then trace the line segment from left to right,
by “walking” it through the existing trapezoidal map (see Fig. 41). Along the way, we discover which existing
trapezoids it intersects. We go back to these trapezoids and “fix them up”. There are two things that are involved
in fixing process.

• The left and right endpoints of the new segment need to have bullets fired from them.
• One of the earlier created walls might hit the new line segment. When this happens the wall is trimmed
back. (We store which vertex shot the bullet path for this wall, so we know which side of the wall to trim.)

The process is illustrated in Fig. 41.

(a) (b)

Locate left enpoint and
find wall intersections

Shoot bullet paths
and trim walls

(c)

7 newly created
trapezoids

Fig. 41: Incremental update.

Observe that the structure of the trapezoidal decomposition does not depend on the order in which the segments
are added. (This is why trimming back walls is so important.) This observation will be important for the
probabilistic analysis. The following is also important to the analysis.

Claim: Ignoring the time spent to locate the left endpoint of an segment, the time that it takes to insert the ith
segment and update the trapezoidal map is O(ki), where ki is the number of newly created trapezoids.

Proof: Consider the insertion of the ith segment, and letK denote the number of existing walls that this segment
intersects. We need to shoot four bullets (two from each endpoint) and then trim each of the K walls, for
a total of K + 4 operations that need to be performed. If the new segment did not cross any of the
walls, then we would get exactly four new trapezoids. For each of the K walls we cross, we add one
more to the number of newly created trapezoids, for a total of K + 4. Thus, letting ki = K + 4 be the
number of trapezoids created, the number of update operations is exactly ki. Each of these operations
can be performed in O(1) time given any reasonable representation of the trapezoidal map as a planar
subdivision, for example, a doubly connected edge list (DCEL).

9Historically, the randomized incremental algorithm arose as a method for computing the intersection of a collection of line segments. Given n
line segments that have I intersections, this algorithm runs in O(I + n logn) time, which is superior to the plane sweep algorithm we discussed
earlier.
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Analysis: We will analyze the expected time to build the trapezoidal map, assuming that segments are inserted in
random order. Clearly, the running time depends on how many walls are trimmed with each intersection. In the
worst case, each newly added segment could result inΩ(n)walls being trimmed, and this would imply anΩ(n2)
running time. We will show, however, that the expected running time is much smaller, in fact, we will show the
rather remarkable fact that, each time we insert a new segment, the expected number of wall trimmings is just
O(1). (This is quite surprising at first. If many of the segments are long, it might seem that every insertion would
cut throughO(n) trapezoids. What saves us is that, although a long segment might cut through many trapezoids,
it shields later segments from cutting through many trapezoids.) As was the case in our earlier lecture on linear
programming, we will make use of a backwards analysis to establish this result.
There are two things that we need to do when each segment is inserted. First, we need to determine which cell
of the current trapezoidal map contains its left endpoint. We will not discuss this issue today, but in our next
lecture, we will show that the expected time needed for this operation is O(n log n). Second, we need to trim
the walls that are intersected by the new segment. The remainder of this lecture will focus on this aspect of the
running time.
From the previous claim, we know that it suffices to count the number of new trapezoids created with each
insertion. The main result that drives the analysis is presented in the next lemma.

Lemma: Consider the randomized incremental construction of a trapezoidal map, and let ki denote the number
of new trapezoids created when the ith segment is added. Then E(ki) = O(1), where the expectation is
taken over all possible permutations of the segments as the insertion orders.

Proof: The analysis will be based on a backwards analysis. Recall that such an analysis involves analyzing the
expected value assuming that the last insertion was random.
Let Ti denote the trapezoidal map resulting after the insertion of the ith segment. Because we are averaging
over all permutations, among the i segments that are present in Ti, each one has an equal probability 1/i
of being the last one to have been added. For each of the segments s we want to count the number of
trapezoids that would have been created, had s been the last segment to be added.
We say that a trapezoid ∆ of the existing map depends on an segment s, if s would have caused ∆ to
be created, had s been added last (see Fig. 42). We want to count the number of trapezoids that depend
on each segment, and then compute the average over all segments. If we let δ(∆, s) = 1 if segment ∆
depends on s, and 0 otherwise, then the expected value is

E(ki) =
1

i

∑

s∈Si

(no. of trapezoids that depend on s) =
1

i

∑

s∈Si

∑

∆∈Ti

δ(∆, s).

(a) (b)

s

Trapezoids that depend on s

∆

Segments that ∆ depends on

Fig. 42: Trapezoid-segment dependencies.

Some segments might have resulted in the creation of lots of trapezoids and other very few. How do we
get a handle on this quantity? The trick is, rather than count the number of trapezoids that depend on each
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segment, we count the number segments that each trapezoid depends on. (This is the old combinatorial
trick of reversing the order of summation.) In other words we can express the above quantity as:

E(ki) =
1

i

∑

∆∈Ti

∑

s∈Si

δ(∆, s).

This quantity is much easier to analyze. In particular, each trapezoid is bounded by at most four sides.
(The reason it is “at most” is that degenerate trapezoids are possible which may have fewer sides.) The
top and bottom sides are each determined by a segment of Si, and clearly if either of these was the last to
be added, then this trapezoid would have come into existence as a result. The left and right sides are each
determined by a endpoint of a segment in Si, and clearly if either of these was the last to be added, then
this trapezoid would have come into existence.10

In summary, each trapezoid is dependent on at most four segments, implying that
∑

s∈Si
δ(∆, s) ≤ 4.

Since Ti consists of O(i) trapezoids we have

E(ki) ≤
1

i

∑

∆∈Ti

4 =
1

i
4|Ti| =

1

i
4O(i) = O(1).

Since the expected number of new trapezoids created with each insertion isO(1), it follows that the total number
of trapezoids that are created in the entire process is O(n). This fact is important in bounding the total time
needed for the randomized incremental algorithm.
The only question that we have not considered in the construction is how to locate the trapezoid that contains
left endpoint of each newly added segment. We will consider this question, and the more general question of
how to do point location in our next lecture.

Lecture 10: Trapezoidal Maps and Planar Point Location
Point Location: Last time we presented a randomized incremental algorithm for building a trapezoidal map. Today

we consider how to modify this algorithm to answer point location queries for the resulting trapezoidal de-
composition. The preprocessing time will be O(n log n) in the expected case (as was the time to construct the
trapezoidal map), and the space and query time will be O(n) and O(log n), respectively, in the expected case.
Note that this may be applied to any spatial subdivision, by treating it as a set of line segments, and then building
the resulting trapezoidal decomposition and using this data structure.
Recall from the previous lecture that we treat the input as a set of segments S = {s1, . . . , sn} (permuted
randomly), that Si denotes the subset consisting of the first i segments of S, and Ti denotes the trapezoidal map
of Si. One important element of the analysis to remember from last time is that each time we add a new line
segment, it may result in the creation of the collection of new trapezoids, which were said to depend on this
line segment. We presented a backwards analysis that the number of new trapezoids that are created with each
stage is expected to be O(1). This will play an important role in today’s analysis.

Point Location Data Structure: The point location data structure is based on a rooted directed acyclic graph (DAG).
Each node will have either zero or two outgoing edges. Nodes with zero outgoing edges are called leaves. The
leaves will be in 1–1 correspondence with the trapezoids of the map. The other nodes are called internal nodes,
and they are used to guide the search to the leaves. This DAG can be viewed as a variant of a binary tree, where
subtrees may be shared between different nodes. (This sharing is important for keeping the space to O(n).)
There are two types of internal nodes, x-nodes and y-nodes. Each x-node contains the point p (an endpoint of
one of the segments), and its two children correspond to the points lying to the left and to the right of the vertical

10There is a bit of a subtlety here. What if multiple segments share the endpoint? Note that the trapezoid is only dependent on the first such
segment to be added, since this is the segment that caused the vertex to come into existence. Also note that the same segment that forms the top or
bottom side might also provide the left or right endpoint. These considerations only decrease the number of segments on which a trapezoid depends.
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line passing through p (see Fig. 44(a)). Each y-node contains a pointer to a line segment of the subdivision,
and the left and right children correspond to whether the query point is above or below the line containing this
segment, respectively (see Fig. 44(b)). (Don’t be fooled by the name—y-node comparisons depend on both the
x and y values of the query point.) Note that the search will reach a y-node only if we have already verified that
the x-coordinate of the query point lies within the vertical slab that contains this segment.

sp

X X YY

(a) (b)

X Y

p X

Y

s

(b)

Fig. 43: (a) x-node and (b) y-node.

Our construction of the point location data structure mirrors the incremental construction of the trapezoidal map.
In particular, if we freeze the construction just after the insertion of any segment, the current structure will be a
point location structure for the current trapezoidal map.
In Fig. 44 below we show a simple example of what the data structure looks like for two line segments. For
example, if the query point is in trapezoid D, we would first detect that it is to the right of enpoint p1 (right
child), then left of q1 (left child), then below s1 (right child), then right of p2 (right child), then above s2 (left
child).

p1

q1

p2 q2

s1

s2

A

B

C F

D
E

G

s2

p2

A

B

C

D F

s1

E

s2 B

q1

p1

q2
B

(a) (b)

Fig. 44: Trapezoidal map point location data structure.

Incremental Construction: The question is how do we build this data structure incrementally? First observe that
when a new line segment is added, we only need to adjust the portion of the tree that involves the trapezoids that
have been deleted as a result of this new addition. Each trapezoid that is deleted will be replaced with a search
structure that determines the newly created trapezoid that contains it.
Suppose that we add a line segment s. This results in the replacement of an existing set of trapezoids with a
set of new trapezoids. As a consequence, we will replace the leaves associated with each such deleted trapezoid
with a local search structure, which locates the new trapezoid that contains the query point. There are three
cases that arise, depending on how many endpoints of the segment lie within the current trapezoid.

Single (left or right) endpoint: A single trapezoid A is replaced by three trapezoids, denoted X , Y , and Z.
Letting p denote the endpoint, we create an x-node for p, and one child is a leaf node for the trapezoid X
that lies outside vertical projection of the segment. For the other child, we create a y-node whose children
are the trapezoids Y and Z lying above and below the segment, respectively (see Fig. 45(a)).

Two segment endpoints: This happens when the segment lies entirely inside the trapezoid. In this case one
trapezoid A is replaced by four trapezoids, U , X , Y , and Z. Letting p and q denote the left and right
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endpoints of the segment, we create two x-nodes, one for p and the other for q. We create a y-node for the
line segment, and join everything together (see Fig. 45(b)).

No segment endpoints: This happens when the segment cuts completely through a trapezoid. A single trape-
zoid is replaced by two trapezoids, one above and one below the segment, denoted Y and Z. We replace
the leaf node for the original trapezoid with a y-node whose children are leaf nodes associated with Y and
Z (see Fig. 45(c)).

A
s

p

(a)

sA

p

sX

p

Y

Z

X

Y Z
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p

(b)
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p
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Y Z

q

X

q
Z

Y
U

X

A s

(c)

A

X Y

X

Y
s

Fig. 45: Line segment insertion and updates to the point location structure. The single-endpoint case (left) and the
two-endpoint case (right). The no-endpoint case is not shown.

It is important to notice that (through sharing) each trapezoid appears exactly once as a leaf in the resulting
structure. An example showing the complete transformation to the data structure after adding a single segment
is shown in Fig. 46 below.

Analysis: We claim that the size of the point location data structure is O(n) and the query time is O(log n), both in
the expected case. As usual, the expectation depends only on the order of insertion, not on the line segments or
the location of the query point.
To prove the space bound of O(n), observe that the number of new nodes added to the structure with each new
segment is proportional to the number of newly created trapezoids. Last time we showed that with each new
insertion, the expected number of trapezoids that were created was O(1). Therefore, we add O(1) new nodes
with each insertion in the expected case, implying that the total size of the data structure is O(n).
Analyzing the query time is a little subtler. In a normal probabilistic analysis of data structures we think of the
data structure as being fixed, and then compute expectations over random queries. Here the approach will be
to imagine that we have exactly one query point to handle. The query point can be chosen arbitrarily (imagine
an adversary that tries to select the worst-possible query point) but this choice is made without knowledge of
the random choices the algorithm makes. We will show that, given a fixed query point q, the expected search
path length for q is O(log n), where the expectation is over all segment insertion orders. (Note that this does not
imply that the expected maximum depth of the tree is O(log n). We will discuss this issue later.)
Let q denote the query point. Rather than consider the search path for q in the final search structure, we will
consider how q moves incrementally through the structure with the addition of each new line segment. Let
∆i denote the trapezoid of the map that q lies in after the insertion of the first i segments. Observe that if
∆i−1 = ∆i, then insertion of the ith segment did not affect the trapezoid that q was in, and therefore q will stay
where it is relative to the current search structure. (For example, if q was in trapezoid B prior to adding s3 in
Fig. 46 above, then the addition of s3 does not incur any additional cost to locating q.)
However, if ∆i−1 &= ∆i, then the insertion of the ith segment caused q’s trapezoid to be replaced by a different
one. As a result, q must now perform some additional comparisons to locate itself with respect to the newly
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Fig. 46: Line segment insertion.

created trapezoids that overlap∆i−1. Since there are a constant number of such trapezoids (at most four), there
will be O(1) work needed to locate q with respect to these. In particular, q may descend at most three levels in
the search tree after the insertion. The worst case occurs in the two-endpoint case, where the query point falls
into one of the trapezoids lying above or below the segment (see Fig. 45(b)).
Since a point can descend at most 3 levels with each change of its containing trapezoid, the expected length
of the search path to q is at most 3 times the number of times that q changes its trapezoid as a result of each
insertion. For 1 ≤ i ≤ n, let Xi(q) denote the random event that q changes its trapezoid after the ith insertion,
and let Prob(Xi(q)) denote the probability of this event. LettingD(q) denote the average depth of q in the final
search tree, we have

D(q) ≤ 3
n
∑

i=1

Prob(Xi(q)).

What saves us is the observation that, as i becomes larger, the more trapezoids we have, and the smaller the prob-
ability that any random segment will affect a given trapezoid. In particular, we will show that Prob(Xi(q)) ≤
4/i. We do this through a backwards analysis. In particular, consider the trapezoid∆i that contained q after the
ith insertion. Recall from the previous lecture that each trapezoid is dependent on at most four segments, which
define the top and bottom edges, and the left and right sides of the trapezoid. Clearly, ∆i would have changed
as a result of insertion i if any of these four segments had been inserted last. Since, by the random insertion
order, each segment is equally likely to be the last segment to have been added, the probability that one of ∆i’s
dependent segments was the last to be inserted is at most 4/i. Therefore, Prob(Xi(q)) ≤ 4/i.
From this, it follows that the expected path length for the query point q is at most

D(q) ≤ 3
n
∑

i=1

4

i
= 12

n
∑

i=1

1

i
.

Recall that
∑n

i=1
1
i is the Harmonic series, and for large n, its value is very nearly lnn. Thus we have

D(q) ≤ 12 lnn = O(log n).
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Guarantees on Search Time: One shortcoming with this analysis is that even though the search time is provably
small in the expected case for a given query point, it might still be the case that once the data structure has been
constructed there is a single very long path in the search structure, and the user repeatedly performs queries
along this path. Hence, the analysis provides no guarantees on the running time of all queries.
Although we will not prove it, the book presents a stronger result, namely that the length of the maximum search
path is also O(log n) with high probability. In particular, they prove the following.

Lemma: Given a set of n non-crossing line segments in the plane, and a parameter λ > 0, the probability that
the total depth of the randomized search structure exceeds 3λ ln(n+ 1), is at most 2/(n+ 1)λ ln 1.25−3.

For example, for λ = 20, the probability that the search path exceeds 60 ln(n+1) is at most 2/(n+1)1.5. (The
constant factors here are rather weak, but a more careful analysis leads to a better bound.)
Nonetheless, this itself is enough to lead to variant of the algorithm for which O(log n) time is guaranteed.
Rather than just running the algorithm once and taking what it gives, instead run it repeatedly and keep track of
the structure’s depth as you go. As soon as the depth exceeds c log n for some suitably chosen c, then stop and
start over again with a new random sequence. For a suitable c, the above lemma implies that such a failure will
occur with at most some very small constant probability. Therefore, after a constant number of trials, we will
succeed in constructing a data structure of the desired depth bound. A similar argument can be applied to the
space bounds.

Theorem: Given a set of n non-crossing line segments in the plane, in expected O(n log n) time, it is possible
to construct a point location data structure of (worst case) size O(n) that can answer point location queries
in (worst case) time O(log n).

Line Segment Intersection Revisited: Earlier this semester we presented a plane-sweep algorithm for computing
line segment intersection. The algorithm had a running time of O((n + I) log n), where I is the number of
intersection points. It is interesting to note that the randomized approach we discussed today can be adapted to
deal with intersecting segments as well. In particular, whenever a segment is added, observe that in addition to
it stabbing vertical segments, it may generally cross over one of the existing segments. When this occurs, the
algorithm must determine the trapezoid that is hit on the other side of the segment, and then continue the process
of walking the segment. Note that the total size of the final decomposition isO(n+I), which would suggest that
the running time might be the same as the plane-sweep algorithm. It is remarkable, therefore, that the running
time is actually better. Intuitively, the reason is that the O(log n) factor in the randomized algorithm comes
from the point location queries, which are applied only to the left endpoint of each of the n segments. With a
bit of additional work, it can be shown that the adaptation of the randomized algorithm to general (intersecting)
segments runs in O(I + n log n) time, thus removing the log factor from the I term.

Lecture 11: Voronoi Diagrams and Fortune’s Algorithm
Voronoi Diagrams: Voronoi diagrams are among the most important structures in computational geometry. A Voronoi

diagram encodes proximity information, that is, what is close to what. Let P = {p1, p2, . . . , pn} be a set of
points in the plane (or in any dimensional space), which we call sites. Define V(pi), the Voronoi cell for pi, to
be the set of points q in the plane that are closer to pi than to any other site. That is, the Voronoi cell for pi is
defined to be:

V(pi) = {q | ‖piq‖ < ‖pjq‖, ∀j &= i},

where ‖pq‖ =
(

∑d
i=j(pj − qj)2

)1/2
denotes the Euclidean distance between points p and q. The Voronoi

diagram can be defined over any metric and in any dimension, but we will concentrate on the planar, Euclidean
case here.
Another way to define V(pi) is in terms of the intersection of halfplanes. Given two sites pi and pj , the set of
points that are strictly closer to pi than to pj is just the open halfplane whose bounding line is the perpendicular
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bisector between pi and pj . Denote this halfplane h(pi, pj). It is easy to see that a point q lies in V(pi) if and
only if q lies within the intersection of h(pi, pj) for all j &= i. In other words,

V(pi) =
⋂

j (=i

h(pi, pj).

Since the intersection of halfplanes is a (possibly unbounded) convex polygon, it is easy to see that V(pi) is a
(possibly unbounded) convex polygon. Finally, define the Voronoi diagram of P , denoted Vor(P ) to be what
is left of the plane after we remove all the (open) Voronoi cells. It is not hard to prove (see the text) that the
Voronoi diagram consists of a collection of line segments, which may be unbounded, either at one end or both
(see Fig. 47).

Fig. 47: Voronoi diagram

Voronoi diagrams have a huge number of important applications in science and engineering. These include
answering nearest neighbor queries, computational morphology and shape analysis, clustering and data mining,
facility location, multi-dimensional interpolation.

Properties of the Voronoi diagram: Here are some properties of the Voronoi diagrams in the plane.

Voronoi complex: Clearly the diagram is a cell complex whose faces are (possibly unbounded) convex poly-
gons. Each point on an edge of the Voronoi diagram is equidistant from its two nearest neighbors pi and
pj . Thus, there is a circle centered at such a point such that pi and pj lie on this circle, and no other site is
interior to the circle (see Fig. 48(a)).

pi

pj

(a)

pi

pj

(b)

pk

Fig. 48: Properties of the Voronoi diagram.

Voronoi vertices: It follows that the vertex at which three Voronoi cells V(pi), V(pj), and V(pk) intersect,
called a Voronoi vertex is equidistant from all sites (see Fig. 48(b)). Thus it is the center of the circle
passing through these sites, and this circle contains no other sites in its interior.

Degree: Generally three points in the plane define a unique circle. If we make the general position assumption
that no four sites are cocircular, then the vertices of the Voronoi diagram all have degree three.
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Convex hull: A cell of the Voronoi diagram is unbounded if and only if the corresponding site lies on the
convex hull. (Observe that a site is on the convex hull if and only if it is the closest point from some point
at infinity.) Thus, given a Voronoi diagram, it is easy to extract the convex hull in linear time.

Size: If n denotes the number of sites, then the Voronoi diagram is a planar graph (if we imagine all the
unbounded edges as going to a common vertex infinity) with exactly n faces. It follows from Euler’s
formula11 that the number of Voronoi vertices is roughly 2n and the number of edges is roughly 3n. (See
the text for details. In higher dimensions the diagram’s combinatorial complexity ranges from O(n) up to
O(n)d/2*).)

Computing Voronoi Diagrams: There are a number of algorithms for computing the Voronoi diagram of a set of n
sites in the plane. Of course, there is a naive O(n2 log n) time algorithm, which operates by computing V(pi)
by intersecting the n− 1 bisector halfplanes h(pi, pj), for j &= i. However, there are much more efficient ways,
which run in O(n log n) time. Since the convex hull can be extracted from the Voronoi diagram in O(n) time,
it follows that this is asymptotically optimal in the worst-case.
Historically, O(n2) algorithms for computing Voronoi diagrams were known for many years (based on incre-
mental constructions). When computational geometry came along, a more complex, but asymptotically superior
O(n log n) algorithm was discovered. This algorithm was based on divide-and-conquer. But it was rather com-
plex, and somewhat difficult to understand. Later, Steven Fortune discovered a plane sweep algorithm for the
problem, which provided a simpler O(n log n) solution to the problem. It is his algorithm that we will discuss.
Somewhat later still, it was discovered that the incremental algorithm is actually quite efficient, if it is run as a
randomized incremental algorithm. We will discuss a variant of this algorithm later when we talk about the dual
structure, called the Delaunay triangulation.

Fortune’s Algorithm: Before discussing Fortune’s algorithm, it is interesting to consider why this algorithm was not
invented much earlier. In fact, it is quite a bit trickier than any plane sweep algorithm we have seen so far.
The key to any plane sweep algorithm is the ability to discover all upcoming events in an efficient manner. For
example, in the line segment intersection algorithm we considered all pairs of line segments that were adjacent
in the sweep-line status, and inserted their intersection point in the queue of upcoming events. The problem with
the Voronoi diagram is that of predicting when and where the upcoming events will occur.
To see the problem, suppose that you are designing a plane sweep algorithm. Behind the sweep line you have
constructed the Voronoi diagram based on the points that have been encountered so far in the sweep. The
difficulty is that a site that lies ahead of the sweep line may generate a Voronoi vertex that lies behind the sweep
line. How could the sweep algorithm know of the existence of this vertex until it sees the site. But by the time
it sees the site, it is too late. It is these unanticipated events that make the design of a plane sweep algorithm
challenging (see Fig. 49).

The Beach Line: The sweeping process will involve sweeping two different object. First, there will be a horizontal
sweep line, moving from top to bottom. We will also maintain an x-monotonic curve called a beach line. (It is
so named because it looks like waves rolling up on a beach.) The beach line lags behind the sweep line in such
a way that it is unaffected by sites that have yet to be seen. Thus, there are no unanticipated events on the beach
line. The sweep-line status will be based on the manner in which the Voronoi edges intersect the beach line, not
the actual sweep line.
Let’s make these ideas more concrete. We subdivide the halfplane lying above the sweep line into two regions:
those points that are closer to some site p above the sweep line than they are to the sweep line itself, and those
points that are closer to the sweep line than any site above the sweep line.
What are the geometric properties of the boundary between these two regions? The set of points q that are
equidistant from the sweep line to their nearest site above the sweep line is called the beach line. Observe that
for any point q above the beach line, we know that its closest site cannot be affected by any site that lies below

11Euler’s formula for planar graphs states that a planar graph with v vertices, e edges, and f faces satisfies v − e + f = 2. There are n faces,
and since each vertex is of degree three, we have 3v = 2e, from which we infer that v − (3/2)v + n = 2, implying that v = 2n − 4. A similar
argument can be used to bound the number of edges.
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sweep line

unantcipated events

Fig. 49: Plane sweep for Voronoi diagrams. Note that the position of the indicated vertices depends on sites that have
not yet been encountered by the sweep line, and hence are unknown to the algorithm. (Note that the sweep line moves
from top to bottom.)

the sweep line. Hence, the portion of the Voronoi diagram that lies above the beach line is “safe” in the sense
that we have all the information that we need in order to compute it (without knowing about which sites are still
to appear below the sweep line).
What does the beach line look like? Recall from high school geometry that the set of points that are equidistant
from a point (in this case a site) and a line (in this case the sweep line) is a parabola (see Fig. 50(a)). Clearly the
parabola’s shape changes continuously as the sweep line moves continuously. With a little analytic geometry,
it is easy to show that the parabola becomes “skinnier” when the site is closer to the line and becomes “fatter”
as the sweep line moves farther away. In the degenerate case when the line contains the site the parabola
degenerates into a vertical ray shooting up from the site. (You should work through the distance equations to
see why this is so.)

sweep line

beach line

!

p bisector for
p and !

(a) (b)

Fig. 50: The beach line. Notice that only the portion of the Voronoi diagram that lies above the beach line is computed.
The sweep-line status maintains the intersection of the Voronoi diagram with the beach line.

Thus, the beach line consists of the lower envelope of these parabolas, one for each site (see Fig. 50(b)). Note that
the parabola of some sites above the beach line will not touch the lower envelope and hence will not contribute
to the beach line. Because the parabolas are x-monotone, so is the beach line. Also observe that the point where
two arcs of the beach line intersect, which we call a breakpoint, is equidistant from two sites and the sweep line,
and hence must lie on some Voronoi edge. In particular, if the beach line arcs corresponding to sites pi and pj
share a common breakpoint on the beach line, then this breakpoint lies on the Voronoi edge between pi and pj .
From this we have the following important characterization.

Lemma: The beach line is an x-monotone curve made up of parabolic arcs. The breakpoints (that is, vertices)
of the beach line lie on Voronoi edges of the final diagram.

Fortune’s algorithm consists of simulating the growth of the beach line as the sweep line moves downward,
and in particular tracing the paths of the breakpoints as they travel along the edges of the Voronoi diagram. Of
course, as the sweep line moves, the parabolas forming the beach line change their shapes continuously. As with
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all plane-sweep algorithms, we will maintain a sweep-line status and we are interested in simulating the discrete
event points where there is a “significant event”, that is, any event that changes the topological structure of the
Voronoi diagram or the beach line.

Sweep-Line Status: The algorithm maintains the current location (y-coordinate) of the sweep line. It stores,
in left-to-right order the sequence of sites that define the beach line. (We will say more about this later.)
Important: The algorithm does not store the parabolic arcs of the beach line. They are shown solely for
conceptual purposes.

Events: There are two types of events:
Site events: When the sweep line passes over a new site a new parabolic arc will be inserted into the beach

line.
Voronoi vertex events: (What our text calls circle events.) When the length of an arc of the beach line

shrinks to zero, the arc disappears and a new Voronoi vertex will be created at this point.

The algorithm consists of processing these two types of events. As the Voronoi vertices are being discovered
by Voronoi vertex events, it will be an easy matter to update the diagram as we go (assuming any reasonable
representation of this planar cell complex), and so to link the entire diagram together. Let us consider the two
types of events that are encountered.

Site events: A site event is generated whenever the horizontal sweep line passes over a site pi. As we mentioned
before, at the instant that the sweep line touches the point, its associated parabolic arc will degenerate to a
vertical ray shooting up from the point to the current beach line. As the sweep line proceeds downwards, this
ray will widen into an arc along the beach line. To process a site event we determine the arc of the sweep
line that lies directly above the new site. (Let us make the general position assumption that it does not fall
immediately below a vertex of the beach line.) Let pj denote the site generating this arc. We then split this arc in
two by inserting a new entry at this point in the sweep-line status. (Initially this corresponds to a infinitesimally
small arc along the beach line, but as the sweep line sweeps on, this arc will grow wider. Thus, the entry for
〈. . . , pj , . . .〉 on the sweep-line status is replaced by the triple 〈. . . , pj , pi, pj , . . .〉 (see Fig. 51).

(a) (b)

pi

pj
pk

pi

pj
pk

(c)

pi

pj
pk

〈. . . pjpipjpk . . .〉〈. . . pjpipjpk . . .〉〈. . . pjpk . . .〉

Prior to event At the event After the event

Fig. 51: Site event.

It is important to consider whether this is the only way that new arcs can be introduced into the sweep line. In
fact it is. We will not prove it, but a careful proof is given in the text. As a consequence, it follows that the
maximum number of arcs on the beach line can be at most 2n − 1, since each new point can result in creating
one new arc, and splitting an existing arc, for a net increase of two arcs per point (except the first). Note that a
point may generally contribute more than one arc to the beach line. (As an exercise you might consider what is
the maximum number of arcs a single site can contribute.)
The nice thing about site events is that they are all known in advance. Thus, the sites can be presorted by the
y-coordinates and inserted as a batch into the event priority queue.

Voronoi vertex events: In contrast to site events, Voronoi vertex events are generated dynamically as the algorithm
runs. As with the line segment intersection algorithm, the important idea is that each such event is generated
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by objects that are adjacent on the beach line (and thus, can be found efficiently). However, unlike the segment
intersection where pairs of consecutive segments generated events, here triples of points generate the events.
In particular, consider any three consecutive sites pi, pj , and pk whose arcs appear consecutively on the beach
line from left to right (see Fig. 52(a). Further, suppose that the circumcircle for these three sites lies at least
partially below the current sweep line (meaning that the Voronoi vertex has not yet been generated), and that
this circumcircle contains no points lying below the sweep line (meaning that no future point will block the
creation of the vertex).
Consider the moment at which the sweep line falls to a point where it is tangent to the lowest point of this
circle. At this instant the circumcenter of the circle is equidistant from all three sites and from the sweep line.
Thus all three parabolic arcs pass through this center point, implying that the contribution of the arc from pj
has disappeared from the beach line. In terms of the Voronoi diagram, the bisectors (pi, pj) and (pj , pk) have
met each other at the Voronoi vertex, and a single bisector (pi, pk) remains. Thus, the triple of consecutive sites
pi, pj , pk on the sweep-line status is replaced with pi, pk (see Fig. 52).

(a) (b) (c)

pi

pj
pk

pi

pj
pk

pi

pj
pk

〈. . . pjpipjpk . . .〉 〈. . . pjpipk . . .〉 〈. . . pjpipk . . .〉
Prior to event At the event After the event

Fig. 52: Voronoi vertex event.

Sweep-line algorithm: We can now present the algorithm in greater detail. The main structures that we will maintain
are the following:

(Partial) Voronoi diagram: The partial Voronoi diagram that has been constructed so far will be stored in any
reasonable data structure for storing planar subdivisions, for example, a doubly-connected edge list. There
is one technical difficulty caused by the fact that the diagram contains unbounded edges. This can be
handled by enclosing everything within a sufficiently large bounding box. (It should be large enough to
contain all the Voronoi vertices, but this is not that easy to compute in advance.) An alternative is to create
an imaginary Voronoi vertex “at infinity” and connect all the unbounded edges to this imaginary vertex.

Beach line: The beach line consists of the sorted sequence of sites whose arcs form the beach line. It is rep-
resented using a dictionary (e.g. a balanced binary tree or skip list). As mentioned above, we do not
explicitly store the parabolic arcs. They are just there for the purposes of deriving the algorithm. Instead
for each parabolic arc on the current beach line, we store the site that gives rise to this arc.
The key search operation is that of locating the arc of the beach line that lies directly above a newly
discovered site. (As an exercise, before reading the next paragraph you might think about how you would
design a binary search to locate this arc, given that you only have the sites, not the actual arcs.)
Between each consecutive pair of sites pi and pj , there is a breakpoint. Although the breakpoint moves as
a function of the sweep line, observe that it is possible to compute the exact location of the breakpoint as a
function of pi, pj , and the current y-coordinate of the sweep line. In particular, the breakpoint is the center
of a circle that passes through pi, pj and is tangent to the sweep line. (Thus, as with beach lines, we do
not explicitly store breakpoints. Rather, we compute them only when we need them.) Once the breakpoint
is computed, we can then determine whether a newly added site is to its left or right. Using the sorted
ordering of the sites, we use this primitive comparison to drive a binary search for the arc lying above the
new site.
The important operations that we will have to support on the beach line are:
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Search: Given the current y-coordinate of the sweep line and a new site pi, determine the arc of the beach
line lies immediately above pi. Let pj denote the site that contributes this arc. Return a reference to
this beach line entry.

Insert and split: Insert a new entry for pi within a given arc pj of the beach line (thus effectively replacing
the single arc 〈. . . , pj , . . .〉 with the triple 〈. . . , pj , pi, pj , . . .〉. Return a reference to the newly added
beach line entry (for future use).

Delete: Given a reference to an entry pj on the beach line, delete this entry. This replaces a triple
〈. . . , pi, pj , pk, . . .〉 with the pair 〈. . . , pi, pk, . . .〉.

It is not difficult to modify a standard dictionary data structure to perform these operations in O(log n)
time each.

Event queue: The event queue is a priority queue with the ability both to insert and delete new events. Also
the event with the largest y-coordinate can be extracted. For each site we store its y-coordinate in the
queue. All operations can be implemented in O(log n) time assuming that the priority queue is stored as
an ordered dictionary.
For each consecutive triple pi, pj , pk on the beach line, we compute the circumcircle of these points. (We’ll
leave the messy algebraic details as an exercise, but this can be done in O(1) time.) If the lower endpoint
of the circle (the minimum y-coordinate on the circle) lies below the sweep line, then we create a Voronoi
vertex event whose y-coordinate is the y-coordinate of the bottom endpoint of the circumcircle. We store
this in the priority queue. Each such event in the priority queue has a cross link back to the triple of sites
that generated it, and each consecutive triple of sites has a cross link to the event that it generated in the
priority queue.

The algorithm proceeds like any plane sweep algorithm. The algorithm starts by inserting the topmost vertex
into the sweep-line status. We extract an event, process it, and go on to the next event. Each event may result in
a modification of the Voronoi diagram and the beach line, and may result in the creation or deletion of existing
events.
Here is how the two types of events are handled in somewhat greater detail.

Site event: Let pi be the new site (see Fig. 51 above).
(1) Advance the sweep line so that it passes through pi. Apply the above search operation to determine

the beach line arc that lies immediately above pi. Let pj be the corresponding site.
(2) Applying the above insert-and-split operation, inserting a new entry for pi, thus replacing 〈. . . , pj , . . .〉

with 〈. . . , pj , pi, pj , . . .〉.
(3) Create a new (dangling) edge in the Voronoi diagram, which lies on the bisector between pi and pj .
(4) Some old triples that involved pj may need to be deleted and some new triples involving pi will be

inserted, based on the change of neighbors on the beach line. (The straightforward details are omitted.)
Note that the newly created beach-line triple pj , pi, pj does not generate an event because it only
involves two distinct sites.

Voronoi vertex event: Let pi, pj , and pk be the three sites that generated this event, from left to right (see
Fig. 52 above).
(1) Delete the entry for pj from the beach line status. (Thus eliminating its associated arc.)
(2) Create a new vertex in the Voronoi diagram (at the circumcenter of {pi, pj , pk}) and join the two

Voronoi edges for the bisectors (pi, pj), (pj , pk) to this vertex.
(3) Create a new (dangling) edge for the bisector between pi and pk.
(4) Delete any events that arose from triples involving the arc of pj , and generate new events correspond-

ing to consecutive triples involving pi and pk. (There are two of them. The straightforward details are
omitted.)
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The analysis follows a typical analysis for plane sweep. Each event involves O(1) processing time plus a
constant number operations to the various data structures (the sweep line status and the event queue). The
size of the data structures is O(n), and each of these operations takes O(log n) time. Thus the total time is
O(n log n), and the total space is O(n).

Lecture 12: Delaunay Triangulations: General Properties
Delaunay Triangulations: Last time we discussed the topic of Voronoi diagrams. Today we consider the related

structure, called the Delaunay triangulation (DT). The Voronoi diagram of a set of sites in the plane is a planar
subdivision, that is, a cell complex. The dual of such subdivision is another subdivision that is defined as
follows. For each face of the Voronoi diagram, we create a vertex (corresponding to the site). For each edge
of the Voronoi diagram lying between two sites pi and pj , we create an edge in the dual connecting these two
vertices. Finally, each vertex of the Voronoi diagram corresponds to a face of the dual.
The resulting dual graph is a planar subdivision. Assuming general position, the vertices of the Voronoi diagram
have degree three, it follows that the faces of the resulting dual graph (excluding the exterior face) are triangles.
Thus, the resulting dual graph is a triangulation of the sites, called the Delaunay triangulation (see Fig. 53.)

Fig. 53: The Delaunay triangulation of a set of points (solid lines) and the Voronoi diagram (broken lines).

Delaunay triangulations have a number of interesting properties, that are consequences of the structure of the
Voronoi diagram.

Convex hull: The boundary of the exterior face of the Delaunay triangulation is the boundary of the convex
hull of the point set.

Circumcircle property: The circumcircle of any triangle in the Delaunay triangulation is empty (contains no
sites of P ).
Proof: This is because the center of this circle is the corresponding dual Voronoi vertex, and by definition
of the Voronoi diagram, the three sites defining this vertex are its nearest neighbors.

Empty circle property: Two sites pi and pj are connected by an edge in the Delaunay triangulation, if and
only if there is an empty circle passing through pi and pj .
Proof: If two sites pi and pj are neighbors in the Delaunay triangulation, then their cells are neighbors in
the Voronoi diagram, and so for any point on the Voronoi edge between these sites, a circle centered at this
point passing through pi and pj cannot contain any other point (since they must be closest). Conversely,
if there is an empty circle passing through pi and pj , then the center c of this circle is a point on the edge
of the Voronoi diagram between pi and pj , because c is equidistant from each of these sites and there is
no closer site. Thus the Voronoi cells of two sites are adjacent in the Voronoi diagram, implying that there
edge is in the Delaunay triangulation.

Closest pair property: The closest pair of sites in P are neighbors in the Delaunay triangulation.
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Proof: Suppose that pi and pj are the closest sites. The circle having pi and pj as its diameter cannot
contain any other site, since otherwise such a site would be closer to one of these two points, violating the
hypothesis that these points are the closest pair. Therefore, the center of this circle is on the Voronoi edge
between these points, and so it is an empty circle.

If the sites are not in general position, in the sense that four or more are cocircular, then the Delaunay triangula-
tion may not be a triangulation at all, but just a planar graph (since the Voronoi vertex that is incident to four or
more Voronoi cells will induce a face whose degree is equal to the number of such cells). In this case the more
appropriate term would be Delaunay graph. However, it is common to either assume the sites are in general
position (or to enforce it through some sort of symbolic perturbation) or else to simply triangulate the faces of
degree four or more in any arbitrary way. Henceforth we will assume that sites are in general position, so we do
not have to deal with these messy situations.
Given a point set P with n sites where there are h sites on the convex hull, it is not hard to prove by Euler’s
formula that the Delaunay triangulation has 2n−2−h triangles, and 3n−3−h edges. The ability to determine the
number of triangles from n and h only works in the plane. In 3-space, the number of tetrahedra in the Delaunay
triangulation can range from O(n) up to O(n2). In dimension n, the number of simplices (the d-dimensional
generalization of a triangle) can range as high as O(n)d/2*).

Minimum Spanning Tree: The Delaunay triangulation possesses some interesting properties that are not directly
related to the Voronoi diagram structure. One of these is its relation to the minimum spanning tree. Given a
set of n points in the plane, we can think of the points as defining a Euclidean graph whose edges are all

(n
2

)

(undirected) pairs of distinct points, and edge (pi, pj) has weight equal to the Euclidean distance from pi to pj .
A minimum spanning tree is a set of n − 1 edges that connect the points (into a free tree) such that the total
weight of edges is minimized. We could compute the MST using Kruskal’s algorithm. Recall that Kruskal’s
algorithm works by first sorting the edges and inserting them one by one. We could first compute the Euclidean
graph, and then pass the result on to Kruskal’s algorithm, for a total running time of O(n2 log n).
However there is a much faster method based on Delaunay triangulations. First compute the Delaunay trian-
gulation of the point set. We will see later that it can be done in O(n log n) time. Then compute the MST of
the Delaunay triangulation by Kruskal’s algorithm and return the result. This leads to a total running time of
O(n log n). The reason that this works is given in the following theorem.

Theorem: The minimum spanning tree of a set of points P (in any dimension) is a subgraph of the Delaunay
triangulation.

Proof: Let T be the MST for P , let w(T ) denote the total weight of T . Let a and b be any two sites such that ab
is an edge of T . Suppose to the contrary that ab is not an edge in the Delaunay triangulation. This implies
that there is no empty circle passing through a and b, and in particular, the circle whose diameter is the
segment ab contains a site, call it c (see Fig. 54.)

a b

c

T

a b

c

T ′

Fig. 54: The Delaunay triangulation and MST.

The removal of ab from the MST splits the tree into two subtrees. Assume without loss of generality that
c lies in the same subtree as a. Now, remove the edge ab from the MST and add the edge bc in its place.
The result will be a spanning tree T ′ whose weight is

w(T ′) = w(T ) + ‖bc‖ − ‖ab‖ < w(T ).
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The last inequality follows because ab is the diameter of the circle, implying that ‖bc‖ < ‖ab‖. This
contradicts the hypothesis that T is the MST, completing the proof.

By the way, this suggests another interesting question. Among all triangulations, we might ask, does the Delau-
nay triangulation minimize the total edge length? The answer is no (and there is a simple four-point counterex-
ample). However, this claim was made in a famous paper on Delaunay triangulations, and you may still hear
it quoted from time to time. The triangulation that minimizes total edge weight is called the minimum weight
triangulation. Recently it was proved that this problem is NP-hard. (This problem has been open for many
years, dating back to the original development of the theory of NP-completeness back in the 1970’s.)

Spanner Properties: A natural observation about Delaunay triangulations is that its edges would seem to form a res-
onable transporation road network between the points. On inspecting a few examples, it is natural to conjecture
that the length of the shortest path between two points in a planar Delaunay triangulation is not significantly
longer than the straight-line distance between these points.
This is closely related to the theory of geometric spanners, that is, geometric graphs whose shortest paths are
not too long. Consider any point set P and a straight-line graph G whose vertices are the points of P . For any
two points p, q ∈ P , let δG(p, q) denote the length of the shortest path from p to q in G, where the weight of
each edge is its Euclidean length. Given any parameter t ≥ 1, we say that G is a t-spanner if for any two points
p, q ∈ P , the shortest path length between p and q in G is at most a factor t longer than the Euclidean distance
between these points, that is

δG(p, q) ≤ t‖pq‖

Observe that when t = 1, the graphGmust be the complete graph, consisting of
(n
2

)

= O(n2) edges. Of interest
is whether there exist spanners having O(n) edges.
It can be proved that the edges of the Delaunay triangulation form a spanner (see Fig. 55). We will not prove
the following result, which is due to Keil and Gutwin.

Theorem: Given a set of points P in the plane, the Delaunay triangulation of P is a t-spanner for t =
4π
√
3/9 ≈ 2.4.

p

q

Fig. 55: Spanner property of the Delaunay Triangulation.

In fact, it is conjectured that the Delaunay triangulation is a (π/2)-spanner, but this has never been proved (and
it seems to be a hard problem).

Maximizing Angles and Edge Flipping: Another interesting property of Delaunay triangulations is that among all
triangulations, the Delaunay triangulation maximizes the minimum angle. This property is important, because it
implies that Delaunay triangulations tend to avoid skinny triangles. This is useful for many applications where
triangles are used for the purposes of interpolation.
In fact a much stronger statement holds as well. Among all triangulations with the same smallest angle, the
Delaunay triangulation maximizes the second smallest angle, and so on. In particular, any triangulation can be
associated with a sorted angle sequence, that is, the increasing sequence of angles (α1,α2, . . . ,αm) appearing
in the triangles of the triangulation. (Note that the length of the sequence will be the same for all triangulations
of the same point set, since the number depends only on n and h.)
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Theorem: Among all triangulations of a given planar point set, the Delaunay triangulation has the lexicograph-
ically largest angle sequence, and in particular, it maximizes the minimum angle.

Before getting into the proof, we should recall a few basic facts about angles from basic geometry. First, recall
that if we consider the circumcircle of three points, then each angle of the resulting triangle is exactly half the
angle of the minor arc subtended by the opposite two points along the circumcircle. It follows as well that if
a point is inside this circle then it will subtend a larger angle and a point that is outside will subtend a smaller
angle. Thus, in Fig. 56(a) below, we have θ1 > θ2 > θ3.

(a)

θ1
θ2

θ3

θ1 > θ2 > θ3

a

b
c

d

θad
θcd
θbc

θab

(b)

a

b
c

d

φad
φcd

φbc
φab

(c)

Fig. 56: Angles and edge flips.

We will not give a formal proof of the theorem. (One appears in the text.) The main idea is to show that for
any triangulation that fails to satisfy the empty circle property, it is possible to perform a local operation, called
an edge flip, which increases the lexicographical sequence of angles. An edge flip is an important fundamental
operation on triangulations in the plane. Given two adjacent triangles 7abc and 7cda, such that their union
forms a convex quadrilateral abcd, the edge flip operation replaces the diagonal ac with bd. Note that it is only
possible when the quadrilateral is convex.
Suppose that the initial triangle pair violates the empty circle condition, in that point d lies inside the circumcircle
of 7abc. (Note that this implies that b lies inside the circumcircle of 7cda.) If we flip the edge it will follow
that the two circumcircles of the two resulting triangles, 7abd and 7bcd are now empty (relative to these four
points), and the observation above about circles and angles proves that the minimum angle increases at the same
time. In particular, in Fig. 56(b) and (c), we have

φab > θab φbc > θbc φcd > θcd φda > θda.

There are two other angles that need to be compared as well (can you spot them?). It is not hard to show that,
after swapping, these other two angles cannot be smaller than the minimum of θab, θbc, θcd, and θda. (Can you
see why?)
Since there are only a finite number of triangulations, this process must eventually terminate with the lexico-
graphically maximum triangulation, and this triangulation must satisfy the empty circle condition, and hence is
the Delaunay triangulation.
Note that the process of edge-flipping can be generalized to simplicial complexes in higher dimensions. How-
ever, the process does not generally replace a fixed number of triangles with the same number, as it does in the
plane (replacing two old triangles with two new triangles). For example, in 3-space, the most basic flip can
replace two adjacent tetrahedra with three tetrahedra, and vice versa. Although it is known that in the plane any
triangulation can be converted into any other through a judicious sequence of edge flips, this is not known in
higher dimensions.

Lecture 13: Delaunay Triangulations: Incremental Construction
Constructing the Delaunay Triangulation: We will present a simple randomized O(n log n) expected time algo-

rithm for constructing Delaunay triangulations for n sites in the plane. The algorithm is remarkably similar in
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spirit to the randomized algorithm for trapezoidal map algorithm in that not only builds the triangulation but also
provides a point-location data structure as well. We will not discuss the point-location data structure in detail,
but the details are easy to fill in.
As with any randomized incremental algorithm, the idea is to insert sites in random order, one at a time, and
update the triangulation with each new addition. The issues involved with the analysis will be showing that after
each insertion the expected number of structural changes in the diagram is O(1). As with other incremental
algorithm, we need some way of keeping track of where newly inserted sites are to be placed in the diagram.
We will describe a somewhat simpler method than the one we used in the trapezoidal map. Rather than building
a data structure, this one simply puts each of the uninserted points into a bucket according to the triangle that
contains it in the current triangulation. In this case, we will need to argue that the expected number of times that
a site is rebucketed is O(log n).

Incircle Test: The basic issue in the design of the algorithm is how to update the triangulation when a new site is
added. In order to do this, we first investigate the basic properties of a Delaunay triangulation. Recall that a
triangle 7abc is in the Delaunay triangulation, if and only if the circumcircle of this triangle contains no other
site in its interior. (Recall that we make the general position assumption that no four sites are cocircular.) How do
we test whether a site d lies within the interior of the circumcircle of7abc? It turns out that this can be reduced
to a determinant computation. First off, let us assume that the sequence 〈abcd〉 defines a counterclockwise
convex polygon. (If it does not because d lies inside the triangle 7abc then clearly d lies in the circumcircle
for this triangle. Otherwise, we can always relabel abc so this is true.) Under this assumption, d lies in the
circumcircle determined by the 7abc if and only if the following determinant is positive. This is called the
incircle test. We will assume that this primitive is available to us.

inCircle(a, b, c, d) = det









ax ay a2x + a2y 1
bx by b2x + b2y 1
cx cy c2x + c2y 1
dx dy d2x + d2y 1









> 0.

We will not prove the correctness of this test, but we will show a somewhat simpler assertion, namely that if the
above determinant is equal to zero, then the four points are cocircular. The four points are cocircular if there
exists a center point q = (qx, qy) and a radius r such that

(ax − qx)
2 + (ay − qy)

2 = r2,

and similarly for the other three points. Expanding this and collecting common terms we have

(a2x + a2y)− 2qxax − 2qyay + (q2x + q2y − r2) = 0,

and similarly for the other three points, b, c, and d. If we let X1, X2, X3 and X4 denote the columns of the
above matrix (e.g.,X1 = (ax, bx, cx, dx)T) we have

X3 − 2qxX1 − 2qyX2 + (q2x + q2y − r2)X4 = 0.

Since there is a linear combination of these vectors that sums to 0, it follows that these vector are linearly
dependent. From standard linear algebra, we know that the columns of a matrix are linearly dependent if and
only if the determinant of the matrix is zero. We will leave the completion of the proof (involving inside and
outside) as an exercise.

Incremental update: When we add the next site, pi, the problem is to convert the current Delaunay triangulation into
a new Delaunay triangulation containing this site. This will be done by creating a non-Delaunay triangulation
containing the new site, and then incrementally “fixing” this triangulation to restore the Delaunay properties.
The basic changes are:

• Joining a site in the interior of some triangle to the triangle’s vertices (see Fig. 57(a)).
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(a) (b)

Fig. 57: Basic triangulation changes.

• Performing an edge flip (see Fig. 57(b)).

Both of these operations can be performed in O(1) time, assuming that the triangulation is maintained in any
reasonable way, say, as a double-connected edge list.
The algorithm that we will describe has been known for many years, but was first analyzed by Guibas, Knuth,
and Sharir. The algorithm starts within an initial triangulation such that all the points lie in the convex hull. This
can be done by enclosing the points in a suitably large triangle.12 Our book suggests a symbolic alternative,
which is more reliable. Generate a triangle that contains all the points, but then modify the incircle test so that
the vertices of this enclosing triangle behave as if they are infinitely far away.
The sites are added in random order. When a new site p is added, we find the triangle 7abc of the current
triangulation that contains this site (we will see how later), insert the site in this triangle, and join this site to
the three surrounding vertices. This creates three new triangles,7pab,7pbc, and7pca, each of which may or
may not satisfy the empty-circle condition. How do we test this? For each of the triangles that have been added,
we check the vertex of the triangle that lies on the opposite side of the edge that does not include p. (If there is
no such vertex, because this edge is on the convex hull, then we are done.) If this vertex fails the incircle test
(that is, if it is inside the circumcircle), then we swap the edge (creating two new triangles that are adjacent to
p). This replaces one triangle that was incident to p with two new triangles. We repeat the same test with these
triangles. An example is shown in Fig. 58.

p a
b

c

!pab: Bad!

p a
b

c

flip ab

d

!pad: OK
!pdb: Bad!

p a
b

c

d

flip db

e
!pde: OK

!peb: OK

!pbc: OK

!pca: Bad!

flip ca

!pcf : OK

p a
b

c

d

e

f

!pfa: OK

Done!

Connect p

p a
b

c

Fig. 58: Point insertion.

The algorithm for the incremental algorithm is shown below, and an example is presented in Fig. 58. The current
12Some care must be taken in the construction of this enclosing triangle. It is not sufficient that it simply contains all the points. It should be so

large that the vertices of the triangle do not lie in the circumcircles of any of the triangles of the final triangulation.
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triangulation is kept in a global data structure. The edges in the following algorithm should be thought of as
pointers to an reasonable representation of the simplicial complex.

Randomized Incremental Delaunay Triangulation Algorithm
Insert(p) {

Find the triangle-abc containing p;
Insert edges pa, pb, and pc into triangulation;
SwapTest(ab); // check/fix the surrounding edges
SwapTest(bc);
SwapTest(ca);

}

SwapTest(ab) {
if (ab is an edge on the exterior face) return;
Let d be the vertex to the right of edge ab;
if (inCircle(p, a, b, d) { // d violates the incircle test

Flip edge ab for pd;
SwaptTest(ad); // check/fix the new suspect edges
SwaptTest(db);

}
}

As you can see, the algorithm is very simple. There are only two elements that have not been shown are the
implementation. The first is the update operations on the data structure for the simplicial complex. These can be
done in O(1) time each on any reasonable representation. The other issue is locating the triangle that contains
p. We will discuss this below.

Correctness: There is one major issue in establishing the correctness of the algorithm. When we performed empty-
circle tests, we only tested the empty circle tests for the newly created triangles containing the site p, and then
only for sites that lay on the opposite side of an edge of each such triangle.
This is related to an important issue in Delaunay triangulations. We say that a triangulation is locally Delaunay
if for each triangle the vertices lying on the opposite side of each edge of the (up to) three neighboring triangles
satisfy the empty-circle condition. But to establish complete correctness of the triangulation, we need to show
that the triangulation is globally Delaunay, meaning that empty-circle condition is satisfied for all triangles, and
all points of P . That is, it suffices to show that if a triangulation is locally Delaunay, then it is globally Delaunay.
This important theorem (called Delaunay’s Theorem), and we will sketch a proof of this theorem below for this
special context.
First, to see that it suffices to consider only triangles that are incident to p, observe that p is the only newly added
site, and hence it is the only site that can cause a violation of the empty-circle condition.
To finish the argument, it suffices to see why “locally Delaunay” implies “globally Delaunay.” Consider a
triangle7pab that contains p and consider the vertex d belonging to the triangle that lies on the opposite side of
edge ab. We argue that if d lies outside the circumcircle of pab, then no other point of the point set can lie within
this circumcircle. A complete proof of this takes some effort, but here is a simple justification. What could go
wrong? It might be that d lies outside the circumcircle, but there is some other site, say, a vertex e of a triangle
adjacent to d, that lies inside the circumcircle (see Fig. 59). We claim that this cannot happen. It can be shown
that if e lies within the circumcircle of7pab, then amust lie within the circumcircle of7bde. (The argument is
a exercise in the geometry of circles.) However, this would violate the assumption that the initial triangulation
(before the insertion of p) was a Delaunay triangulation.

Point Location: The point location can be accomplished by one of two means. Our text discusses the idea of building
a history graph point-location data structure, just as we did in the trapezoid map case. A simpler approach is
based on the idea of maintaining the uninserted sites in a set of buckets. Think of each triangle of the current
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p

a
e

d

b
if e violates the circumcircle condition for !pab

then a violates the condition with respect to !bde.

Fig. 59: Proof of sufficiency of testing neighboring sites.

triangulation as a bucket that holds the sites that lie within this triangle and have yet to be inserted. Whenever
an edge is flipped, or when a triangle is split into three triangles through point insertion, some old triangles are
destroyed and are replaced by a constant number of new triangles. When this happens, we lump together all the
sites in the buckets corresponding to the deleted triangles, create new buckets for the newly created triangles,
and reassign each site into its new bucket. Since there are a constant number of triangles created, this process
requires O(1) time per site that is rebucketed.
To analyze the expected running time of algorithm we need to bound two quantities: (1) how many structural
changes are made in the triangulation on average with the addition of each new site, and (2) how much effort is
spent in rebucketing sites. As usual, our analysis will be in the worst-case (for any point set) but averaged over
all possible insertion orders.

Structural Changes: We argue first that the expected number of edge changes with each insertion isO(1) by a simple
application of backwards analysis. First observe that (assuming general position) the structure of the Delaunay
triangulation is independent of the insertion order of the sites so far. Thus, any of the existing sites is equally
likely to have been the last site to be added to the structure.
Suppose that some site p was the last to have been added. How much work was needed to insert p? Observe
that the initial insertion of p involved the creation of three new edges, all incident to p. Also, whenever an edge
swap is performed, a new edge is added to p. These are the only changes that the insertion algorithm can make.
Therefore the total number of changes made in the triangulation for the insertion of p is proportional to the
degree of p after the insertion is complete. Thus the work needed to insert p is proportional to p’s degree after
the insertion.

p

insert p

Fig. 60: Number of structural changes is equal to p’s degree after insertion (three initial edges and three edge flips).

To perform the backwards analysis, we consider the situation after the insertion of the ith site. Since the dia-
gram’s structure does not depend on the order of insertion, every one of the i sites appearing in the diagram was
equally likely to be the last one added. Thus, by a backwards analysis, the expected time to insert the ith site
is equal to the average degree of a vertex in the triangulation of i sites. (The only exception are the three initial
vertices at infinity, which must be the first sites to be inserted.)
By Euler’s formula we know that the average degree of a vertex in any planar graph is at most 6. (Recall that
a planar graph with n vertices can have at most 3n edges, and the sum of vertex degrees is equal to twice the
number of edges, which is at most 6n.) Thus, irrespective of the stage number, the expected number of edge
changes is proportional to the expected vertex degree, which is O(1). Summing over all n insertions, the total
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number of structural changes is O(n). Recall that each structural change (new edges and edge flips) can be
performed in O(1) time.

Rebucketing: Next we argue that the total expected time spent in rebucketing points is O(n log n). From this it will
follow that the overall expected running time is dominated by the rebucketing process, and so is O(n log n).
To do this, we will show that the expected number of times that any site is rebucketed (as to which triangle it
lies in) is O(log n). Again this is done by a standard application of backwards analysis. Let us fix a site q ∈ P .
Consider the situation just after the insertion of the ith site. If q has already been inserted, then it is not involved
in the rebucketing process, so let us assume that q has not yet been inserted. As above we make use of the fact
that any of the existing sites is equally likely to be the last site inserted.
We assert that the probability that q was rebucketed as a result of the last insertion is at most 3/i. To see this,
let∆ be the triangle containing q after the ith insertion. As observed above, after we insert the ith site all of the
newly created triangles are now incident to this new site. ∆ would have come into existence as a result of the
last insertion if and only one of its three vertices was the last to be added (see Fig. 61). Since ∆ is incident to
exactly three sites, and every site is equally likely to be the last inserted, it follows that the probability that ∆
came into existence is 3/i. (We are cheating a bit here by ignoring the three initial sites at infinity.) Thus, the
probability that q required rebucketing after the last insertion is at most 3/i.

q

q would have been rebucketed
only if one of a, b, or c was the
last to be inserted

a

bc

∆

Fig. 61: Probability of rebucketing.

After stage i there are n − i points that might be subject to rebucketing, and each has probability 3/i of being
rebucketed. Thus, the expected number of points that require rebucketing as part of the last insertion is (n−i)3/i.
By the linearity of expectation, to obtain the total number of rebucketings, we sum these up over all stages,
yielding

n
∑

i=1

3

i
(n− i) ≤

n
∑

i=1

3

i
n = 3n

n
∑

i=1

1

i
= 3n lnn+O(1),

(where as usual we have applied the bound on the Harmonic series.) Thus, the total expected time spent in
rebucketing is O(n log n), as desired.
There is one place in the proof that we were sloppy. (Can you spot it?) We showed that the number of points
that required rebucketing is O(n log n), but notice that when a point is inserted, each rebucketed point may
change buckets many times (one for the initial insertion and one for each additional edge flip). We will not give
a careful analysis of the total number of individual rebucketing operations per point, but it is not hard to show
that the expected total number of individual rebucketing operations will not be larger by more than a constant
factor. The reason is that (as argued above) each new insertion only results in a constant number of edge flips,
and hence the number of individual rebucketings per insertion is also a constant. But a careful proof should
consider this. Such a proof is given in our textbook.

Lecture 14: Line Arrangements and the Zone Theorem
Line Arrangements: So far we have studied a few of the most important structures in computational geometry:

convex hulls, Voronoi diagrams and Delaunay triangulations. The next most important structure is that of a line
arrangement.
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Consider a finite setL of lines in the plane.13 These lines naturally subdivide the plane into a cell complex, which
is called the arrangement of L, and is denoted A(L) (see Fig. 62(a)). The points where two lines intersect form
the vertices of the complex, the segments between two consecutive intersection points form its edges, and the
polygonal regions between the lines form the faces. Although an arrangement contains unbounded edges and
faces, as we did with Voronoi diagrams (from a purely topological perspective) it is possible to add a vertex
at infinity and attach all these edges to this vertex to form a proper planar graph. An arrangement can be
represented using any standard data structure for cell complexes, a DCEL for example.

face

edge

vertex

(a) (b)

Fig. 62: Arrangement of lines; (a) the basic elements of an arrangement and (b) adding a vertex at infinity to form a
proper planar graph.

As we shall see, arrangements have many applications in computational geometry. Through the use of point-
line duality, many of these applications involve sets of points. We will begin by discussing the basic geometric
and combinatorial properties of arrangements and an algorithm for constructing them. Later we will discuss
applications of arrangements to other problems in computational geometry.

Combinatorial Properties: The combinatorial complexity of an arrangement is the total number of vertices, edges,
and faces in the arrangement. An arrangement is said to be simple if no three lines intersect at a common point.
Through our usual general position assumption that no three lines intersect in a single point, it follows that
all our arrangements are simple. The following lemma shows that all of these quantities are Θ(n2) for simple
planar line arrangements.

Lemma: Let A(L) be a simple arrangement of n lines L in the plan. Then:
(i) the number of vertices (not counting the vertex at infinity) in A(L) is

(n
2

)

(ii) the number of edges in A(L) is n2

(iii) the number of faces in A(L) is
(n
2

)

+ n+ 1

Proof: The fact that the number of vertices is
(n
2

)

is clear from the fact that each pair of lines intersects in a
single point.
To prove that the number of edges is n2, we use induction. The basis case is trivial (one line and one
edge). When we add a new line to an arrangement of n− 1 lines (having (n− 1)2 edges by the induction
hypothesis) we split n − 1 existing edges, thus creating n − 1 new edges, and we add n new edges from
the n− 1 intersections with the new line. This gives a total of (n− 1)2 + (n− 1) + n = n2.
The number of faces follows from Euler’s formula, v − e+ f = 2. To form a cell complex, recall that we
added an additional vertex at infinity. Thus, we have v = 1 +

(n
2

)

and e = n2. Therefore, the number of
faces is

f = 2− v + e = 2−
(

1 +
(n
2

))

+ n2 = 2−
(

1 + n(n−1)
2

)

+ n2

= 1 + n2

2 + n
2 = 1 + n(n−1)

2 + n =
(n
2

)

+ n+ 1,

as desired.
13In general, it is possible to define arrangements in Rd by considering a finite collection of (d− 1)-dimensional hyperplanes. In such a case the

arrangement is a polyhedral cell complex that subdivides Rd.
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By the way, this generalizes to higher dimensions as well. The combinatorial complexity of an arrangement of
n hyperplanes in Rd is Θ(nd). Thus, these structures are only practical in spaces of relatively low dimension
when n is not too large.

Incremental Construction: Arrangements are used for solving many problems in computational geometry. But in
order to use an arrangement, we first must be able to construct it.14 We will present a simple incremental
algorithm, which builds an arrangement by adding lines one at a time. Unlike the other incremental algorithms
we have seen so far, this one is not randomized. Its worst-case asymptotic running time, which is O(n2), holds
irrespective of the insertion order. This is asymptotically optimal, since this is the size of the arrangement. The
algorithm will also require O(n2) space, since this is the amount of storage needed to store the final result.
Let L = {"1, "2, . . . , "n} denote the set of lines. We will add lines one by one and update the resulting ar-
rangement, and we will show that the i-th line can be inserted in O(i) time (irrespective of the insertion order).
Summing over i, 1 ≤ i ≤ n, yields O(n2) total time.
Suppose that the first i− 1 lines have already been inserted, and consider the process of adding "i. We start by
determining the leftmost (unbounded) face of the arrangement that contains this line. Observe that at x = ∞,
the lines are sorted from top to bottom in increasing order of their slopes. InO(n) time, we can determine where
the slope of "i falls in this order, and this determines the leftmost face of the arrangement that contains this line.
The newly inserted line cuts through a sequence of i− 1 edges and i faces of the existing arrangement. In order
to process the insertion, we need to determine which edges are cut by "i, and then we split each such edge and
update the DCEL for the arrangement accordingly.
In order to determine which edges are cut by "i, we “walk” this line through the current arrangement, from one
face to the next. Whenever we enter a face, we need to determine through which edge "i exits this face. We
answer the question by a very simple strategy. We walk along the edges of the face, say in a counterclockwise
direction until we find the exit edge, that is, the other edge that "i intersects. We then jump to the face on the
other side of this edge and continue the trace with the neighboring face. This is illustrated in Fig. 63(a). (The
DCEL data structure supports such local traversals in time linear in the number of edges traversed.)

!i

ZA(!i)

!i

(b)(a)

Fig. 63: Adding the line "i to the arrangement; (a) traversing the arrangement and (b) the zone of a line "i. (Note that
only a portion of the zone is shown in the figure.)

Clearly, the time that it takes to perform the insertion is proportional to the total number of edges that have been
traversed in this tracing process. A naive argument says that we encounter i− 1 lines, and hence pass through i
faces (assuming general position). Since each face is bounded by at most i lines, each facial traversal will take
O(i) time, and this gives a total O(i2). Hey, what went wrong? Above we said that we would do this in O(i)
time. The claim is that the traversal does indeed traverse only O(i) edges, but to understand why, we need to
delve more deeply into a concept of a zone of an arrangement.

Zone Theorem: The most important combinatorial property of arrangements (which is critical to their efficient con-
struction) is a rather surprising result called the zone theorem. Given an arrangementA of a set L of n lines, and
given a line " that is not in L, the zone of " in A("), denoted ZA("), is the set of faces whose closure intersects

14This is not quite accurate. For some applications, it suffices to perform a plane-sweep of the arrangement. If we think of each line as an
infinitely long line segment, the line segment intersection algorithm that was presented in class leads to an O(n2 logn) time and O(n) space
solution. There exists a special version of plane sweep for planar line arrangements, called topological plane sweep, which runs in O(n2) time and
O(n) space.
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". (Fig. 63(b) illustrates a zone for the line ".) For the purposes of the above construction, we are only interested
in the edges of the zone that lie below "i, but if we bound the total complexity of the zone, then this will be an
upper bound on the number of edges traversed in the above algorithm. The combinatorial complexity of a zone
(as argued above) is at most O(n2). The Zone theorem states that the complexity is actually much smaller, only
O(n).

Theorem: (Zone Theorem) Given an arrangement A(L) of n lines in the plane, and given any line " in the
plane, the total number of edges in all the cells of the zone ZA(") is at most 6n.

Proof: As with most combinatorial proofs, the key is to organize everything so that the counting can be done
in an easy way. Note that this is not trivial, because it is easy to see that any one line of L might contribute
many segments to the zone of ". The key in the proof is finding a way to add up the edges so that each line
appears to induce only a constant number of edges into the zone.
The proof is based on a simple inductive argument. For the sake of illustration, let us assume that " is
horizontal. By general position, we may assume that none of the lines of L is parallel to ". We split the
edges of the zone into two groups, those that bound some face from the left side and those that bound
some face from the right side. More formally, since each face is convex, if we split it at its topmost and
bottommost vertices, we get two convex chains of edges. The left-bounding edges are on the left chain and
the right-bounding edges are on the right chain. We will show that there are at most 3n lines that bound
faces from the left (see Fig. 64(a)). A symmetrical argument applies to the right-bounding edges. (Note
that an edge of the zone that crosses " itself contributes only twice to the complexity of the zone, once as a
left-bounding edge and once as a right-bounding edge. The book’s proof counts each such edge four times
because it distinguishes not only left and right, but it counts separately the part of the edge that lies above
" from the part that lies below ". Thus, they obtain a higher bound of 8n. Note that we ignore the edges of
the bounding box.)
For the base case, when n = 1, then there is exactly one left bounding edge in "’s zone, and 1 ≤ 3n.
Assume that the hypothesis is true for any set of n−1 lines. Consider the rightmost line of the arrangement
to intersect ". Call this "1. (Selecting this particular line is very important for the proof.) Suppose that
we consider the arrangement of the other n − 1 lines. By the induction hypothesis there will be at most
3(n− 1) left-bounding edges in the zone for ".

! !

!1

ea

eb

(a) (b)

Fig. 64: Proof of the Zone Theorem.

Now let us add back "1 and see how many more left-bounding edges result. Consider the rightmost face
of the arrangement of n − 1 lines. (Shaded in Fig. 64(b).) Note that all of its edges are left-bounding
edges. Line "1 intersects " within this face. By convexity, "1 intersects the boundary of this face in two
edges, denoted ea and eb, where ea is above " eb is below. The insertion of "1 creates a new left bounding
edge along "1 itself, and splits the left bounding edges ea and eb into two new left bounding edges for a
net increase of three edges. Observe that "1 cannot contribute any other left-bounding edges to the zone,
because (depending on slope) either the line supporting ea or the line supporting eb blocks "1’s visibility
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from ". (Note that it might provide right-bounding edges, but we are not counting them here.) Thus, the
total number of left-bounding edges on the zone is at most 3(n− 1)+ 3 ≤ 3n, and hence the total number
of edges is at most 6n, as desired.

Lecture 15: Applications of Arrangements
Applications of Arrangements and Duality: Last time we introduced the concept of an arrangement of lines in the

plane, and we showed how to construct such an arrangement inO(n2) time. Line arrangements, when combined
with the dual transformation, make it possible to solve a number of geometric computational problems. A
number of examples are given below. Unless otherwise stated, all these problems can be solved in O(n2) time
and O(n2) space by constructing a line arrangement. Alternately, they can be solved in O(n2 log n) time and
O(n) space by applying plane sweep to the arrangement.

General position test: Given a set of n points in the plane, determine whether any three are collinear.
Minimum area triangle: Given a set of n points in the plane, determine the minimum area triangle whose

vertices are selected from these points.
Minimum k-corridor: Given a set of n points, and an integer k, determine the narrowest pair of parallel lines

that enclose at least k points of the set. The distance between the lines can be defined either as the vertical
distance between the lines or the perpendicular distance between the lines (see Fig. 65(a)).

Visibility graph: Given line segments in the plane, we say that two points are visible if the interior of the line
segment joining them intersects none of the segments. Given a set of n non-intersecting line segments,
compute the visibility graph, whose vertices are the endpoints of the segments, and whose edges a pairs of
visible endpoints (see Fig. 65(b)).

(a)

k-corridor (k = 11)

(b)

Visibility Graph

(c)

Max Stabbing Line

!

(d)

Ham-Sandwich Cut

!

Fig. 65: Applications of arrangements.

Maximum stabbing line: Given a set of n line segments in the plane, compute the line " that stabs (intersects)
the maximum number of these line segments (see Fig. 65(c)).

Ham Sandwich Cut: Given n red points and m blue points, find a single line " that simultaneously bisects
these point sets. It is a famous fact from mathematics, called the Ham-Sandwich Theorem, that such a line
always exists. If the two point sets are separable by a line (that is, the red convex hull and the blue convex
hull do not intersect), then this can be solved in time O(n+m) (see Fig. 65(d)).

In the remainder of the lecture, we’ll see how problems like these can be solved through the use of arrangements.

Sweeping Arrangements: Since an arrangement of n lines is of size Θ(n2), we cannot expect to solve problems
through the explicit use of arrangements in less than quadratic time. Most applications involve first constructing
the arrangement, and then traversing it in some manner. In many instances, the most natural traversal to use is
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based on a plane-sweep. (This is not the only way however. Since a planar arrangement is a graph, methods
such as depth-first and breadth-first search can be used.)
If an arrangement is to be built just so it can be swept, then maybe you don’t need to construct the arrangement
at all. You can just perform the plane sweep on the lines, exactly as we did for the line segment intersection
algorithm. Assuming that we are sweeping from left to right, the initial position of the sweep line is at x = −∞
(which means sorting by slope). The sweep line status maintains the lines in, say, bottom to top order according
to their intersection with the sweep line. The events are the vertices of the arrangement.
Note that the sweep-line status always contains exactly n entries. Whenever an intersection event occurs, all
that happens is that two line exchange positions within the status. Thus, rather than using a general ordered
dictionary (e.g., binary search tree) for the sweep-line status, it suffices to store the lines in a simple n-element
array, sorted from bottom to top, say.
Sweeping an arrangement in this manner takes O(n2 log n) time, and O(n) space. Because it is more space-
efficient, this is often an attractive alternative to constructing the entire subdivision.
There is a somewhat more “relaxed” version of plane sweep, which works for line arrangements in the plane.
(It does not apply to arbitrary line segments.) It is called topological plane sweep. You are not responsible for
knowing how this algorithm works. It runs in O(n2) time (thus, eliminating a log factor) and uses O(n) space.
Although I will not present any justification of this, it is applicable to all the problems we will discuss in today’s
lecture.

Sorting all angular sequences: Here is a natural application of duality and arrangements that turns out to be impor-
tant for the problem of computing visibility graphs. Consider a set of n points in the plane. For each point p in
this set we want to perform an angular sweep, say in counterclockwise order, visiting the other n − 1 points of
the set. For each point, it is possible to compute the angles between this point and the remaining n − 1 points
and then sort these angles. This would take O(n log n) time per point, and O(n2 log n) time overall.
With arrangements we can speed this up to O(n2) total time, getting rid of the extra O(log n) factor. Here is
how. Recall the point-line dual transformation. The dual of a point p = (a, b) is the line p∗ : y = ax − b. The
dual of a line " : y = ax− b is the point "∗ = (a, b). Recall that p lies above " (by distance h) if and only if p∗
lies below "∗ (also by distance h).
Suppose that p is the point around which we want to sort, and let 〈p1, . . . , pn〉 be the points in final angular order
about p (see Fig. 66(a)). Consider the arrangement defined by the dual lines p∗i . How does this order manifest
itself in the arrangement?

(a) (b)
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p
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Fig. 66: Arrangements and angular sequences.

Consider the dual line p∗, and its intersection points with each of the dual lines p∗i . These form a sequence
of vertices in the arrangement along p∗. Consider this sequence ordered from left to right. It would be nice if
this order were the desired circular order, but this is not quite correct. It follows from the definition of our dual
transformation that the a-coordinate of each of these vertices in the dual arrangement is the slope of some line of
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the form ppi in the primal plane. Thus, the sequence in which the vertices appear on the line is a slope ordering
of the points about pi, not an angular ordering.
However, given this slope ordering, we can simply test which primal points lie to the left of p (that is, have a
smaller x-coordinate in the primal plane), and separate them from the points that lie to the right of p (having
a larger x-coordinate). We partition the vertices into two sorted sequences, and then concatenate these two
sequences, with the points on the right side first, and the points on the left side later. The resulting is an angular
sequence starting with the angle −90 degrees and proceeding up to +270 degrees.
Thus, once the arrangement has been constructed, we can reconstruct each of the angular orderings in O(n)
time, for a total of O(n2) time. (Since the output size is Ω(n2), there no real benefit to be achieved by using
plane sweep.)

Narrowest k-corridor: As mentioned above, in this problem we are given a set P of n points in the plane, and an
integer k, 1 ≤ k ≤ n, and we wish to determine the narrowest pair of parallel lines that enclose at least k points
of the set. In this case we will define the vertical distance between the lines as the distance to minimize. (It is
not difficult to adapt the algorithm for perpendicular distance.)
To simplify the presentation, we assume that k = 3. (The generalization to general k is an exercise.) We will
make the usual general position assumptions that no three points of P are collinear and no two points have
the same x-coordinate. This implies that the narrowest corridor contains exactly three points and has strictly
positive height.
If we dualize the points of P , then in dual space we have a set L of n lines, {"1, s . . . , "n}. The slope of each
dual-line is the x-coordinate of the corresponding point of P , and its y-intercept is the negation of the point’s
y-coordinate.
A narrowest 3-corridor in the primal plane consists of two parallel lines "a and "b in primal space (see Fig. 67(a)).
Their duals "∗a and "∗b are dual points, which have the same x-coordinates (since the lines are parallel), and the
vertical distance between these points, is the difference in the y-intercepts of the two primal lines. Thus the
height of the corridor, is the vertical length of the line segment.
In the primal plane, there are exactly three points lying in the corridor, that is, there are three points that are both
above "b and below "a. Thus, by the order reversing property, in the dual plane, there are three dual lines that
pass both below point "∗b and above "∗a. Combining all these observations it follows that the dual formulation of
the narrowest 3-corridor problem is the following (see Fig. 67(b)):

Shortest vertical 3-stabber: Given an arrangement of n lines, determine the shortest vertical segment that
stabs three lines of the arrangement.

(a) (b)

h q

r
p

!a

!b

Primal

!b

!a
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q∗

r∗

h

Dual

Fig. 67: A 3-corridor in the (a) primal and (b) dual form. (Note that the corridor is not as narrow as possible.)

It is easy to show (by a simple perturbation argument) that the shortest vertical 3-stabber may be assumed to
have one of its endpoints on a vertex of the arrangement, implying that the other endpoint lies on the line of the
arrangement lying immediately above or below this vertex. (In the primal plane the significance is that we can
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assume that the minimum 3-corridor one of the lines passes through 2 of the points, and the other passes through
a third point, and there are no points within the interior of the corridor.
We can compute the minimum 3-stabber in an arrangement, by a simple plane sweep of the arrangement (using
a vertical sweep line). Whenever we encounter a vertex of the arrangement, we consider the distance to the edge
of the arrangement lying immediately above this vertex and the edge lying immediately below (see Fig. 68). We
can solve this problem by plane sweep inO(n2 log n) time and O(n) space. (By using topological plane sweep,
the extra log n factor can be removed.)

Fig. 68: The critical line segments used in computing the narrowest 3-corridor.

Halfplane Discrepancy: Next we consider a problem derived from computer graphics and sampling. Suppose that
we are given a collection of n points P lying in a unit square U = [0, 1]2. We want to use these points for
random sampling purposes. In particular, the property that we would like these points to have is that for any
halfplane h, we would like the size of the fraction of points of P that lie within h should be roughly equal to the
area of intersection of h with U . That is, if we define µ(h) to be the area of h ∩ U , and µP (h) = |P ∩ h|/|P |,
then we would like µ(h) ≈ µP (h) for all h. This property is important when point sets are used for things like
sampling and Monte-Carlo integration.
To this end, we define the discrepancy of P with respect to a halfplane h to be

∆P (h) = |µ(h)− µP (h)|.

For example, in Fig. 69(a), the area of h ∩ U is µ(h) = 0.625, and there are 7 out of 13 points in h, thus
µP (h) = 7/13 = 0.538. Thus, the discrepancy of h is |0.625 − 0.538| = 0.087. Define the halfplane
discrepancy of P to be the maximum (or more properly the supremum, or least upper bound) of this quantity
over all halfplanes:

∆(P ) = sup
h

∆P (h).

(a)

h

(b)

p!
r1

r2

!

Fig. 69: Discrepancy of a point set.
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Since there are an uncountably infinite number of halfplanes, it is important to derive some sort of finiteness
criterion on the set of halfplanes that might produce the greatest discrepancy.

Lemma: Let h denote the halfplane that generates the maximum discrepancy with respect to P , and let " denote
the line that bounds h. Then either (i) " passes through at least two points of P , or (ii) " passes through
one point of P , and this point is the midpoint of the line segment " ∩ U .

Remark: If a line passes through one or more points of P , then should this point be included in µP (h)?
For the purposes of computing the maximum discrepancy, the answer is to either include or omit the
point, whichever will generate the larger discrepancy. The justification is that it is possible to perturb h
infinitesimally so that it includes none or all of these points without altering µ(h).

Proof: If " does not pass through any point of P , then (depending on which is larger µ(h) or µP (h)) we can
move the line up or down without changing µP (h) and increasing or decreasing µ(h) to increase their
difference. If " passes through a point p ∈ P , but is not the midpoint of the line segment " ∩ U , then we
claim that we can rotate this line about p and hence increase or decrease µ(h) without altering µP (h), to
increase their difference.
To establish the claim, consider Fig. 69(b). Suppose that the line " passes through point p and let r1 < r2
denote the two lengths along " from p to the sides of the square. Observe that if we rotate " through a small
angle θ, then to a first order approximation, the gain due to area of the triangle on the right is r21θ/2, since
this triangle can be approximated by an angular sector of a circle of radius r1 and angle θ. The loss due
to the area of the triangle on the left is r22θ/2. Thus, since r1 < r2 this rotation will decrease the area of
region lying below h infinitesimally. A rotation in the opposite increases the area infinitesimally. Since the
number of points bounded by h does not change as a function of θ, the discrepancy cannot be achieved as
long as such a rotation is possible.

Call the lines satisfying (i) as type-1 and the lines satisfying (ii) as type-2. We will show that the discrepancy for
each set of lines can be computed in O(n2) time.
Since for each point p ∈ P there are only a constant number of lines " (at most two, I think) through this point
such that p is the midpoint of "∩U , it follows that there are at mostO(n) type-1 lines, and hence the discrepancy
of all of these lines can be tested by brute force in O(n2) time.

Type-2 Discrepancies and Levels: Computing the discrepancies of the type-2 lines will involve arrangements. In the
primal plane, a line " that passes through two points pi, pj ∈ P , is mapped in the dual plane to a point "∗ at
which the lines p∗i and p∗j intersect. This is just a vertex in the arrangement of the dual lines for P . So, if we
have computed the arrangement, then all we need to do is to visit each vertex and compute the discrepancy for
the corresponding primal line.
It is easy to see that the area " ∩ U of each corresponding line in the primal plane can be computed in O(1)
time. So, all that is needed is to compute the number of points of P lying below ", for "’s lower halfspace,
and the number of points lying above it, for "’s upper halfspace. (As indicated in the above remark, we take
the two points lying on " as being above or below, whichever makes the discrepancy higher.) In the dual plane,
this corresponds to determining the number of dual lines that lie above each vertex in the arrangement and
the number of lines that lie below it. If we know the number of dual lines that lie above each vertex in the
arrangement, then it is trivial to compute the number of lines that lie below by subtraction.
In order to count the number of lines lying above/below a vertex of the arrangement, it will be useful to the
notion of a level in an arrangements. We say that a point is at level k, denoted Lk, in an arrangement if there are
at most k − 1 lines above this point and at most n− k lines below this point. The k-th level of an arrangement
is an x-monotone polygonal curve (see Fig. 70(a)). For example, the upper envelope of the lines is level 1 of
the arrangement, and the lower envelope is level n. Note that (assuming general position) each vertex of the
arrangement is generally on two levels. (Beware: Our definition of level is exactly one greater than our text’s
definition.)
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Fig. 70: Examples of levels in an arrangement.

We claim that it is an easy matter to compute the level of each vertex of the arrangement (e.g., by plane sweep).
The initial levels at x = −∞ are determined by the slope order of the lines. Whenever we sweep over a vertex,
we swap the level numbers associated with the two lines (see Fig. 70(b)).
Thus, by using plane sweep, inO(n2 log n) time andO(n) space, we can determine the minimum and maximum
level number of each vertex in the arrangement. From the order reversing property, for each vertex of the dual
arrangement, the minimum level number minus one indicates the number of primal points that lie strictly below
the corresponding primal line and the maximum level number is the number of primal points that lie on or below
this line. Thus, given the level numbers and the fact that areas can be computed in O(1) time, we can compute
the discrepancies of all the type-2 lines in O(n2 log n) time and O(n) space, through plane sweep. (Through
the use of topological plane sweep, the extra factor of log n can be eliminated.)

Lecture 16: Orthogonal Range Searching and kd-Trees
Geometric Retrieval: We will shift our focus from algorithm problems to data structures for the next few lectures.

We will consider the following class of problems. Given a collection of objects, preprocess them (storing the
results in a data structure of some variety) so that queries of a particular form can be answered efficiently.
Generally we measure data structures in terms of two quantities, the time needed to answer a query and the
amount of space needed by the data structure. Often there is a trade-off between these two quantities, but most
of the structures that we will be interested in will have either linear or near linear space. Preprocessing time is an
issue of secondary importance, but most of the algorithms we will consider will have either linear or O(n log n)
preprocessing time.
In the next couple of lectures, we will consider orthogonal rectangular range queries, that is, ranges defined by
rectangles whose sides are aligned with the coordinate axes. One of the nice things about rectangular ranges is
that they can be decomposed into a collection of 1-dimensional searches.

Range Queries: In a range queries we are given a set P of points and region Q in space (e.g., a rectangle, polygon,
halfspace, or disk) and are asked to provide some information about the points of P lying within Q. Examples
of the types of information include the following:

Range reporting: Return a list of all the points of P that lie within Q
Range counting: Return a count of all the points of P that lie within Q. There are a number of variations.

Weights: Each point p ∈ P is associated with a numeric weight w(p). Return the sum of weights of the
points of P lying within Q
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Semigroup weights: The weights need not be numbers and the operation need not be addition. In general,
the weights of P are drawn from any commutative semigroup. A commutative semigroup is pair
(Σ, ◦), where Σ is a set, and ◦ : Σ × Σ → Σ is a commutative and associative binary operator on Σ.
The objective is to return the “sum” of the weights of the elements of P ∩Q, where “◦” takes the role
of addition.
For example, if we wanted to compute the maximum weight of a set of real values, we could use the
semigroup (R,max). If we wanted to know the parity of the number of points of P in Q, we could
take the semigroup ({0, 1},⊕), where ⊕ denotes exclusive-or (or equivalently, addition modulo 2).

Group weights: A group is a special case of a semigroup, where inverses exist. (For example, the semi-
group of reals under addition (R,+) is a group (where subtraction plays the role of inverse), but the
semigroup (R,max) is not a group (since the max operator does not have inverses).
If it is known that the semigroup is, in fact, a group, the data structure may take advantage of this to
speed-up query processing. For example, the query processing algorithm has the flexibility to both
“add” and “subtract” weights.

To achieve the best possible performance, range searching data structures are tailored to the particular type of
query ranges and the properties of the semigroup involved. On the other hand, a user may prefer to sacrifice
efficiency for a data structure that is more general and can answer a wide variety of range searching problems.

Range Spaces and VC-Dimension: An important concept underlying geometric range searching is that the subsets
that can be formed by simple geometric ranges (such as rectangles, discs, triangles, half-spaces) are typically
much more restrictive than the set of all possible subsets, which is called the power set, of P .
We can characterize any range search problem abstractly as follows. A range space is defined to be a pair
(X,R) where X is an arbitrary set and R is a subset of the power set of X . For example, X might be the real
2-dimensional plane andR might be the set of all closed, bounded triangles. Given a set P ⊆ X , define

ΠR(P ) = {P ∩Q | Q ∈ R}.

That is, ΠR(P ) is the collection of subsets of P that can be formed by intersecting P with the ranges of the
range space.
For example consider the range space consisting of axis-parallel rectangles in R2. Fig. 71 illustrates a number
of the subsets of P that constitute ΠR(P ). Note that not all subsets of P are in ΠR(P ). For example, the sets
{1, 4} and {1, 2, 4} cannot be formed by intersecting P with axis-parallel rectangular ranges.

2
1

3
4

{1}, {2}, {3}, {4},
{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {1, 3, 4}, {2, 3, 4},
{1, 2, 3, 4}

{2, 4}{1, 2}

{1, 3}

{3, 4}

ΠR(P ) = {∅,

}

2
1
3

4

P

Cannot generate {1, 4} without including 3

Fig. 71: A 4-point set and the range space of axis-parallel rectangles. Note that sets {1, 4} and {1, 2, 4} cannot be
generated.

Suppose that we are given a set P of n points in the plane andR consists of axis parallel rectangles. How large
might ΠR(P ) be? If we take any axis-parallel rectangle that encloses some subset of P , and we shrink it as
much as possible without altering the points contained within, we see that such a rectangle is determined by
four points of P , that is, the points that lie on the rectangle’s top, bottom, left, and right sides. It is easy to see,
therefore, that, for this particular range space, we have ΠR(P ) = O(n4).
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How complex is an arbitrary range space? A useful concept is the notion of VC dimension, which is short
for Vapnik-Chervonenkis dimension.15 Given an arbitrary range space (X,R) and point set P , we say that R
shatters P is ΠR(P ) is equal to the power set of P , that is, we can form any of the 2|P | subsets of P by taking
intersections with the ranges of R. For example, the point set shown in Fig. 71 is not shattered by the range
space of axis-parallel rectangles. However, the four-element point set P ′ shown in Fig. 72 is shattered by this
range space.

{1}, {2}, {3}, {4},
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},
{1, 2, 3, 4}

ΠR(P
′) = {∅,

}

2
1

3

4

P ′

2
1

3

4

Fig. 72: A 4-point set that is shattered by the range space of axis-parallel rectangles. (We show only the 2-element
point sets in the drawing.)

The VC-dimension of a range space (X,R) is defined to be the size of the largest point set that is shattered by
the range space. In Fig. 72 we have shown that the four-element point set P ′ is shattered by the range space of
axis-parallel rectangles. It is not hard to show, however, that no 5-element point set of R2 can be shattered by
this same range space. (We will leave this as an exercise.) Therefore, the VC-dimension of the range space of
2-dimensional axis-parallel rectangles is four.
The VC-dimension of a range space provides useful information as to the complexity of answering range queries
for such a space. An important result in this area is Sauer’s Lemma, which states that, if (X,R) has VC
dimension d, then |ΠR(P )| = O(nd), where n = |P |. This is consistent with the observation that we made
earlier for the case of axis-parallel rectangles.

Canonical Subsets: A common approach used in solving almost all range queries is to represent P as a collection of
canonical subsets {P1, P2, . . . , Pk}, each Pi ⊆ P (where k is generally a function of n and the type of ranges),
such that any set can be formed as the disjoint union of canonical subsets. Note that these subsets may generally
overlap each other.
There are many ways to select canonical subsets, and the choice affects the space and time complexities. For
example, the canonical subsets might be chosen to consist of n singleton sets, each of the form {pi}. This would
be very space efficient, since we need only O(n) total space to store all the canonical subsets, but in order to
answer a query involving k objects we would need k sets. (This might not be bad for reporting queries, but it
would be too long for counting queries.) At the other extreme, we might let the canonical subsets be all the sets
of the range space R. Thus, any query could be answered with a single canonical subset (assuming we could
determine which one), but we would have |R| different canonical subsets to store, which is typically a higher
ordered polynomial in n, and may be too high to be of practical value. The goal of a good range data structure
is to strike a balance between the total number of canonical subsets (space) and the number of canonical subsets
needed to answer a query (time).
Perhaps the most common way in which to define canonical subsets is through the use of a partition tree. A
partition tree is a rooted (typically binary) tree, whose leaves correspond to the points of P . Each node u of such
a tree is naturally associated with a subset of P , namely, the points stored in the leaves of the subtree rooted at
u. We will see an example of this when we discuss one-dimensional range queries.

One-dimensional range queries: Before we consider how to solve general range queries, let us consider how to
answer 1-dimension range queries, or interval queries. Let us assume that we are given a set of points P =

15The concept of VC-dimension was first developed in the field of probability theory in the 1970’s. The topic was discovered to be very relevant
to the fields of machine learning and computational geometry in late 1980’s.
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{p1, p2, . . . , pn} on the line, which we will preprocess into a data structure. Then, given an interval [xlo , xhi ],
the goal is to count or report all the points lying within the interval. Ideally, we would like to answer counting
queries in O(log n) time, and we would like to answer reporting queries in time O((log n) + k) time, where k
is the number of points reported.
Clearly one way to do this is to simply sort the points, and apply binary search to find the first point of P that is
greater than or equal to xlo , and less than or equal to xhi , and then enumerate (or count) all the points between.
This works fine in dimension 1, but does not generalize readily to any higher dimensions. Also, it does not work
when dealing with the weighted version, unless the weights are drawn from a group.
Let us consider a different approach, which will generalize to higher dimensions. Sort the points of P in
increasing order and store them in the leaves of a balanced binary search tree. Each internal node of the tree
is labeled with the largest key appearing in its left child. We can associate each node of this tree (implicitly
or explicitly) with the subset of points stored in the leaves that are descendants of this node. This gives rise
to the O(n) canonical subsets. In order to answer reporting queries, the canonical subsets do not need to be
stored explicitly with each node of the tree. The reason is that we can enumerate each canonical subset in time
proportional to its size by simply traversing the subtree and reporting the points lying in its leaves. This is
illustrated in Fig. 73. For range counting, we associate each node with the total weight of points in its subtree.

27
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14 171

7

20 22 24 2725 294 9 12 14 171 3 7 15 31

22

3 20

24

15

xlo = 2 xhi = 23

u v

Canonical subset {9, 12, 14, 15}

Fig. 73: Canonical sets for interval queries. For range reporting, canonical subsets are generated as needed by travers-
ing the subtree.

We claim that the canonical subsets corresponding to any range can be identified in O(log n) time from this
structure. Given any interval [xlo , xhi ], we search the tree to find the rightmost leaf u whose key is less than xlo

and the leftmost leaf v whose key is greater than xhi . (To make this possible for all ranges, we could add two
sentinel points with values of −∞ and +∞ to form the leftmost and rightmost leaves.) Clearly all the leaves
between u and v constitute the points that lie within the range. To form these canonical subsets, we take the
subsets of all the maximal subtrees lying between the paths from the root u and v.
Here is how to compute these subtrees. The search paths to u and v may generally share some common subpath,
starting at the root of the tree. Once the paths diverge, as we follow the left path to u, whenever the path goes to
the left child of some node, we add the canonical subset associated with its right child. Similarly, as we follow
the right path to v, whenever the path goes to the right child, we add the canonical subset associated with its left
child.
As mentioned earlier, to answer a range reporting query we simply traverse the canonical subtrees, reporting the
points of their leaves. To answer a range counting query we return the sum of weights associated with the nodes
of the canonical subtrees.
Since the search paths to u and v are each of length O(log n), it follows that O(log n) canonical subsets suffice
to represent the answer to any query. Thus range counting queries can be answered in O(log n) time. For
reporting queries, since the leaves of each subtree can be listed in time that is proportional to the number of
leaves in the tree (a basic fact about binary trees), it follows that the total time in the search is O((log n) + k),
where k is the number of points reported.
In summary, 1-dimensional range queries can be answered in O(log n) (counting) or ((log n) + k) (reporting)
time, using O(n) storage. This concept of finding maximal subtrees that are contained within the range is
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fundamental to all range search data structures. The only question is how to organize the tree and how to locate
the desired sets. Let see next how can we extend this to higher dimensional range queries.

Kd-trees: The natural question is how to extend 1-dimensional range searching to higher dimensions. First we will
consider kd-trees. This data structure is easy to implement and quite practical and useful for many different
types of searching problems (nearest neighbor searching for example). However it is not the asymptotically
most efficient solution for the orthogonal range searching, as we will see later.
Our terminology is a bit nonstandard. The data structure was designed by Jon Bentley. In his notation, these
were called “k-d trees,” short for “k-dimensional trees”. The value k was the dimension, and thus there are 2-d
trees, 3-d trees, and so on. However, over time, the specific value of k was lost. Our text uses the term “kd-tree”
rather than “k-d tree.” By the way, there are many variants of the kd-tree concept. We will describe the most
commonly used one, which is quite similar to Bentley’s original design. In our trees, points will be stored only
at the leaves. There are variants in which points are stored at internal nodes as well.
A kd-tree is an example of a partition tree. For each node, we subdivide space either by splitting along the
x-coordinates or along the y-coordinates of the points. Each internal node t of the kd-tree is associated with the
following quantities:

t.cut-dim the cutting dimension (e.g., x = 0 and y = 1)
t.cut-val the cutting value (a real number)
t.weight the number (or generally, total weight) of points in t’s subtree

In dimension d, the cutting dimension may be represented as in integer ranging from 0 to d − 1. If the cutting
dimension is i, then all points whose ith coordinate is less than or equal to t.cut-val are stored in the left subtree
and the remaining points are stored in the right subtree. (See Fig. 74.) If a point’s coordinate is equal to the
cutting value, then we may allow the point to be stored on either side. This is done to allow us to balance the
number of points in the left and right subtrees if there are many equal coordinate values. When a single point
remains (or more generally a small constant number of points), we store it in a leaf node, whose only field
t.point is this point.
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Fig. 74: A kd-tree and the associated spatial subdivision.

The cutting process has a geometric interpretation. Each node of the tree is associated implicitly with a rectan-
gular region of space, called a cell. (In general these rectangles may be unbounded, but in many applications
it is common to restrict ourselves to some bounded rectangular region of space before splitting begins, and so
all these rectangles are bounded.) The cells are nested in the sense that a child’s cell is contained within its
parent’s cell. Hence, these cells define a hierarchical decomposition of space. This is illustrated on the left side
of Fig. 74.
There are two key decisions in the design of the tree.

How is the cutting dimension chosen? The simplest method is to cycle through the dimensions one by one.
(This method is shown in Fig. 74.) Since the cutting dimension depends only on the level of a node in the
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tree, one advantage of this rule is that the cutting dimension need not be stored explicitly in each node,
instead we keep track of it while traversing the tree.
One disadvantage of this splitting rule is that, depending on the data distribution, this simple cyclic rule
may produce very skinny (elongated) cells, and such cells may adversely affect query times. Another
method is to select the cutting dimension to be the one along which the points have the greatest spread,
defined to be the difference between the largest and smallest coordinates. Bentley call the resulting tree an
optimized kd-tree.

How is the cutting value chosen? To guarantee that the tree has height O(log n), the best method is to let the
cutting value be the median coordinate along the cutting dimension. If there is an even number of points in
the subtree, we may take either the upper or lower median, or we may simply take the midpoint between
these two points. In our example, when there are an odd number of points, the median is associated with
the left (or lower) subtree.

A kd-tree is a special case of a more general class of hierarchical spatial subdivisions, called binary space
partition trees (or BSP trees) in which the splitting lines (or hyperplanes in general) may be oriented in any
direction.

Constructing the kd-tree: It is possible to build a kd-tree in O(n log n) time by a simple top-down recursive proce-
dure. The most costly step of the process is determining the median coordinate for splitting purposes. One way
to do this is to maintain two lists of pointers to the points, one sorted by x-coordinate and the other containing
pointers to the points sorted according to their y-coordinates. (In dimension d, d such arrays would be main-
tained.) Using these two lists, it is an easy matter to find the median at each step in constant time. In linear time
it is possible to split each list about this median element.
For example, if x = s is the cutting value, then all points with px ≤ s go into one list and those with px > s
go into the other. (In dimension d this generally takes O(d) time per point.) This leads to a recurrence of the
form T (n) = 2T (n/2) + n, which solves to O(n log n). Since there are n leaves and each internal node has
two children, it follows that the number of internal nodes is n−1. Hence the total space requirements are O(n).

Theorem: Given n points, it is possible to build a kd-tree of heightO(log n) and spaceO(n) in timeO(n log n)
time.

Range Searching in kd-trees: Let us consider how to answer orthogonal range counting queries. Range reporting
queries are an easy extension. Let Q denote the desired range, and u denote the current node in the kd-tree.
We assume that each node u is associated with its rectangular cell, denoted u.cell. (Alternately, this can be
computed on the fly, as the algorithm is running.) The search algorithm is presented in the code block below.

kd-tree Range Counting Query
int range-count(Range Q, KDNode u)
(1) if (u is a leaf)

(a) if (u.point ∈ Q) return u.weight,
(b) else return 0 /∗ or generally, the semigroup identity element ∗/

(2) else /∗ u is internal ∗/
(a) if (u.cell ∩Q = ∅) return 0 /∗ the query does not overlap u’s cell ∗/
(b) else if (u.cell ⊆ Q) return u.weight /∗ u’s cell is contained within query range ∗/
(c) else, return range-count(Q, u.left) + range-count(Q, u.right).

The search algorithm traverses the tree recursively. If it arrives at a leaf cell, we check to see whether the
associated point, u.point, lies within Q in O(1) time, and if so we count it. Otherwise, u is an internal node.
If u.cell is disjoint from Q (which can be tested in O(1) time since both are rectangles), then we know that
no point in the subtree rooted at u is in the query range, and so there is nothing to count. If u.cell is entirely
contained within Q (again testable in O(1) time), then every point in the subtree rooted at u can be counted.
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(These points constitute a canonical subset.) Otherwise, u’s cell partially overlaps Q. In this case we recurse on
u’s two children and update the count accordingly.
Fig. 75 shows an example of a range search. Blue shaded nodes contribute to the search result and red shaded
nodes do not. The red shaded subtrees are not visited. The blue-shaded subtrees are not visited for the sake of
counting queries. Instead, we just access their total weight.
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Fig. 75: Range search in a kd-tree. (Note: This particular tree was not generated by the algorithm described above.)

Analysis of query time: How many nodes does this method visit altogether? We claim that the total number of
nodes is O(

√
n) assuming a balanced kd-tree. Rather than counting visited nodes, we will count nodes that are

expanded. We say that a node is expanded if it is visited and both its children are visited by the recursive range
count algorithm.
A node is expanded if and only if the cell overlaps the range without being contained within the range. We say
that such a cell is stabbed by the query. To bound the total number of nodes that are expanded in the search, it
suffices to bound the number of nodes whose cells are stabbed.

Lemma: Given a balanced kd-tree with n points using the alternating splitting rule, any vertical or horizontal
line stabs O(

√
n) cells of the tree.

Proof: Let us consider the case of a vertical line x = x0. The horizontal case is symmetrical.
Consider an expanded node which has a cutting dimension along x. The vertical line x = x0 either stabs
the left child or the right child but not both. If it fails to stab one of the children, then it cannot stab any of
the cells belonging to the descendents of this child either. If the cutting dimension is along the y-axis (or
generally any other axis in higher dimensions), then the line x = x0 stabs both children’s cells.
Since we alternate splitting on left and right, this means that after descending two levels in the tree, we
may stab at most two of the possible four grandchildren of each node. In general each time we descend
two more levels we double the number of nodes being stabbed. Thus, we stab the root node, at most 2
nodes at level 2 of the tree, at most 4 nodes at level 4, 8 nodes at level 6, and generally at most 2i nodes at
level 2i. Each time we descend a level of the tree, the number of points falls by half. Thus, each time we
descend two levels of the tree, the number of points falls by one fourth.
This can be expressed more formally as the following recurrence. Let T (n) denote the number of nodes
stabbed for a subtree containing n points. We have

T (n) ≤
{

2 if n ≤ 4,
1 + 2T

(

n
4

)

otherwise.

We can solve this recurrence by appealing to the Master theorem for solving recurrences, as presented
in the book by Cormen, Leiserson, Rivest and Stein. To keep the lecture self-contained, let’s solve it by
repeated expansion.
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T (n) ≤ 1 + 2T
(n

4

)

≤ 1 + 2

(

1 + 2T

(

n/4

4

))

= (1 + 2) + 4T
( n

16

)

≤ (1 + 2) + 4

(

1 + 2T

(

n/16

4

))

= (1 + 2 + 4) + 8T
( n

64

)

≤ . . .

≤
k−1
∑

i=0

2i + 2kT
( n

4k

)

.

To get to the basis case (T (1)) let’s set k = log4 n, which means that 4k = n. Observe that 2log4 n =
2(log2 n)/2 = n1/2 =

√
n. Since T (1) ≤ 2, we have

T (n) ≤ (2log4 n − 1) + 2log4 nT (1) ≤ 3
√
n = O(

√
n).

This completes the proof.

We have shown that any vertical or horizontal line can stab only O(
√
n) cells of the tree. Thus, if we were to

extend the four sides of Q into lines, the total number of cells stabbed by all these lines is at most O(4
√
n) =

O(
√
n). Thus the total number of cells stabbed by the query range is O(

√
n). Since we only make recursive

calls when a cell is stabbed, it follows that the total number of expanded nodes by the search is O(
√
n), and

hence the total number of visited nodes is larger by just a constant factor.

Theorem: Given a balanced kd-tree with n points, orthogonal range counting queries can be answered in
O(
√
n) time and reporting queries can be answered in O(

√
n + k) time. The data structure uses space

O(n).

Lecture 17: Orthogonal Range Trees
Orthogonal Range Trees: Last time we saw that kd-trees could be used to answer orthogonal range queries in the

plane in O(
√
n) time for counting and O(

√
n + k) time for reporting. It is natural to wonder whether we can

replace the O(
√
n) term with something closer to the ideal query time of O(log n). Today we consider a data

structure, which is more highly tuned to this particular problem, called an orthogonal range tree. Recall that we
are given a set P of n points in R2, and our objective is to preprocess these points so that, given any axis-parallel
rectangle Q, we can count or report the points of P that lie within Q efficiently.
An orthogonal range tree is a data structure which, in the plane uses O(n log n) space and can answer range
reporting queries inO(log n+k) time, where k is the number of points reported. In general in dimension d ≥ 2,
it uses O(n log(d−1) n) space, and can answer orthogonal rectangular range queries in O(log(d−1) n+ k) time.
The preprocessing time is the same as the space bound. We will present the data structure in two parts, the
first is a version that can answer queries in O(log2 n) time in the plane, and then we will show how to improve
this in order to strip off a factor of log n from the query time. The generalization to higher dimensions will be
straightforward.

Multi-level Search Trees: The orthogonal range-tree data structure is a nice example of a more general concept,
called a multi-level search tree. In this method, a complex search is decomposed into a constant number of
simpler range searches. Recall that a range space is a pair (X,R) consisting of a set X and a collection R
of subsets of X , called ranges. Given a range space (X,R), suppose that we can decompose it into two (or
generally a small number of) range subspaces (X,R1) and (X,R2) such that any queryQ ∈ R can be expressed
as Q1 ∩ Q2, for Qi ∈ Ri. (For example, an orthogonal range query in the plane, [xlo, xhi] × [ylo, yhi], can be
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expressed as the intersection of a vertical strip and a horizontal strip, in particular, the points whose x-coordinates
are in the range Q1 = [xlo, xhi]× R and the points whose y-coordinates are in the range Q2 = R× [ylo, yhi].)
The idea is to then “cascade” a number of search structures, one for each range subspace, together to answer a
range query for the original space.
Let’s see how to build such a structure for a given point set P . We first construct an appropriate range search
structure, say, a partition tree, for P for the first range subspace (X,R1). Let’s call this tree T (see Fig. 76).
Recall that each node u ∈ T is implicitly associated with a canonical subset of points of P , which we will
denote by Pu. In the case that T is a partition tree, this is just the set of points lying in the leaves of the subtree
rooted at u. (For example, in Fig. 76, Pu6

= {p5, . . . , p8}.) For each node u ∈ T , we construct an auxiliary
search tree for the points of Pu, but now over the second range subspace (X,R2). Let Tu denote the resulting
tree (see Fig. 76). The final data structure consists of the primary tree T , the auxiliary search trees Tu for each
u ∈ T , and a link from each node u ∈ T to the corresponding auxiliary search tree Tu. The total space is the
sum of space requirements for the primary tree and all the auxiliary trees.

p1 p2 p3 p4 p5 p6 p7 p8
{p1, p2} {p3, p4}

{p5, p6} {p7, p8}

{p1, . . . , p4}

{p5, . . . , p8}

{p1, . . . , p8}

T

Auxiliary search trees

u4
u2

u1 u3 u5 u7

u6
Tu1 Tu3

Tu5 Tu7

Tu2

Tu6

Tu4

Fig. 76: Multi-level search trees.

Now, given a query rangeQ = Q1 ∩Q2, whereQi ∈ Ri, we answer queries as follows. Recall from our earlier
lecture that, the partition tree T allows us to express the answer to the query P ∩Q1 as a disjoint union

⋃

u Pu

for an appropriate (and ideally small) subset of nodes u ∈ T . Call this subset U(Q1). In order to complete
the query, for each u ∈ U(Q1), we access the corresponding auxiliary search tree Tu in order to determine the
subset of points Pu that lie within the query range Q2. To see why this works, observe that

P ∩Q = (P ∩Q1) ∩Q2 =





⋃

u∈U(Q1)

Pu



 ∩Q2 =





⋃

u∈U(Q1)

Pu ∩Q2



 .

Therefore, once we have computed the answers to all the auxiliary ranges Pu ∩ Q2 for all u ∈ U(Q1), all
that remains is to combine the results (e.g., by summing the counts or concatenating all the lists, depending on
whether we are counting or reporting, respectively). The query time is equal to the sum of the query times over
all the trees that were accessed.

A Multi-Level Approach to Orthogonal Range Searching: Now, let us consider how to apply the abstract frame-
work of a multi-level search tree to the problem of 2-dimensional orthogonal range queries. First, we assume
that we have preprocessed the data by building a range tree for the first range query, which in this case is just a
1-dimensional range tree for the x-coordinates. Recall that this is just a balanced binary tree T whose leaves are
the points of P sorted by x-coordinate. Each node u of this binary tree is implicitly associated with a canonical
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subset Pu ⊆ P consisting of the points lying within the leaves in u’s subtree. Next, for each node u ∈ T , we
build a 1-dimensional range tree for Pu, sorted this time by y-coordinates. The resulting tree is called Tu.
The final data structure, called a 2-dimensional range tree consists of two levels: an x-range tree T , where each
node u ∈ T points to auxiliary y-range search tree Tu. (For d-dimensional range trees, we will have d-levels of
trees, one for each coordinate.)
Queries are answered as follows. Consider an orthogonal range query Q = [xlo, xhi] × [ylo, yhi]. Let Q1 =
[xlo, xhi] × R and Q2 = R × [ylo, yhi]. First, we query T to determine the subset U(Q1) of O(log n) nodes
u such that

⋃

u∈U(Q1)
Pu forms a disjoint cover of the points of P whose x-coordinate lies within [xlo, xhi].

(These are the roots of the shaded subtrees in the top half of Fig. 77.) For each u ∈ U(Q1), we access the
auxiliary tree Tu and perform a 1-dimensional range search (based on y-coordinates) to determine the subset of
Pu that lies within Q2, that is, the points whose y-coordinates lie within [ylo, yhi] (see Fig.77).

yhi

ylo

u

Tu

Pu

x-range tree

Pu

xlo xhi

y-range tree
storing points of Pu

Fig. 77: Orthogonal range tree search.

What is the query time? Recall that it takes O(log n) time to locate the nodes representing the canonical subsets
for the 1-dimensional range query over the x-coordinates, and there are O(log n) nodes u ∈ U(Q1). For each
such node, we invoke a 1-dimensional range search over the y-coordinates on the canonical subset Pu, which
will result in the generation of O(log |Pu|) ≤ O(log n) canonical sets. Thus, (ignoring constant factors) the
total number of canonical subsets accessed by the algorithm is

∑

u∈U(Q1)

log |Pu| ≤ |U(Q1)| · log n ≤ log2 n.

As before, listing the elements of these sets can be performed in additional O(k) time by just traversing the
subtrees corresponding to the canonical subsets of the auxiliary search trees that contribute the final result.
Counting queries can be answered by precomputing the subtree sizes for each node of each auxiliary search
tree, and just adding up all those that contribute to the query. Therefore, reporting queries can be answered in
O((log2 n) + k) time and counting queries can be answered in O(log2 n) time. It is easy to see that we can
generalize this to orthogonal range searching in Rd by cascading d levels of 1-dimensional search trees. The log
factor in the resulting query time would be logd n.

Space and Preprocessing Time: To derive a bound on the total space used, we sum the sizes of all the trees. The
primary search tree T for the x-coordinates requires only O(n) storage. For each node u ∈ T , the size of
the auxiliary search tree Tu is clearly proportional to the number of points in this tree, which is the size of the
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associated canonical subset, |Pu|. Thus, up to constant factors, the total space is

n+
∑

u∈T

|Pu|.

To bound the size of the sum, observe that each point of P appears in the set Pu for each ancestor of this leaf.
Since the tree T is balanced, its depth is O(log n), and therefore, each point of P appears in O(log n) of the
canonical subsets. Since each of the n points of P contributes O(log n) to the sum, it follows that the sum is
O(n log n).
In summary, the space required by the orthogonal range tree is O(n log n). Observe that for the purposes of
reporting, we could have represented each auxiliary search tree Tu as an array containing the points of Pu sorted
by the y-coordinates. The advantage of using a tree structure is that it makes it possible to answer counting
queries over general semigroups, and it makes efficient insertion and deletion possible as well.
We claim that it is possible to construct a 2-dimensional range tree in O(n log n) time. Constructing the 1-
dimensional range tree for the x-coordinates is easy to do in O(n log n) time. However, we need to be careful in
constructing the auxiliary trees, because if we were to sort each list of y-coordinates separately, the running time
would be O(n log2 n). Instead, the trick is to construct the auxiliary trees in a bottom-up manner. The leaves,
which contain a single point are trivially sorted. Then we simply merge the two sorted lists for each child to
form the sorted list for the parent. Since sorted lists can be merged in linear time, the set of all auxiliary trees
can be constructed in time that is linear in their total since, or O(n log n). Once the lists have been sorted, then
building a tree from the sorted list can be done in linear time.

Improved Query Times through Fractional Cascading: Can we improve on the O(log2 n) query time? We would
like to reduce the query time to O(log n). (In general, this approach will shave a factor of log n from the query
time, which will lead to a query time of O(logd−1 n) in Rd).
What is the source of the extra log factor? As we descend the search the x-interval tree, for each node we visit,
we need to search the corresponding auxiliary search tree based on the query’s y-coordinates [ylo, yhi]. It is this
combination that leads to the squaring of the logarithms. If we could search each auxiliary in O(1) time, then
we could eliminate this annoying log factor.
There is a clever trick that can be used to eliminate the additional log factor. Observe that we are repeatedly
searching different lists (in particular, these are subsets of the canonical subsets Pu for u ∈ U(Q1)) but always
with the same search keys (in particular, ylo and yhi). How can we exploit the fact that the search keys are static
to improve the running times of the individual searches?
The idea to rely on economies of scale. Suppose that we merge all the different lists that we need to search into
a single master list. Since

⋃

u Pu = P and |P | = n, we can search this master list for any key in O(log n) time.
We would like to exploit the idea that, if we know where ylo and yhi lie within the master list, then it should be
easy to determine where they are located in any canonical subset Pu ⊆ P . Ideally, after making one search in
the master list, we would like to be able to answer all the remaining searches in O(1) time each. Turning this
intuition into an algorithm is not difficult, but it is not trivial either.
In our case, the master list on which we will do the initial search is the entire set of points, sorted by y-coordinate.
We will assume that each of the auxiliary search trees is a sorted array. (In dimension d, this assumption implies
that we can apply this only to the last level of the multi-level data structure.) Call these the auxiliary lists.
Here is how we do this. Let v be an arbitrary internal node in the range tree of x-coordinates, and let v′ and v′′
be its left and right children. Let A be the sorted auxiliary list for v and let A′ and A′′ be the sorted auxiliary
lists for its respective children. Observe that A is the disjoint union of A′ and A′′ (assuming no duplicate y-
coordinates). For each element inA, we store two pointers, one to the item of equal or larger value in A′ and the
other to the item of equal or larger value in A′′. (If there is no larger item, the pointer is null.) Observe that once
we know the position of an item in A, then we can determine its position in either A′ or A′′ in O(1) additional
time.
Here is a quick illustration of the general idea. Let v denote a node of the x-tree, and let v′ and v′′ denote its left
and right children. Suppose that (in increasing order of y-coordinates) the associated nodes within this range
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are: 〈p1, p2, p3, p4, p5, p6〉, and suppose that in v′ we store the points 〈p2, p4, p5〉 and in v′′ we store 〈p1, p3, p6〉
(see Fig. 78(a)). For each point in the auxiliary list for v, we store a pointer to the lists v′ and v′′, to the position
this element would be inserted in the other list (assuming sorted by y-values). That is, we store a pointer to the
largest element whose y-value is less than or equal to this point (see Fig. 78(b)).

p1p2

p3p4

p5
p6

(a) (b)

A

A′ A′′

v′ v′′
v

v

v′′v′ v′′

1 2 3 4 5 6

2 4 5 1 3 6

Fig. 78: Cascaded search in range trees.

At the root of the tree, we need to perform a binary search against all the y-values to determine which points lie
within this interval, for all subsequent levels, once we know where the y-interval falls with respect to the order
points here, we can drop down to the next level in O(1) time. Thus, the running time is O(log n), rather than
O(log2n). By applying this to the last level of the auxiliary search structures, we save one log factor, which
gives us the following result.

Theorem: Given a set of n points inRd, orthogonal rectangular range queries can be answered inO(log(d−1) n+
k) time, from a data structure of space O(n log(d−1) n) which can be constructed in O(n log(d−1) n) time.

This technique is special case of a more general data structures technique called fractional cascading. The idea
is that information about the search the results “cascades” from one level of the data structure down to the next.
The result can be applied to range counting queries as well, but under the provision that we can answer the
queries using a sorted array representation for the last level of the tree. For example, if the weights are drawn
from a group, then the method is applicable, but if the the weights are from a general semigroup, it is not
possible. (For general semigroups, we need to sum the results for individual subtrees, which implies that we
need a tree structure, rather than a simple array structure.)

Lecture 18: Well Separated Pair Decompositions
Approximation Algorithms in Computational Geometry: Although we have seen many efficient techniques for

solving fundamental problems in computational geometry, there are many problems for which the complexity
of finding an exact solution is unacceptably high. Geometric approximation arises as a useful alternative in
such cases. Approximations arise in a number of contexts. One is when solving a hard optimization problem.
A famous example is the Euclidean traveling salesman problem, in which the objective is to find a minimum
length path that visits each of n given points (see Fig. 79(a)). (This is an NP-hard problem, but there exists a
polynomial time algorithm that achieves an approximation factor of 1+ ε for any ε > 0.) Another source arises
when approximating geometric structures. For example, early this semester we mentioned that the convex hull
of n points inRd could have combinatorial complexityΩ(n$d/2%). Rather than computing the exact convex hull,
it may be satisfactory to compute a convex polytope, which has much lower complexity, and whose boundary is
within a small distance ε from the actual hull (see Fig. 79(b)).
Another important motivations for geometric approximations is that geometric inputs are typically the results of
sensed measurements, which are subject to limited precision. There is no good reason to solve a problem to a
degree of accuracy that exceeds the precision of the inputs themselves.
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(a) (b)

Fig. 79: Geometric approximations: (a) Euclidean traveling salesman, (b) approximate convex hull.

Motivation: The n-Body Problem: We begin our discussion of approximation algorithms in geometry with a simple
and powerful example. To motivate this example, consider an application in physics involving the simulation of
the motions of a large collection of bodies (e.g., planets or stars) subject to their own mutual gravitational forces.
In physics, such a simulation is often called the n-body problem. Exact analytical solutions are known to exist
in only extremely small special cases. Even determining a good numerical solution is relative costly. In order
to determine the motion of a single object in the simulation, we need to know the gravitational force induced by
the other n− 1 bodies of the system. In order to compute this force, it would seem that at a minimum we would
need Ω(n) computations per point, for a total of Ω(n2) total computations. The question is whether there is a
way to do this faster?
What we seek is a structure that allows us to encode the distance information of Ω(n2) pairs in a structure of
size only O(n). While this may seem to be an impossible task, a clever approximate answer to this question
was discovered by Greengard and Rokhlin in the mid 1980’s, and forms the basis of a technique called the fast
multipole method16 (or FMM for short). We will not discuss the FMM, since it would take us out of the way,
but will instead discuss the geometric structure that encodes much of the information that made the FMM such
a popular technique.

Well Separated Pairs: A set of n points in space defines a set of
(n
2

)

= Θ(n2) distinct pairs. To see how to encode
this set approximately, let us return briefly to the n-body problem. Suppose that we wish to determine the
gravitational effect of a large number of stars in a one galaxy on the stars of distant galaxy. Assuming that the
two galaxies are far enough away from each other relative to their respective sizes, the individual influences of
the bodies in each galaxy can be aggregated into a single physical force. If there are n1 and n2 points in the
respective galaxies, the interactions due to all n1 ·n2 pairs can be well approximated by a single interaction pair
involving the centers of the two galaxies.
To make this more precise, assume that we are given an n-element point set P in Rd, and a separation factor
s > 0. We say that two disjoint sets of A and B are s-well separated if the the sets A and B can be enclosed
within two Euclidean balls of radius r such that the closest distance between these balls is at least sr (see
Fig. 80).
Observe that if a pair of points is s-well separated, it is also s′-well separated for all s′ < s. Of course, since any
point lies within a (degenerate) ball of radius 0, it follows that a pair of singleton sets, {{a}, {b}}, for a &= b, is
well-separated for any s > 0.

Well Separated Pair Decomposition: Okay, distant galaxies are well separated, but if you were given an arbitrary
set of n points in Rd (which may not be as nicely clustered as the stars in galaxies) and a fixed separation factor
s > 0, can you concisely approximate all

(n
2

)

pairs? We will show that such a decomposition exists, and its
size is O(n). The decomposition is called a well separated pair decomposition. Of course, we would expect the
complexity to depend on s and d as well. The constant factor hidden by the asymptotic notion grows as O(sd).
Let’s make this more formal. Given arbitrary sets A and B, define A⊗B to be the set of all distinct (unordered)

16As an indication of how important this algorithm is, it was listed among the top-10 algorithms of the 20th century, along with quicksort, the
fast fourier transform, and the simplex algorithm for linear programming.
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Fig. 80: A well separated pair with separation factor s.

pairs from these sets, that is
A⊗B = {{a, b} | a ∈ A, b ∈ B, a &= b} .

Observe that A⊗ A consists of all the
(n
2

)

distinct pairs of A. Given a point set P and separation factor s > 0,
we define an s-well separated pair decomposition (s-WSPD) to be a collection of pairs of subsets of P , denoted
{{A1, B1}, {A2, B2}, . . . , {Am, Bm}}, such that

(1) Ai, Bi ⊆ P , for 1 ≤ i ≤ m

(2) Ai ∩Bi = ∅, for 1 ≤ i ≤ m

(3)
⋃m

i=1 Ai ⊗Bi = P ⊗ P

(4) Ai and Bi are s-well separated, for 1 ≤ i ≤ m

Conditions (1)–(3) assert we have a cover of all the unordered pairs of P , and (4) asserts that the pairs are well
separated. Although these conditions alone do not imply that every unordered pair from P occurs in a unique
pair Ai ⊗Bi, our construction will have this further property. An example is shown in Fig. 81. (Although there
appears to be some sort of hierarchical structure here, note that the pairs are not properly nested within one
another.)

28 pairs 12 well-separated pairs

Fig. 81: A point set and a well separated pair decomposition for separation s = 1.

Trivially, there exists a WSPD of size O(n2) by setting the {Ai, Bi} pairs to each of the distinct pair singletons
of P . Our goal is to show that, given an n-element point set P in Rd and any s > 0, there exists a s-WSPD
of size O(n) (where the constant depends on s and d). Before doing this, we must make a brief digression to
discuss the quadtree data structure, on which our construction is based.

Quadtrees: A quadtree is a hierarchical subdivision of space into regions, called cells, that are hypercubes. The
decomposition begins by assuming that the points of P lie within a bounding hypercube. For simplicity we may
assume that P has been scaled and translated so it lies within the unit hypercube [0, 1]d.
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The initial cell, associated with the root of the tree, is the unit hypercube. The following process is then repeated
recursively. Consider any unprocessed cell and its associated node u in the current tree. If this cell contains
either zero or one point of P , then this is declared a leaf node of the quadtree, and the subdivision process
terminates for this cell. Otherwise, the cell is subdivided into 2d hypercubes whose side lengths are exactly half
that of the original hypercube. For each of these 2d cells we create a node of the tree, which is then made a child
of u in the quadtree. (The process is illustrated in Fig. 82. The points are shown in Fig. 82(a), the node structure
in Fig. 82(b), and the final tree in Fig. 82(c).)
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Fig. 82: The quadtree for a set of eight points.

Although in practice, quadtrees as described above tend to be reasonably efficient in fairly small dimensions,
there are a number of important issues in their efficient implementation in the worst case. The first is that a
quadtree containing n points may have many more than O(n) nodes. The reason is that, if a group of points are
extremely close to one another relative to their surroundings, there may be an arbitrarily long trivial path in the
tree leading to this cluster, in which only one of the 2d children of each node is an internal node (see Fig. 83(a)).

(a) (b)

compress

Fig. 83: Compressed quadtree: (a) The original quadtree, (b) after path compression.

This issue is easily remedied by a process called path compression. Every such trivial path is compressed into a
single link. This link is labeled with the coordinates of the smallest quadtree box that contains the cluster (see
Fig. 83(b)). The resulting data structure is called a compressed quadtree. Observe that each internal node of the
resulting tree separates at least two points into separate subtrees. Thus, there can be no more than n− 1 internal
nodes, and hence the total number of nodes is O(n).
A second issue involves the efficient computation of the quadtree. It is well known that the tree can be computed
in time O(hn), where h is the height of the tree. However, even for a compressed quadtree the tree height can
be as high as n, which would imply an O(n2) construction time. We will not discuss it here, but it can be shown
that in any fixed dimension it is possible to construct the quadtree of an n-element point set in O(n log n) time.
(The key is handling uneven splits efficiently. Such splits arise when one child contains almost all of the points,
and all the others contain only a small constant number.)
The key facts that we will use about quadtrees below are:

(a) Given an n-element point set P in a space of fixed dimension d, a compressed quadtree for P of sizeO(n)
can be constructed in O(n log n) time.

(b) Each internal node has a constant number (2d) children.
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(c) The cell associated with each node of the quadtree is a d-dimensional hypercube, and as we descend from
the parent to a child (in the uncompressed quadtree), the size (side length) of the cells decreases by a factor
of 2.

(d) The cells associated with any level of the tree (where tree levels are interpreted relative to the uncompressed
tree) are of the same size and all have pairwise disjoint interiors.

An important consequence stemming from (c) and (d) is the following lemma, which provides an upper bound
on the number of quadtree disjoint quadtree cells of size at least x that can overlap a ball of radius r.

Packing Lemma: Consider a ball b of radius r in any fixed dimension d, and consider any collection X of
pairwise disjoint quadtree cells of side lengths at least x that overlap b. Then

|X| ≤
(

1 +

⌈

2r

x

⌉)d

≤ O

(

max
(

2,
r

x

)d
)

Proof: We may assume that all the cells of X are of side length exactly equal to x, since making cells larger
only reduces the number of overlapping cells (see Fig. 84(b)).

(a) (b)

b

r

x

b

x
2r

G

H

Fig. 84: Proof of the Packing Lemma.

By the nature of a quadtree decomposition, the cells of side length x form a hypercube grid G of side
length x. Consider a hypercube H of side length 2r that encloses b (see Fig. 84). Clearly every cell of
X overlaps this hypercube. Along each dimension, the number of cells of G that can overlap an interval
of side length 2r is at most 1 + *2r/x+. Thus, the number of grid cubes of G that overlap H is at most
(1 + *2r/x+)d. If 2r < x, this quantity is at most 2d, and otherwise it is O((r/x)d).

For the construction of the WSPD, we need to make a small augmentation to the quadtree structure. We wish
to associate each node of the tree, both leaves and internal nodes, with a point that lies within its cell (if such a
point exists). Given a node u, we will call this point u’s representative and denote this as rep(u). We do this
recursively as follows. If u is a leaf node that contains a point p, then rep(u) = {p}. If u is a leaf node that
contains no point, then rep(u) = ∅. Otherwise, if u is an internal node, then it must have at least one child v that
is not an empty leaf. (If there are multiple nonempty children, we may select any one.) Set rep(u) = rep(v).
Given a node u in the tree, let Pu denote the points that lie within the subtree rooted at u. We will assume that
each node u is associated with its level in the tree, denoted level(u). Assuming that the original point set lies
within a unit hypercube, the side lengths of the cells are of the form 1/2i, for i ≥ 0. We define level(u) to
be − log2 x, where x is the side length of u’s cell. Thus, level(u) is just the depth of u in the (uncompressed)
quadtree, where the root has depth 0. The key feature of level is that level(u) ≤ level(v) holds if and only if the
sidelength of u’s cell at least as large as that of v’s cell.

Constructing a WSPD: We now have the tools needed to to show that, given an n-element point set P in Rd and
any s > 0, there exists a s-WSPD of size O(sdn), and furthermore, this WSPD can be computed in time that
is roughly proportional to its size. In particular, the construction will take O(n log n + sdn) time. We will
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show that the final WSPD can be encoded in O(sdn) total space. Under the assumption that s and d are fixed
(independent of n) then the space is O(n) and the construction time is O(n log n).
The construction operates as follows. Recall the conditions (1)–(4) given above for a WSPD. We will maintain
a collection of sets that satisfy properties (1) and (3), but in general they may violate conditions (2) and (4),
since they may not be disjoint and may not be well separated. When the algorithm terminates, all the pairs will
be well-separated, and this will imply that they are disjoint. Each set {Ai, Bi} of the pair decomposition will
be encoded as a pair of nodes {u, v} in the quadtree. Implicitly, this pair represents the pairs Pu ⊗ Pv , that is,
the set of pairs generated from all the points descended from u and all the points descended from v. This is
particularly nice, because it implies that the total storage requirement is proportional to the number of pairs in
the decomposition.

(a) (b)

u

v

u1
v

u2

u3

u4

u1

u

u2 u3 u4 v u1

u

u2 u3 u4 v

Fig. 85: WSPD recursive decomposition step.

The algorithm is based on a recursive subdivision process. Consider a pair of nodes {u, v} that arise in the
decomposition process. First, let us assume that u’s cell is least as large as v’s. That is, u’s level number is not
greater than v’s. Consider the two smallest Euclidean balls of equal radius that enclose u’s cell and v’s cell (see
Fig. 85(a)). If these balls are well separated, then we can report {u, v} as (the encoding of) a well separated pair.
Otherwise, we subdivide u by considering its children, and apply the procedure recursively to the pairs {ui, v},
for each child of ui of u (see Fig. 85(b)).
A more formal presentation of the algorithm is presented in the following code block. The procedure is called
ws-pairs(u, v, s), where u and v are the current nodes of a compressed quadtree for the point set, and s is the
separation factor. The procedure returns a set node pairs, encoding the well separated pairs of the WSPD. The
initial call is ws-pairs(u0, u0, s), where u0 is the root of the compressed quadtree.

Construction of a Well Separated Pair Decomposition
ws-pairs(u, v, s) {

if (rep(u) or rep(v) is empty) return ∅; // no pairs to report
else if (u and v are s-well separated) // (see remark below)

return {{u, v}}; // return the WSP {Pu, Pv}
else { // subdivide

if (level(u) > level(v)) swap u and v; // swap so that u’s cell is at least as large as v’s
Let u1, . . . , um denote the children of u;
return

⋃m
i=1

ws-pairs(ui, v, s); // recurse on children
}

}

How do we test whether two nodes u and v are s well separated? For each internal node, consider the smallest
Euclidean balls enclosing the associated quadtree box. For each leaf node, consider a degenerate ball of radius
zero that contains the point. In O(1) time, we can determine whether these balls are s well separated. Note that
a pair of leaf cells will always pass this test (since the radius is zero), so the algorithm will eventually terminate.
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Note that, due to its symmetry, this procedure will generally produce duplicate pairs {Pu, Pv} and {Pv, Pu}. A
simple disambiguation rule can be applied to eliminate one of them.

Analysis: How many pairs are generated by this recursive procedure? It will simplify our proof to assume that the
quadtree is not compressed (and yet it has size O(n)). This allows us to assume that the children of each node
all have cell sizes that are exactly half the size of their parent’s cell. (We leave the general case as an exercise.)
From this assumption, it follows that whenever a call is made to ws-pairs, the sizes of the cells of the two nodes
u and v differ by at most a factor of two (because we always split the larger of the two cells). It will also simplify
the proof to assume that s ≥ 1 (if not, replace all occurrences of s below withmax(s, 1)).
To evaluate the number of well separated pairs, we will count calls to ws-pairs. We say that a call to ws-pairs
is terminal if it does not make it to the final “else” clause. Each terminal call generates at most one new well
separated pair, and so it suffices to count the number of terminal calls to ws-pairs. In order to do this, we will
instead bound the number of nonterminal calls. Each nonterminal call generates at most 2d recursive calls (and
this is the only way that terminal calls may arise). Thus, the total number of well separated pairs is at most 2d
times the number of nonterminal calls to ws-pairs.
To count the number of nonterminal calls to ws-pairs, we will apply a charging argument to the nodes of the
compressed quadtree. Each time we make it to the final “else” clause and split the cell u, we assign a charge
to the “unsplit” cell v. Recall that u is generally the larger of the two, and thus the smaller node receives the
charge. We assert that the total number of charges assigned to any node v is O(sd). Because there are O(n)
nodes in the quadtree, the total number of nonterminal calls will be O(sdn), as desired. Thus, to complete the
proof, it suffices to establish this assertion about the charging scheme.
A charge is assessed to node v only if the call is nonterminal, which implies that u and v are not s-well separated.
Let x denote the side length of v’s cell and let rv = x

√
d/2 denote the radius of the ball enclosing this cell. As

mentioned earlier, because we are dealing with an uncompressed quadtree, and the construction always splits
the larger cell first, we may assume that u’s cell has a side length of either x or 2x. Therefore, the ball enclosing
u’s cell is of radius ru ≤ 2rv . Since u and v are not well separated, it follows that the distance between their
enclosing balls is at most s · max(ru, rv) ≤ 2srv = sx

√
d. The centers of their enclosing balls are therefore

within distance

rv + ru + sx
√
d ≤

(

1

2
+ 1 + s

)

x
√
d ≤ 3sx

√
d (since s ≥ 1),

which we denote by Rv (see Fig. 86(a)).

v

u

x

rv

Rv

≤ sx
√
d

bv

Fig. 86: WSPD analysis.

Let bv be a Euclidean ball centered at v’s cell of radiusRv . Summarizing the above discussion, we know that the
set of quadtree nodes u that can assess a charge to v have cell sizes of either x or 2x and overlap bv . Clearly the
cells of side length x are disjoint from one another and the cells of side length 2x are disjoint from one another.
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Thus, by the Packing Lemma, the total number of nodes that can assess a charge to node v is at most C, where

C ≤
(

1 +

⌈

2Rv

x

⌉)d

+

(

1 +

⌈

2Rv

2x

⌉)d

≤ 2

(

1 +

⌈

2Rv

x

⌉)d

≤ 2

(

1 +

⌈

6sx
√
d

x

⌉)d

≤ 2(1 + 6s
√
d)d ≤ O(sd),

as desired.
Putting this all together, we recall that there are O(n) nodes in the compressed quadtree and O(sd) charges
assigned to any node of the tree, which implies that there are a total of O(sdn) total nonterminal calls to ws-
pairs. As observed earlier, the total number of well separated pairs is larger by a factor of O(2d), which is just
O(1) since d is a constant. Together with the O(n log n) time to build the quadtree, this gives an overall running
time of O((n log n) + sdn) and O(sdn) total well separated pairs. In summary we have the following result.

Theorem: Given a point set P in Rd, and a fixed separation factor s ≥ 1, inO(n log n+sdn) time it is possible
to build an s-WSPD for P consisting of O(sdn) pairs.

As mentioned earlier, if 0 < s < 1, then replace s with max(s, 1). Next time we will consider applications of
WSPDs to solving a number of geometric approximation problems.

Lecture 19: Applications of WSPDs
Review: Recall that given a parameter s > 0, we say that two sets of A and B are s-well separated if the sets can

be enclosed within two spheres of radius r such that the closest distance between these spheres is at least sr.
Given a point set P and separation factor s > 0, recall that an s-well separated pair decomposition (s-WSPD)
is a collection of pairs of subsets of P {{A1, B1}, {A2, B2}, . . . , {Am, Bm}} such that

(1) Ai, Bi ⊆ P , for 1 ≤ i ≤ m
(2) Ai ∩Bi = ∅, for 1 ≤ i ≤ m
(3)

⋃n
i=1 Ai ⊗Bi = P ⊗ P

(4) Ai and Bi are s-well separated, for 1 ≤ i ≤ m,

where A⊗B denotes the set of all unordered pairs from A and B.
Last time we showed that, given s ≥ 2, there exists an s-WSPD of sizeO(sdn), which can be constructed in time
O(n log n+sdn). (The algorithm works for any s > 0, and the sd term is more accurately stated asmax(2, s)d.)
The WSPD is represented as a set of unordered pairs of nodes of a compressed quadtree decomposition of P . It
is possible to associate each nonempty node u of the compressed quadtree with a representative point, denoted
rep(u), chosen from its descendants. We will make use of this fact in some of our constructions below.
Today we discuss a number of applications of WSPDs.

Approximating the Diameter: Recall that the diameter of a point set is defined to be the maximum distance between
any pair of points of the set. (For example, the points x and y in Fig. 87(a) define the diameter.)
The diameter can be computed exactly by brute force in O(n2) time. For points in the plane, it is possible to
compute the diameter17 in O(n log n) time. Generalizing this method to higher dimensions results in an O(n2)
running time, which is no better than brute force search.
Using the WSPD construction, we can easily compute an ε-approximation to the diameter of a point set P in
linear time. Given ε, we let s = 4/ε and construct an s-WSPD. As mentioned above, each pair (Pu, Pv) in
our WSPD construction consists of the points descended from two nodes, u and v, in a compressed quadtree.

17This is nontrivial, but is not much harder than a homework exercise. In particular, observe that the diameter points must lie on the convex hull.
After computing the hull, it is possible to perform a rotating sweep that finds the diameter.
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Fig. 87: Approximating the diameter.

Let pu = rep(u) and pv = rep(v) denote the representative points associated with u and v, respectively. For
every well separated pair {Pu, Pv}, we compute the distance ‖pupv‖ between their representative, and return
the largest such distance.
To prove correctness, let x and y be the points of P that realize the diameter. Let {Pu, Pv} be the well separated
pair containing these points, and let pu and pv denote their respective representatives. By definition of well
separatedness, we know that Pu and Pv can be enclosed in balls of radius r that are separated by distance at
least sr (see Fig. 87(b)). Therefore, by the triangle inequality we have

‖xy‖ ≤ ‖pupv‖+ 2r + 2r = ‖pupv‖+ 4r.

Also, by the WSPD separation properties, we have ‖pupv‖ ≥ sr implying that r ≤ ‖pupv‖/s. Combining these
we have

‖xy‖ ≤ ‖pupv‖+ 4r ≤ ‖pupv‖+
4

s
‖pupv‖

=

(

1 +
4

s

)

‖pupv‖ = (1 + ε)‖pupv‖,

Clearly, ‖pupv‖ ≤ ‖xy‖, and therefore we have

‖xy‖
1 + ε

≤ ‖pupv‖ ≤ ‖xy‖,

which implies that the output is an ε-approximation. The running time is dominated by the size of the WSPD,
which is O(sdn) = O(n/εd). If we treat ε as a constant, this is O(n).

Closest Pair: The same sort of approach could be used to produce an ε-approximation to the closest pair as well,
but surprisingly, there is a much better solution. If we were to generalize the above algorithm, we would first
compute an s-WSPD for an appropriate value of s, and for each well separated pair {Pu, Pv}we would compute
the distance ‖pupv‖, where pu = rep(u) and pv = rep(v), and return the smallest such distance. As before, we
would like to argue that (assuming s is chosen properly) this will yield an approximation to the closest pair. It
is rather surprising to note that, if s is chosen carefully, this approach yields the exact closest pair, not just an
approximation.
To see why, consider a point set P , let x and y be the closest pair of points and let pu and pv be the representatives
from their associated well separated pair. If it were the case that x = pu and y = pv , then the representative-
based distance would be exact. Suppose therefore that either x &= pu or y &= pv . But wait! If the separation
factor is high enough, this would imply that either ‖xpu‖ < ‖xy‖ or ‖ypv‖ < ‖xy‖, either of which contradicts
the fact that x and y are the closest pair.
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To make this more formal, let us assume that {x, y} is the closest pair and that s > 2. We know that Pu and Pv

lie within balls of radius r that are separated by a distance of at least sr > 2r. If pu &= x, then we have

‖pux‖ ≤ 2r < sr ≤ ‖xy‖,

yielding a contradiction. Therefore pu = rep(u) = x. By a symmetrical argument pv = rep(v) = y. Since
the representative was chosen arbitrarily, it follows that the Pu = {x} and Pv = {y}. Therefore, the closest
representatives are in fact, the exact closest pair.
Since s can be chosen to be arbitrarily close to 2, the running time is O(n log n+ 2dn) = O(n log n), since we
assume that d is a constant. Although this is not a real improvement over our existing closest-pair algorithm, it
is interesting to note that there is yet another way to solve this problem.

Spanner Graphs: Recall that a set P of n points in Rd defines a complete weighted graph, called the Euclidean
graph, in which each point is a vertex, and every pair of vertices is connected by an edge whose weight is the
Euclidean distance between these points. This graph is dense, meaning that it hasΘ(n2) edges. It would be nice
to have a sparse graph having only O(n) edges that approximates the Euclidean graph in some sense.
One such notion is to approximate the distances (length of the shortest path) between all pairs of vertices. A
subgraph of a graph that approximates all shortest paths is called a spanner. In the geometric context, suppose
that we are given a set P and a parameter t ≥ 1, called the stretch factor. We define a t-spanner to be a weighted
graph G whose vertex set is P and, given any pair of points x, y ∈ P we have

‖xy‖ ≤ δG(x, y) ≤ t · ‖xy‖,

where δG(x, y) denotes the length of the shortest path between x and y in G.

WSPD-based Spanner Construction: Do sparse geometric spanners exist? Remarkably, we have actually already
seen one. It can be proved that the planar Delaunay triangulation is a t-spanner, for some t, where 1.5932 ≤ t ≤
1.998. The tightest value of t is not known.18

There are many different ways of building sparse spanners. Here we will discuss a straightforward method based
on a WSPD of the point set. The idea is to create one edge for each well-separated pair. More formally, suppose
that we are given a point set P and stretch factor t > 1. We begin by computing a WSPD for an appropriate
separation factor s depending on t. (We will prove later that the separation value s = 4(t+1)/(t−1) will do the
job). For each well-separated pair {Pu, Pv} associated with the nodes u and v of the quadtree, let pu = rep(u)
and let pv = rep(v). Add the undirected edge {pu, pv} to our graph. LetG be the resulting undirected weighted
graph (see Fig. 88). We claim that G is the desired spanner. Clearly the number of edges of G is equal to the
number of well-separated pairs, which is O(sdn), and can be built in the same O(n log n + sdn) running time
as the WSPD construction.

Correctness: To establish the correctness of our spanner construction algorithm, it suffices to show that for all pairs
x, y ∈ P , we have

‖xy‖ ≤ δG(x, y) ≤ t · ‖xy‖.

Clearly, the first inequality holds trivially, because (by the triangle inequality) no path in any graph can be shorter
than the distance between the two points. To prove the second inequality, we apply an induction based on the
number of edges of the shortest path in the spanner.
For the basis case, observe that, if x and y are joined by an edge in G, then clearly δG(x, y) = ‖xy‖ < t · ‖xy‖
for all t > 1.
If, on the other hand, there is no direct edge between x and y, we know that x and y must lie in some well-
separated pair {Pu, Pv} defined by the pair of nodes {u, v} in the quadtree. let pu = rep(u) and pv = rep(v) be

18The lower bound of 1.5932 appears in “Toward the Tight Bound of the Stretch Factor of Delaunay Triangulations,” by G. Xia and L. Zhang,
Proc. CCCG, 2011. The upper bound of 1.998 appears in “Improved Upper Bound on the Stretch Factor of Delaunay Triangulations,” by G. Xia,
Proc. SoCG, 2011.
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Fig. 88: A WSPD and its associated spanner.

the respective representative representative. (It might be that pu = x or pv = y, but not both.) Let us consider
the length of the path from x to pu to pv to y. Since the edge {pu, pv} is in the graph, we have

δG(x, y) ≤ δG(x, pu) + δG(pu, pv) + δG(pv, y)

≤ δG(x, pu) + ‖pupv‖+ δG(pv, y).

(See Fig. 89.)

r r

≥ sr
x

puPu Pv
pv

y

Fig. 89: Proof of the spanner bound.

Since the paths from x to pu and pv to y are subpaths, and hence shorter than the overall path, we may apply the
induction hypothesis, which yields δG(x, pu) ≤ t‖xpu‖ and δG(pv, y) ≤ t‖pvy‖, yielding

δG(x, y) ≤ t(‖xpu‖+ ‖pvy‖) + ‖pupv‖. (1)

Let s denote the separation factor for the WSPD. Since Pu and Pv are s-well separated, we know that each
of these point sets can be enclosed within a ball of radius r such that the two balls are separated by distance
at least sr. Thus, we have max(‖xpu‖, ‖pvy‖) ≤ 2r, and ‖xy‖ ≥ sr. From the second inequality we have
r ≤ ‖xy‖/s. By the triangle inequality, we have

‖pupv‖ ≤ ‖pux‖+ ‖xy‖+ ‖ypv‖ ≤ 2r + ‖xy‖+ 2r ≤ 4r + ‖xy‖.

Combining these observations with Eq. (1) we obtain

δG(x, y) ≤ t(2r + 2r) + (4r + ‖xy‖) ≤ 4r(t+ 1) + ‖xy‖.

From the fact that r ≤ ‖xy‖/s we have

δG(x, y) ≤
4(t+ 1)

s
‖xy‖+ ‖xy‖ ≤

(

1 +
4(t+ 1)

s

)

‖xy‖.
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To complete the proof, observe that it suffices to select s so that 1 + 4(t + 1)/s ≤ t. We easily see that this is
true if s is chosen so that

s = 4

(

t+ 1

t− 1

)

.

Since we assume that t > 1, this is possible for any t. Thus, substituting this value of s, we have

δG(x, y) ≤
(

1 +
4(t+ 1)

4(t+ 1)/(t− 1)

)

‖xy‖ = (1 + (t− 1))‖xy‖ = t · ‖xy‖,

which completes the correcness proof.
The number of edges in the spanner is O(sdn). Since spanners are most interesting for small stretch factors, let
us assume that t ≤ 2. If we express t as t = 1 + ε for ε ≤ 1, we see that the size of the spanner is

O(sdn) = O

(

(

4
(1 + ε) + 1

(1 + ε)− 1

)d

n

)

≤ O

(

(

12

ε

)d

n

)

= O
( n

εd

)

.

In conclusion, we have the following theorem:

Theorem: Given a point set P in Rd and ε > 0, a (1 + ε)-spanner for P containing O(n/εd) edges can be
computed in time O(n log n+ n/εd).

Approximating the Euclidean MST: We will now show that with the above spanner result, we can compute an ε-
approximation to the minimum spanning tree. Suppose we are given a set P of n points in Rd, and we wish to
compute the Euclidean minimum spanning tree (MST) of P . Given a graph with v vertices and e edges, it is well
known that the MST can be computed in time O(e+ v log v). It follows that we can compute the MST of a set
of points in any dimension by first constructing the Euclidean graph and then computing its MST, which takes
O(n2) time. To compute the approximation to the MST, we first construct a (1 + ε)-spanner, call it G, and then
compute and return the MST ofG (see Fig. 90). This approach has an overall running time of O(n log n+sdn).

Euclidean graph Euclidean MST Spanner Approximate MST

Fig. 90: Approximating the Euclidean MST.

To see why this works, for any pair of points {x, y}, let w(x, y) = ‖xy‖ denote the weight of the edge between
them in the complete Euclidean graph. Let T denote the edges of the Euclidean minimum weight spanning tree,
and w(T ) denote the total weight of its edges. For each edge {x, y} ∈ T , let πG(x, y) denote the shortest path
(as a set of edges) between x and y in the spanner, G. Since G is a spanner, we have

w(πG(x, y)) = δG(x, y) ≤ (1 + ε)‖xy‖.

Now, consider the subgraph G′ ⊆ G formed by taking the union of all the edges of πG(x, y) for all {x, y} ∈ T .
That is, G and G′ have the same vertices, but each edge of the MST is replaced by its spanner path. Clearly, G′
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is connected (but it may not be a tree). We can bound the weight of G′ in terms of the weight of the Euclidean
MST:

w(G′) =
∑

{x,y}∈T

w(πG(x, y)) ≤
∑

{x,y}∈T

(1 + ε)‖xy‖

= (1 + ε)
∑

{x,y}∈T

‖xy‖ = (1 + ε)w(T ).

However, because G and G′ share the same vertices, and the edge set of G′ is a subset of the edge set of G, it
follows thatw(MST(G) ≤ w(MST(G′)). (To see this, observe that if you have fewer edges from which to form
the MST, you may generally be forced to use edges of higher weight to connect all the vertices.) Combining
everything we have

w(MST(G)) ≤ w(MST(G′)) ≤ w(G′) ≤ (1 + ε)w(T ),

yielding the desired approximation bound.

Lecture 20: Coresets for Directional Width
Coresets: One of the issues that arises when dealing with very large geometric data sets, especially in multi-dimensional

spaces, is that the computational complexity of many geometric optimization problems grows so rapidly that it
is not feasible to solve the problem exactly. In the previous lecture, we saw how the concept of a well-separated
pair decomposition can be used to approximate a quadratic number of objects (all pairs) by a smaller linear
number of objects (the well separated pairs). Another approach for simplifying large data sets is to apply some
sort of sampling. The idea is as follows. Rather than solve an optimization problem on some (large) set P ⊂ Rd,
we will extract a relatively small subset Q ⊆ P , and then solve the problem exactly on Q.
The question arises, how should the setQ be selected and what properties should it have in order to guarantee a
certain degree of accuracy? Consider the following example from geometric statistics. A set P of n points in R2

definesO(n3) triangles whose vertices are drawn from P . Suppose that you wanted to estimate the average area
of these triangles. You could solve this naively in O(n3) time, but the central limit theorem from probability
theory states that the average of a sufficiently large random sample will be a reasonable estimate to the average.
This suggests that a good way to select Q is to take a random sample of P .
Note, however, that random sampling is not always the best approach. For example, suppose that you wanted to
approximate the minimum enclosing ball (MEB) for a point set P (see Fig. 91(a)). A random subset may result
in a ball that is much smaller than the MEB. This will happen, for example, if P is densely clustered but with
a small number of distant outlying points (see Fig. 91(b)). In such a case, the sampling method should favor
points that are near the extremes of P ’s distribution (see Fig. 91(c)).

exact MEB MEB of random sample MEB of coreset

(a) (b) (c)

Fig. 91: Approximating the minimum enclosing ball (MEB): (a) exact solution, (b) MEB of a random sample, (c)
MEB of a possible coreset.
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Abstractly, consider any optimization problem on point sets. For a point set P , let f∗(P ) denote the value of the
optimal solution. Given ε > 0, we say that subset Q ⊆ P is an ε-coreset for this problem if, the relative error
committed by solving the problem on Q is at most ε, that is:

1− ε ≤ f∗(Q)

f∗(P )
≤ 1 + ε.

For a given optimization problem, the relevant questions are: (1) does a small coreset exist? (2) if so, how large
must the coreset be to guarantee a given degree of accuracy? (3) how quickly can such a coreset be computed?
Ideally, the coreset should be significantly smaller than n. For many optimization problems, the coreset size is
actually independent of n (but does depend on ε).
In this lecture, we will present algorithms for computing coresets for a problem called the directional width.
This problem can be viewed as a way of approximating the convex hull of a point set.

Directional Width and Coresets: Consider a set P of points in real d-dimensional space Rd. Given vectors #u,#v ∈
Rd, let (#v · #u) denote the standard inner (dot) product in Rd. From basic linear algebra we know that, given any
vector #u of unit length, for any vector #v, (#v ·#u) is the length of #v’s orthogonal projection onto #u. The directional
width of P in direction #u is defined to be the minimum distance between two hyperplanes, both orthogonal to
#u, that has P “sandwiched” between them. More formally, if we think of each point p ∈ P as a vector #p ∈ Rd,
the directional width can be formally defined to be

WP (#u) = max
p∈P

(#p · #u)−min
p∈P

(#p · #u)

(see Fig. 92(a)). Note that this is a signed quantity, but we are typically interested only in its magnitude.

(a)

P

!uWP (!u)

(b)

P

!u
WC(!u)

Fig. 92: Directional width and coresets. In (b) the points of C are shown as black points.

The directional width has a number of nice properties. For example, it is invariant under translation and it scales
linearly if P is uniformly scaled.
Note that the only points of P that are relevant to the directional width are the points of the convex hull of P ,
that is, conv(P ). Although we can compute conv(P ) in O(n log n) time in R2, the combinatorial complexity of
the hull may be as large as Ω(n$d/2%) in Rd. We seek a more space efficient solution, but we will allow for an
approximation error.
Given 0 < ε < 1, we say that a subset C ⊆ P is an ε-coreset for directional width if, for any unit vector #u,

WC(u) ≥ (1− ε)WP (u).

That is, the perpendicular width of the minimum slab orthogonal to #u for Q is smaller than that of P by a factor
of only (1 − ε) (see Fig. 92(b)). We will show that, given an n-element point set P in Rd, it is possible to
compute an ε-coreset for directional width of size O(1/ε(d−1)/2). For the rest of this lecture, the term “coreset”
will mean “coreset for directional width,” and if not specified, the approximation parameter is ε.
Note that coresets combine nicely. In particular, it is easy to prove the following:
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Chain Property: If X is an ε-coreset of Y and Y is an ε′-coreset of Z, then X is an (ε+ ε′) coreset of Z.
Union Property: IfX is an ε-coreset of P andX ′ is an ε-coreset of P ′, thenX ∪X ′ is an ε-coreset of P ∪P ′.

Quick-and-Dirty Construction: Let’s begin by considering a very simple, but not very efficient, coreset for direc-
tional widths. We will apply the a utility lemma, which states that it is possible to reduce the problem of
computing a coreset for directional widths to one in which the convex hull of the point set is “fat”.
Before giving the lemma, let us give a definition. Let B denote a d-dimensional unit ball, and for any scalar
λ > 0, let λB be a scaled copy of B by a factor λ. Given α ≤ 1, we say that a convex body K in Rd is α-fat
if there exist two positive scalars λ1 and λ2, such that K lies within a translate of λ2B, K contains a translate
of λ1B, and λ1/λ2 = α (see Fig. 93(a)). Observe that any Euclidean ball is 1-fat. A line segment is 0-fat. It
is easy to verify that a d-dimensional hypercube is (1/

√
d)-fat. We say that a point set P is α-fat if its convex

hull, conv(P ), is α-fat (see Fig. 93(b)).

(a)

λ1

K

(b)

α = λ1
λ2

λ2
λ1

λ2
P

Fig. 93: The definition of α-fatness for: (a) a convex body K and (b) for a point set P .

Lemma 1: Given an n-element point set P ⊂ Rd, there exists a linear transformation T such that TP is
contained within a unit ball and is α-fat, where α is a constant depending only on the dimension. Also,
a subset C ⊆ P is a directional-width ε-coreset for P if and only if TC is a directional-width ε-coreset.
The transformation T can be computed in O(n) time.

Proof: (Sketch) LetK = conv(P ). If computation time is not an issue, it is possible to use a famous fact from
the theory of convexity. This fact, called John’s Theorem, states that if E is a maximum volume ellipsoid
contained within K, then (subject to a suitable translation) K is contained within dE, where dE denotes
a scaled copy of E by a factor of d (the dimension). Take T to be the linear transformation that stretches
dE into a unit ball (see Fig. 94(a)–(b)). (For example, through an appropriate rotation, we can align the
principal axes of E with the coordinate axes and then apply a scaling factor to each of the coordinate axes
so that each principal axis of is of length 1/d. The expanded ellipse will be mapped to a unit ball, and we
have α = 1/d.)

(a) (b) (c) (d)

!u
!v

!w

(TT)−1!w
P TP

∈ TC

∈ TP

(TT)−1!v

(TT)−1!u

∈ C

∈ P

Fig. 94: Proof of Lemma 1.

The resulting transformation will not generally preserve directional widths, but for our purposes, it suffices
that it preserves the ratios of directional widths. (More formally, through basic linear algebra, we can show
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that for any unit vector #u the ratio of the widths two sets C and P along #u is equal to the ratio of the widths
of TC and TP relative to the transformed direction (TT)−1#u (see Fig. 94(c)–(d)). We will omit the simple
proof.) The maximum ratio of directional widths (over all unit vectors #u) is therefore preserved, which
implies that the coreset condition is also preserved.
To obtain the O(n) running time, it suffices to compute a constant factor approximation to the John ellip-
soid. Such a construction has been given by Barequet and Har-Peled.

Armed with the above lemma, we may proceed as follows to compute our quick-and-dirty coreset. First, we
assume that P has been fattened, by the above procedure. P is contained within a unit ball B and that convP
contains a translate of the shrunken ball αB. Because P is sandwiched between αB and B, it follows that the
width of P along any direction is at least 2α and at most 2. Since no width is smaller than 2α, in order to
achieve a relative error of ε, it suffices to approximate any width to an absolute error of at most 2αε, which we
will denote by ε′.
Let H = [−1,+1]d be a hypercube that contains B. Subdivide H into a grid of hypercubes whose diameters
are at most ε′/2 (see Fig. 95(a)). Each edge of H will be subdivided into O(1/ε′) = O(1/ε) intervals. Thus,
the total number of hypercubes in the grid is O(1/εd). For each such hypercube, if it contains a point of P , add
any one such point to C. The resulting number of points of C cannot exceed the number of hypercubes, which
is O(1/εd).

(a)

ε′/2

(b)

ε′/2
H H

∈ C
∈ P

∈ C
∈ P

Fig. 95: The quick-and-dirty coreset construction: (a) of size O(1/εd) and (b) the improved construction of of size
O(1/εd−1).

We can do this efficiently by hashing each point according to the index of the hypercube it lies within. We retain
one point from each nonempty hash bucket. This can be done in O(n) time.

Theorem 2: Given an n-element point set P ⊂ Rd, in O(n) time it is possible to compute an ε-coreset of size
O(1/εd) for directional width.

Proof: It suffices the establish the correctness of the above construction. For each point p ∈ P there is a
point of C within distance ε′/2. Therefore, given any direction #u, if p1 and p2 are the two points of P that
determine the extremes of the width along this direction, then we can find two points q1 and q2 inC that are
within distance ε′/2 of each, implying that the resulting width is within (absolute) distance 2(ε′/2) = ε′

of the true width. As established above, since the width in any direction is at least 2α, the relative error is
at most

ε′

2α
=

2αε

2α
= ε,

as desired.

Improved Construction: It is possible make a small improvement in the size of the quick-and-dirty coreset. Observe
from Fig. 95(a) that we may select many points from the interior of conv(P ), which clearly can play no useful
role in the coreset construction. Rather than partitionH into small hypercubes, we can instead partition the upper
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(d− 1)-dimensional facet of H into O(1/εd−1) cubes of diameter ε′/2, and then extrude each into a “column”
that passes through H . For each column, take the highest and lowest point to add to C (see Fig. 95(b)). We
leave it as an easy geometric exercise to show that this set of points suffices.

Smarter Coreset Construction: The above coreset construction has the advantage of simplicity, but, as shall see
next, it is possible to construct much smaller coresets for directional widths. We will reduce the size from
O(1/εd−1) to O(1/ε(d−1)/2), thus reducing the exponential dependency by half.
Our general approach will be similar to the one taken above. First, we will assume that the point set P has been
“fattened” so that it lies within a unit ball, and its convex hull contains a ball of radius at least α, where α ≤ 1 is
a constant depending on dimension. As observed earlier, since the width of P in any direction is at least 2α, in
order to achieve a relative error of ε, it suffices to compute a coreset whose absolute difference in width along
any direction is at most ε′ = 2αε.
A natural approach to solving this problem would involve uniformly sampling a large number (depending on ε)
of different directions #u, computing the two extreme points that maximize and minimize the inner product with
#u and taking these to be the elements of C. It is noteworthy, that this construction does not result in the best
solution. In particular, it can be shown that the angular distance between neighboring directions may need to
be as small as ε, and this would lead to O(1/εd−1) sampled directions, which is asymptotically the same as the
(small improvement to) the quick-and-dirty method. The approach that we will take is similar in spirit, but the
sampling process will be based not on computing extreme points but instead on computing nearest neighbors.
We proceed as follows. Recall that P is contained within a unit ball B. Let S denote the sphere of radius 2
that is concentric with B. (The expansion factor 2 is not critical. Any constant factor expansion works, but the
constants in the analysis will need to be adjusted.) Let δ =

√

εα/4. (The source of this “magic number” will
become apparent later.) On the sphere S, construct a δ-dense set of points, denoted Q (see Fig. 96). This means
that, for every point on S, there is a point of Q within distance δ. The surface area of S is constant, and since
the sphere is a manifold of dimension d− 1, it follows that |Q| = O(1/δd−1) = O(1/ε(d−1)/2). For each point
of Q, compute its nearest neighbor in P .19 Let C denote the resulting subset of P . We will show that C is the
desired coreset.

S

conv(P )

∈ Q

∈ C

Fig. 96: Smarter coreset construction. (Technically, the points of Q are connected to the closest point of P , not
conv(P ).)

In the figure we have connected each point ofQ to its closest point on conv(P ). It is a bit easier to conceptualize
the construction as sampling points from conv(P ). (Recall that the coreset definition requires that the coreset
is a subset of P .) There are a couple of aspects of the construction that are noteworthy. First, observe that
the construction tends to sample points of P that lie close to regions where the curvature of P ’s convex hull is
higher (see Fig. 96). This is useful, because areas of high curvature need more points to approximate them well.

19This clever construction was discovered in the context of polytope approximation independently by E. M. Bronstein and L. D. Ivanov, “The
approximation of convex sets by polyedra,” Siber. Math J., 16, 1976, 852–853 and R. Dudley, “Metric entropy of some classes of sets with
differentiable boundaries,” J. Appr. Th., 10, 1974, 227–236.
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Also, because the points on S are chosen to be δ-dense on S, it can be shown that they will be at least this dense
on P ’s convex hull. Before presenting the proof of correctness, we will prove a technical lemma.

Lemma 2: Let 0 < δ ≤ 1/2, and let q, q′ ∈ Rd such that ‖q‖ ≥ 1 and ‖q′− q‖ ≤ δ (see Fig. 97). Let B(q′) be
a ball centered at q′ of radius ‖q′‖. Let #u be a unit length vector from the origin to q. Then

min
p′∈B(q′)

(p′ · #u) ≥ −δ2.

Proof: (Sketch) We will prove the lemma in R2 and leave the generalization to Rd as an exercise. Let o denote
the origin, and let " = ‖q‖ be the distance from q to the origin. Let us assume (through a suitable rotation)
that #u is aligned with the x-coordinate axis. The quantity (p′ · #u) is the length of the projection of p′ onto
the x-axis, that is, it is just the x-coordinate of p′. We want to show that this coordinate cannot be smaller
than −δ2.

! ≥ 1

q
q′

B(q′)

o

wδ ≤ δ2

δ
#u

p′
q′′

(a)

! ≥ 1

q

q′

p

≤ δ2

δ
#u

p′

(b)

S
P

Fig. 97: Analysis of the coreset construction.

We will prove a slightly stronger version of the above. In particular, let us assume that q′ is contained
within a square of side length 2δ centered at q. This suffices because this square contains all points that lie
within distance δ of q. Observe that the boundary of the ball B(q′) passes through the origin. We wish to
bound how far such a ball might protrude over the (−x)-axis. Its easy to see that worst case arises when
q′ is placed in the upper left corner of the square (see Fig. 97(a)). Call this point q′′.
The distance between q′′ and the origin is

√

("− δ)2 + δ2. Therefore, the amount by which the ball of
radius ‖q′′‖ centered at ‖q′′‖ may protrude over the (−x)-axis is at most

√

("− δ)2 + δ2 − ("− δ)

which we will denote bywδ . Since p lies in this ball, to complete the proof it suffices to show thatwδ ≤ δ2.
To simplify this, we multiply by a fraction whose numerator and denominator are both

√

("− δ)2 + δ2 +

("− δ). It is easily verified that
√

("− δ)2 + δ2 ≥ "− δ. Using this and the fact that " ≥ δ, we have

wδ =
(("− δ)2 + δ2)− ("− δ)2
√

("− δ)2 + δ2 + ("− δ)
≤ 2("− δ)δ + δ2

("− δ) + ("− δ)
=

2"δ − δ2

2("− δ)

≤ δ2

2("− δ)
≤ δ2,

as desired.

To establish the correctness of the construction, consider any direction #u. Let p ∈ P be the point that maximizes
(p · #u). We will show that there is a point p′ ∈ C such that (p · #u)− (p′ · #u) ≤ ε′/2. In particular, let us translate
the coordinate system so that p is at the origin, and let us rotate space so that #u is horizontal (see Fig. 97(b)).
Let q be the point at which the extension of #u intersects the sphere S. By our construction, there exists a point

Lecture Notes 105 CMSC 754



q′ ∈ Q that lies within distance δ of q, that is ‖q′ − q‖ ≤ δ. Let p′ be the nearest neighbor of P to q′. Again, by
our construction p′ is in the coreset. Since q lies on a sphere of radius 2 and P is contained within the unit ball,
it follows that ‖q‖ ≥ 1. Thus, we satisfy the conditions of Lemma 2. Therefore, (p′ ·#u) ≥ −δ2 = εα/4 ≤ ε′/2.
Thus, the absolute error in the inner product is at most ε′/2, and hence (combining both the maximum and
minimum sides) the total absolute error is at most ε′. By the remarks made earlier, this implies that the total
relative error is ε, as desired.

Lecture 21: Geometric Basics
Geometry Basics: As we go through the semester, we will introduce much of the geometric facts and computational

primitives that we will be needing. For the most part, we will assume that any geometric primitive involving a
constant number of elements of constant complexity can be computed in O(1) time, and we will not concern
ourselves with how this computation is done. (For example, given three non-collinear points in the plane,
compute the unique circle passing through these points.) Nonetheless, for a bit of completeness, let us begin
with a quick review of the basic elements of affine and Euclidean geometry.
There are a number of different geometric systems that can be used to express geometric algorithms: affine
geometry, Euclidean geometry, and projective geometry, for example. This semester we will be working almost
exclusively with affine and Euclidean geometry. Before getting to Euclidean geometry we will first define a
somewhat more basic geometry called affine geometry. Later we will add one operation, called an inner product,
which extends affine geometry to Euclidean geometry.

Affine Geometry: An affine geometry consists of a set of scalars (the real numbers), a set of points, and a set of
free vectors (or simply vectors). Points are used to specify position. Free vectors are used to specify direction
and magnitude, but have no fixed position in space. (This is in contrast to linear algebra where there is no real
distinction between points and vectors. However this distinction is useful, since the two are conceptually quite
different.)
The following are the operations that can be performed on scalars, points, and vectors. Vector operations are
just the familiar ones from linear algebra. It is possible to subtract two points. The difference p−q of two points
results in a free vector directed from q to p. It is also possible to add a point to a vector. In point-vector addition
p+ v results in the point which is translated by v from p. Letting S denote an generic scalar, V a generic vector
and P a generic point, the following are the legal operations in affine geometry:

S · V → V scalar-vector multiplication
V + V → V vector addition
P − P → V point subtraction
P + V → P point-vector addition

!u
!v

!u + !v

vector addition point subtraction

q

p

p− q

point subtraction

p

!v

p + !v

Fig. 98: Affine operations.
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A number of operations can be derived from these. For example, we can define the subtraction of two vectors
#u − #v as #u + (−1) · #v or scalar-vector division #v/α as (1/α) · #v provided α &= 0. There is one special vector,
called the zero vector, #0, which has no magnitude, such that #v +#0 = #v.
Note that it is not possible to multiply a point times a scalar or to add two points together. However there is a
special operation that combines these two elements, called an affine combination. Given two points p0 and p1
and two scalars α0 and α1, such that α0 + α1 = 1, we define the affine combination

aff(p0, p1;α0,α1) = α0p0 + α1p1 = p0 + α1(p1 − p0).

Note that the middle term of the above equation is not legal given our list of operations. But this is how the
affine combination is typically expressed, namely as the weighted average of two points. The right-hand side
(which is easily seen to be algebraically equivalent) is legal. An important observation is that, if p0 &= p1, then
the point aff(p0, p1;α0,α1) lies on the line joining p0 and p1. As α1 varies from −∞ to +∞ it traces out all
the points on this line.

p
r = p + 2

3(q − p)

q

p
1
3p +

2
3q

q

p

q

α < 0

0 < α < 1

α > 1(1− α)p + αq

Fig. 99: Affine combination.

In the special case where 0 ≤ α0,α1 ≤ 1, aff(p0, p1;α0,α1) is a point that subdivides the line segment p0p1
into two subsegments of relative sizes α1 to α0. The resulting operation is called a convex combination, and the
set of all convex combinations traces out the line segment p0p1.
It is easy to extend both types of combinations to more than two points, by adding the condition that the sum
α0 + α1 + α2 = 1.

aff(p0, p1, p2;α0,α1,α2) = α0p0 + α1p1 + α2p2 = p0 + α1(p1 − p0) + α2(p2 − p0).

The set of all affine combinations of three (non-collinear) points generates a plane. The set of all convex
combinations of three points generates all the points of the triangle defined by the points. These shapes are
called the affine span or affine closure, and convex closure of the points, respectively.

Euclidean Geometry: In affine geometry we have provided no way to talk about angles or distances. Euclidean
geometry is an extension of affine geometry which includes one additional operation, called the inner product,
which maps two real vectors (not points) into a nonnegative real. One important example of an inner product
is the dot product, defined as follows. Suppose that the d-dimensional vectors #u and #v are represented by the
(nonhomogeneous) coordinate vectors (u1, u2, . . . , ud) and (v1, v2, . . . , vd). Define

#u · #v =
d
∑

i=1

uivi,

The dot product is useful in computing the following entities.

Length: of a vector #v is defined to be ‖#v‖ =
√
#v · #v.

Normalization: Given any nonzero vector #v, define the normalization to be a vector of unit length that points
in the same direction as #v. We will denote this by v̂:

v̂ =
#v

‖#v‖ .
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Distance between points: Denoted either dist(p, q) or ‖pq‖ is the length of the vector between them, ‖p− q‖.
Angle: between two nonzero vectors #u and #v (ranging from 0 to π) is

ang(#u,#v) = cos−1

(

#u · #v
‖#u‖‖#v‖

)

= cos−1(û · v̂).

This is easy to derive from the law of cosines.

Orientation of Points: In order to make discrete decisions, we would like a geometric operation that operates on
points in a manner that is analogous to the relational operations (<,=, >) with numbers. There does not seem
to be any natural intrinsic way to compare two points in d-dimensional space, but there is a natural relation
between ordered (d + 1)-tuples of points in d-space, which extends the notion of binary relations in 1-space,
called orientation.
Given an ordered triple of points 〈p, q, r〉 in the plane, we say that they have positive orientation if they define
a counterclockwise oriented triangle, negative orientation if they define a clockwise oriented triangle, and zero
orientation if they are collinear (which includes as well the case where two or more of the points are identical).
Note that orientation depends on the order in which the points are given.

p

q

r

p

q

r

positive negative zero zero

p

q

r

p = r

q

Fig. 100: Orientations of the ordered triple (p, q, r).

Orientation is formally defined as the sign of the determinant of the points given in homogeneous coordinates,
that is, by prepending a 1 to each coordinate. For example, in the plane, we define

Orient(p, q, r) = det





1 px py
1 qx qy
1 rx ry



 .

Observe that in the 1-dimensional case, Orient(p, q) is just q−p. Hence it is positive if p < q, zero if p = q, and
negative if p > q. Thus orientation generalizes <,=, > in 1-dimensional space. Also note that the sign of the
orientation of an ordered triple is unchanged if the points are translated, rotated, or scaled (by a positive scale
factor). A reflection transformation, e.g., f(x, y) = (−x, y), reverses the sign of the orientation. In general,
applying any affine transformation to the point alters the sign of the orientation according to the sign of the
matrix used in the transformation.
This generalizes readily to higher dimensions. For example, given an ordered 4-tuple points in 3-space, we can
define their orientation as being either positive (forming a right-handed screw), negative (a left-handed screw),
or zero (coplanar). It can be computed as the sign of the determinant of an appropriate 4 × 4 generalization of
the above determinant. This can be generalized to any ordered (d+ 1)-tuple of points in d-space.

Areas and Angles: The orientation determinant, together with the Euclidean norm can be used to compute angles in
the plane. This determinant Orient(p, q, r) is equal to twice the signed area of the triangle 7pqr (positive if
CCW and negative otherwise). Thus the area of the triangle can be determined by dividing this quantity by 2.
In general in dimension d the area of the simplex spanned by d + 1 points can be determined by taking this
determinant and dividing by d! = d · (d−1) · · · 2 ·1. Given the capability to compute the area of any triangle (or
simplex in higher dimensions), it is possible to compute the volume of any polygon (or polyhedron), given an
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appropriate subdivision into these basic elements. (Such a subdivision does not need to be disjoint. The simplest
methods that I know of use a subdivision into overlapping positively and negatively oriented shapes, such that
the signed contribution of the volumes of regions outside the object cancel each other out.)
Recall that the dot product returns the cosine of an angle. However, this is not helpful for distinguishing positive
from negative angles. The sine of the angle θ = ∠pqr (the signed angled from vector p− q to vector r− q) can
be computed as

sin θ =
Orient(q, p, r)
‖p− q‖ · ‖r − q‖ .

(Notice the order of the parameters.) By knowing both the sine and cosine of an angle we can unambiguously
determine the angle.

Topology Terminology: Although we will not discuss topology with any degree of formalism, we will need to use
some terminology from topology. These terms deserve formal definitions, but we are going to cheat and rely on
intuitive definitions, which will suffice for the simple, well behaved geometric objects that we will be dealing
with. Beware that these definitions are not fully general, and you are referred to a good text on topology for
formal definitions.
For our purposes, for r > 0, define the r-neighborhood of a point p to be the set of points whose distance to p
is strictly less than r, that is, it is the set of points lying within an open ball of radius r centered about p. Given
a set S, a point p is an interior point of S if for some radius r the neighborhood about p of radius r is contained
within S. A point is an exterior point if it lies in the interior of the complement of S. A points that is neither
interior nor exterior is a boundary point. A set is open if it contains none of its boundary points and closed if its
complement is open. If p is in S but is not an interior point, we will call it a boundary point.
We say that a geometric set is bounded if it can be enclosed in a ball of finite radius. A set is compact if it is
both closed and bounded.
In general, convex sets may have either straight or curved boundaries and may be bounded or unbounded.
Convex sets may be topologically open or closed. Some examples are shown in the figure below. The convex
hull of a finite set of points in the plane is a bounded, closed, convex polygon.

neighborhood open closed unbounded

r
p interior

exterior
boundary

Fig. 101: Terminology.

Lecture 22: DCELs and Subdivision Intersection
Doubly-connected Edge List: We consider the question of how to represent plane straight-line graphs (or PSLG).

The DCEL is a common edge-based representation. Vertex and face information is also included for whatever
geometric application is using the data structure. There are three sets of records one for each element in the
PSLG: vertex records, a edge records, and face records. For the purposes of unambiguously defining left and
right, each undirected edge is represented by two directed half-edges.
We will make a simplifying assumption that faces do not have holes inside of them. This assumption can be
satisfied by introducing some number of dummy edges joining each hole either to the outer boundary of the face,
or to some other hole that has been connected to the outer boundary in this way. With this assumption, it may
be assumed that the edges bounding each face form a single cyclic list.
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Vertex: Each vertex stores its coordinates, along with a pointer to any incident directed edge that has this vertex
as its origin, v.inc edge.

Edge: Each undirected edge is represented as two directed edges. Each edge has a pointer to the oppositely
directed edge, called its twin. Each directed edge has an origin and destination vertex. Each directed edge
is associate with two faces, one to its left and one to its right.
We store a pointer to the origin vertex e.org. (We do not need to define the destination, e.dest, since
it may be defined to be e.twin.org.)
We store a pointer to the face to the left of the edge e.left (we can access the face to the right from the
twin edge). This is called the dent face. We also store the next and previous directed edges in counter-
clockwise order about the incident face, e.next and e.prev, respectively.

Face: Each face f stores a pointer to a single edge for which this face is the incident face, f.inc edge. (See
the text for the more general case of dealing with holes.)

DCEL Alternative view

e
e.twin

e.org

e.prev
e.left

e.next

Fig. 102: Doubly-connected edge list.

The figure shows two ways of visualizing the DCEL. One is in terms of a collection of doubled-up directed
edges. An alternative way of viewing the data structure that gives a better sense of the connectivity structure is
based on covering each edge with a two element block, one for e and the other for its twin. The next and prev
pointers provide links around each face of the polygon. The next pointers are directed counterclockwise around
each face and the prev pointers are directed clockwise.
Of course, in addition the data structure may be enhanced with whatever application data is relevant. In some
applications, it is not necessary to know either the face or vertex information (or both) at all, and if so these
records may be deleted. See the book for a complete example.
For example, suppose that we wanted to enumerate the vertices that lie on some face f . Here is the code:

Vertex enumeration using DCEL
enumerate_vertices(Face f) {

Edge start = f.inc_edge;
Edge e = start;
do {

output e.org;
e = e.next;

} while (e != start);
}

Merging subdivisions: Let us return to the applications problem that lead to the segment intersection problem. Sup-
pose that we have two planar subdivisions, S1 and S2, and we want to compute their overlay. In particular, this
is a subdivision whose vertices are the union of the vertices of each subdivision and the points of intersection of
the line segments in the subdivision. (Because we assume that each subdivision is a planar graph, the only new
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vertices that could arise will arise from the intersection of two edges, one from S1 and the other from S2.) Sup-
pose that each subdivision is represented using a DCEL. Can we adapt the plane-sweep algorithm to generate
the DCEL of the overlaid subdivision?
The answer is yes. The algorithm will destroy the original subdivisions, so it may be desirable to copy them
before beginning this process. The first part of the process is straightforward, but perhaps a little tedious. This
part consists of building the edge and vertex records for the new subdivision. The second part involves building
the face records. It is more complicated because it is generally not possible to know the face structure at the
moment that the sweep is advancing, without looking “into the future” of the sweep to see whether regions
will merge. (You might try to convince yourself of this.) The entire subdivision is built first, and then the face
information is constructed and added later. We will skip the part of updating the face information (see the text).
For the first part, the most illustrative case arises when the sweep is processing an intersection event. In this
case the two segments arise as two edges a1 and b1 from the two subdivisions. We will assume that we select
the half-edges that are directed from left to right across the sweep-line. The process is described below (and is
illustrated in the figure below). It makes use of two auxiliary procedures. Split(a1, a2) splits an edge a1 at its
midpoint into two consecutive edges a1 followed by a2, and links a2 into the structure. Splice(a1, a2, b1, b2)
takes two such split edges and links them all together.

Merge two edges into a common subdivision
Merge(a1, b1) :

(1) Create a new vertex v at the intersection point.
(2) Split each of the two intersecting edges, by adding a vertex at the common intersection point. Let a2 and b2 be the new

edge pieces. They are created by the calls a2 = Split(a1) and b2 = Split(b1) given below.
(3) Link the four edges together by invoking Splice(a1, a2, b1, b2), given below.

The splitting procedure creates the new edge, links it into place. After this the edges have been split, but they
are not linked to each other. The edge constructor is given the origin and destination of the new edge and creates
a new edge and its twin. The procedure below initializes all the other fields. Also note that the destination of
a1, that is the origin of a1’s twin must be updated, which we have omitted. The splice procedure interlinks
four edges around a common vertex in the counterclockwise order a1 (entering), b1 (entering), a2 (leaving), b2
(leaving).

Split an edge into two edges
Split(edge &a1, edge &a2) { // a2 is returned

a2 = new edge(v, a1.dest()); // create edge (v,a1.dest)
a2.next = a1.next; a1.next.prev = a2;
a1.next = a2; a2.prev = a1;
a1t = a1.twin; a2t = a2.twin; // the twins
a2t.prev = a1t.prev; a1t.prev.next = a2t;
a1t.prev = a2t; a2t.next = a1t;

}

Splice four edges together
Splice(edge &a1, edge &a2, edge &b1, edge &b2) {

a1t = a1.twin; a2t = a2.twin; // get the twins
b1t = b1.twin; b2t = b2.twin;
a1.next = b2; b2.prev = a1; // link the edges together
b2t.next = a2; a2.prev = b2t;
a2t.next = b1t; b1t.prev = a2t;
b1.next = a1t; a1t.prev = b1;

}
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Fig. 103: Updating the DCEL.

Lecture 23: Smallest Enclosing Disk
Smallest Enclosing Disk: Although the vast majority of applications of linear programming are in relatively high

dimensions, there are a number of interesting applications in low dimensions. We will present one such example,
called the smallest enclosing disk problem. We are given n points in the plane and we are asked to find the closed
circular disk of minimum radius that encloses all of these points. We will present a randomized algorithm for
this problem that runs in O(n) expected time.
We should say a bit about terminology. A circle is the set of points that are equidistant from some center point.
A disk is the set of points lying within a circle. We can talk about open or closed disks to distinguish whether
the bounding circle itself is part of the disk. In higher dimensions the generalization of a circle is a sphere in
3-space, or hypersphere in higher dimensions. The set of points lying within a sphere or hypersphere is called a
ball.
Before discussing algorithms, we first observe that any circle is uniquely determined by three points (as the
circumcenter of the triangle they define). We will not prove this, but it follows as an easy consequence of
linearization, which we will discuss later in the lecture.

Claim: For any finite set of points in general position (no four cocircular), the smallest enclosing disk either
has at least three points on its boundary, or it has two points, and these points form the diameter of the
circle. If there are three points then they subdivide the circle bounding the disk into arcs of angle at most
π.

Proof: Clearly if there are no points on the boundary the disk’s radius could be decreased. If there is only
one point on the boundary then this is also clearly true. If there are two points on the boundary, and they
are separated by an arc of length strictly less than π, then observe that we can find a disk that passes
through both points and has a slightly smaller radius. (By considering a disk whose center point is only
the perpendicular bisector of the two points and lies a small distance closer to the line segment joining the
points.)
Thus, none of these configurations could be a candidate for the minimum enclosing disk. Also observe
that if there are three points that define the smallest enclosing disk they subdivide the circle into three arcs
each of angle at most π (for otherwise we could apply the same operation above). Because points are in
general position we may assume there cannot be four or more cocircular points.

This immediately suggests a simpleO(n4) time algorithm. InO(n3) time we can enumerate all triples of points
and then for each we generate the resulting circle and test whether it encloses all the points in O(n) additional
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Fig. 104: Contact points for a minimum enclosing disk.

time, for an O(n4) time algorithm. You might make a few observations to improve this a bit (e.g. by using only
triples of points on the convex hull). But even so a reduction from O(n4) to O(n) is quite dramatic.

Linearization: We can “almost” reduce this problem to a linear programming problem in 3-space. Although the
method does not work, it does illustrate the similarity between this problem and LP.
Recall that a point p = (px, py) lies within a circle with center point c = (cx, cy) and radius r if

(px − cx)
2 + (py − cy)

2 ≤ r2.

In our case we are given n such points pi and are asked to determine whether there exists cx, cy and r satisfying
the resulting n inequalities, with r as small as possible. The problem is that these inequalities clearly involve
quantities like c2x and r2 and so are not linear inequalities in the parameters of interest.
The technique of linearization can be used to fix this. First let us expand the inequality above and rearrange the
terms

p2x − 2pxcx + c2x + p2y − 2pycy + c2y ≤ r2

2pxcx + 2pycy + (r2 − c2x − c2y) ≥ p2x + p2y.

Now, let us introduce a new parameter R = r2 − c2x − c2y . Now we have

(2px)cx + (2py)cy +R ≥ (p2x + p2y).

Observe that this is a linear inequality in cx, cy and R. If we let px and py range over all the coordinates of
all the n points we generate n linear inequalities in 3-space, and so we can apply linear programming to find
the solution, right? The only problem is that the previous objective function was to minimize r. However r is
no longer a parameter in the new version of the problem. Since we r2 = R + c2x + c2y , and minimizing r is
equivalent to minimizing r2 (since we are only interested in positive r), we could say that the objective is to
minimize R + c2x + c2y . Unfortunately, this is not a linear function of the parameters cx, cy and R. Thus we are
left with an optimization problem in 3-space with linear constraints and a nonlinear objective function.
This shows that LP is closely related, and so perhaps the same techniques can be applied.

Randomized Incremental Algorithm: Let us consider how we can modify the randomized incremental algorithm
for LP directly to solve this problem. The algorithm will mimic each step of the randomized LP algorithm.
To start we randomly permute the points. We select any two points and compute the unique circle with these
points as diameter. (We could have started with three just as easily.) Let Di−1 denote the minimum disk after
the insertion of the first i − 1 points. For point pi we determine in constant time whether the point lies within
Di−1. If so, then we set Di = Di−1 and go on to the next stage. If not, then we need to update the current disk
to contain pi, letting Di denote the result. When the last point is inserted we output Dn.
How do we compute this updated disk? It might be tempting at first to say that we just need to compute the
smallest disk that encloses pi and the three points that define the current disk. However, it is not hard to construct
examples in which doing so will cause previously interior points to fall outside the current disk. As with the LP
problem we need to take all the existing points into consideration. But as in the LP algorithm we want some
way to reduce the “dimensionality” of the problem. How do we do this?
The important claim is that if pi is not in the minimum disk of the first i− 1 points, then pi does help constrain
the problem, which we establish below.
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Claim: If pi /∈ Di−1 then pi is on the boundary of the minimum enclosing disk for the first i points, Di.
Proof: The proof makes use of the following geometric observation. Given a disk of radius r1 and a circle of

radius r2, where r1 < r2, the intersection of the disk with the circle is an arc of angle less than π. This is
because an arc of angle π or more contains two (diametrically opposite) points whose distance from each
other is 2r2, but the disk of radius r1 has diameter only 2r1 and hence could not simultaneously cover two
such points.
Now, suppose to the contrary that pi is not on the boundary of Di. It is easy to see that because Di covers
a point not covered by Di−1 that Di must have larger radius than Di−1. If we let r1 denote the radius
of Di−1 and r2 denote the radius of Di, then by the above argument, the disk Di−1 intersects the circle
bounding Di in an arc of angle less than π. (Shown in a heavy line in the figure below.)

pi

i−1D
iD

Fig. 105: Why pi must lie on the boundary ofDi.

Since pi is not on the boundary of Di, the points defining Di must be chosen from among the first i − 1
points, from which it follows that they all lie within this arc. However, this would imply that between two
of the points is an arc of angle greater than π (the arc not shown with a heavy line) which, by the earlier
claim could not be a minimum enclosing disk.

The algorithm is identical in structure to the LP algorithm. We will randomly permute the points and insert them
one by one. For each new point pi, if it lies within the current disk then there is nothing to update. Otherwise,
we need to update the disk. We do this by computing the smallest enclosing disk that contains all the points
{p1, . . . , pi−1} and is constrained to have pi on its boundary. (The requirement that pi be on the boundary is
analogous to the constraint used in linear programming that optimum vertex lie on the line supporting the current
halfplane.)
This will involve a slightly different recursion. In this recursion, when we encounter a point that lies outside the
current disk, we will then recurse on a subproblem in which two points are constrained to lie on the boundary of
the disk. Finally, if this subproblem requires a recursion, we will have a problem in which there are three points
constrained to lie on a the boundary of the disk. But this problem is trivial, since there is only one circle passing
through three points.

Lecture 24: Interval Trees
Segment Data: So far we have considered geometric data structures for storing points. However, there are many

others types of geometric data that we may want to store in a data structure. Today we consider how to store
orthogonal (horizontal and vertical) line segments in the plane. We assume that a line segment is represented by
giving its pair of endpoints. The segments are allowed to intersect one another.
As a basic motivating query, we consider the following window query. Given a set of orthogonal line segments
S, which have been preprocessed, and given an orthogonal query rectangle W , count or report all the line
segments of S that intersect W . We will assume that W is closed and solid rectangle, so that even if a line
segment lies entirely inside ofW or intersects only the boundary ofW , it is still reported. For example, given
the window below, the query would report the segments that are shown with solid lines, and segments with
broken lines would not be reported.

Window Queries for Orthogonal Segments: We will present a data structure, called the interval tree, which (com-
bined with a range tree) can answer window counting queries for orthogonal line segments in O(log2 n) time,
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Minimum Enclosing Disk
MinDisk(P ) :

(1) If |P | ≤ 3, then return the disk passing through these points. Otherwise, randomly permute the points in P yielding the
sequence 〈p1, p2, . . . , pn〉.

(2) LetD2 be the minimum disk enclosing {p1, p2}.
(3) for i = 3 to |P | do

(a) if pi ∈ Di−1 thenDi = Di−1.
(a) elseDi = MinDiskWith1Pt(P [1..i− 1], pi).

MinDiskWith1Pt(P, q) :
(1) Randomly permute the points in P . LetD1 be the minimum disk enclosing {q, p1}.
(2) for i = 2 to |P | do

(a) if pi ∈ Di−1 thenDi = Di−1.
(a) elseDi = MinDiskWith2Pts(P [1..i− 1], q, pi).

MinDiskWith2Pts(P, q1, q2) :
(1) Randomly permute the points in P . LetD0 be the minimum disk enclosing {q1, q2}.
(2) for i = 1 to |P | do

(a) if pi ∈ Di−1 thenDi = Di−1.
(a) elseDi = Disk(q1, q2, pi).

W

Fig. 106: Window Query.
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where n is the number line segments. It can report these segments inO(k+log2 n) time, where and k is the total
number of segments reported. The interval tree uses O(n log n) storage and can be built in O(n log n) time.
We will consider the case of range reporting queries. (There are some subtleties in making this work for counting
queries.) We will derive our solution in steps, starting with easier subproblems and working up to the final
solution. To begin with, observe that the set of segments that intersect the window can be partitioned into three
types: those that have no endpoint inW , those that have one endpoint inW , and those that have two endpoints
inW .
We already have a way to report segments of the second and third types. In particular, we may build a range
tree just for the 2n endpoints of the segments. We assume that each endpoint has a cross-link indicating the
line segment with which it is associated. Now, by applying a range reporting query to W we can report all
these endpoints, and follow the cross-links to report the associated segments. Note that segments that have both
endpoints in the window will be reported twice, which is somewhat unpleasant. We could fix this either by
sorting the segments in some manner and removing duplicates, or by marking each segment as it is reported and
ignoring segments that have already been marked. (If we use marking, after the query is finished we will need
to go back an “unmark” all the reported segments in preparation for the next query.)
All that remains is how to report the segments that have no endpoint inside the rectangular window. We will
do this by building two separate data structures, one for horizontal and one for vertical segments. A horizontal
segment that intersects the window but neither of its endpoints intersects the window must pass entirely through
the window. Observe that such a segment intersects any vertical line passing from the top of the window to the
bottom. In particular, we could simply ask to report all horizontal segments that intersect the left side of W .
This is called a vertical segment stabbing query. In summary, it suffices to solve the following subproblems
(and remove duplicates):

Endpoint inside: Report all the segments of S that have at least one endpoint inside W . (This can be done
using a range query.)

Horizontal through segments: Report all the horizontal segments of S that intersect the left side ofW . (This
reduces to a vertical segment stabbing query.)

Vertical through segments: Report all the vertical segments of S that intersect the bottom side of W . (This
reduces to a horizontal segment stabbing query.)

We will present a solution to the problem of vertical segment stabbing queries. Before dealing with this, we
will first consider a somewhat simpler problem, and then modify this simple solution to deal with the general
problem.

Vertical Line Stabbing Queries: Let us consider how to answer the following query, which is interesting in its own
right. Suppose that we are given a collection of horizontal line segments S in the plane and are given an (infinite)
vertical query line "q : x = xq . We want to report all the line segments of S that intersect "q . Notice that for
the purposes of this query, the y-coordinates are really irrelevant, and may be ignored. We can think of each
horizontal line segment as being a closed interval along the x-axis. We show an example in the figure below on
the left.
As is true for all our data structures, we want some balanced way to decompose the set of intervals into subsets.
Since it is difficult to define some notion of order on intervals, we instead will order the endpoints. Sort the
interval endpoints along the x-axis. Let 〈x1, x2, . . . , x2n〉 be the resulting sorted sequence. Let xmed be the
median of these 2n endpoints. Split the intervals into three groups, L, those that lie strictly to the left of xmed, R
those that lie strictly to the right of xmed, andM those that contain the point xmed. We can then define a binary
tree by putting the intervals of L in the left subtree and recursing, putting the intervals of R in the right subtree
and recursing. Note that if xq < xmed we can eliminate the right subtree and if xq > xmed we can eliminate the
left subtree. See the figure right.
But how do we handle the intervals ofM that contain xmed? We want to know which of these intervals intersects
the vertical line "q . At first it may seem that we have made no progress, since it appears that we are back to the
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Fig. 107: Line Stabbing Query.

same problem that we started with. However, we have gained the information that all these intervals intersect
the vertical line x = xmed. How can we use this to our advantage?
Let us suppose for now that xq ≤ xmed. How can we store the intervals ofM to make it easier to report those
that intersect "q . The simple trick is to sort these lines in increasing order of their left endpoint. LetML denote
the resulting sorted list. Observe that if some interval inML does not intersect "q , then its left endpoint must be
to the right of xq, and hence none of the subsequent intervals intersects "q . Thus, to report all the segments of
ML that intersect "q , we simply traverse the sorted list and list elements until we find one that does not intersect
"q , that is, whose left endpoint lies to the right of xq . As soon as this happens we terminate. If k′ denotes the
total number of segments ofM that intersect "q , then clearly this can be done in O(k′ + 1) time.
On the other hand, what do we do if xq > xmed? This case is symmetrical. We simply sort all the segments of
M in a sequence,MR, which is sorted from right to left based on the right endpoint of each segment. Thus each
element ofM is stored twice, but this will not affect the size of the final data structure by more than a constant
factor. The resulting data structure is called an interval tree.

Interval Trees: The general structure of the interval tree was derived above. Each node of the interval tree has a left
child, right child, and itself contains the median x-value used to split the set, xmed, and the two sorted setsML

andMR (represented either as arrays or as linked lists) of intervals that overlap xmed. We assume that there is
a constructor that builds a node given these three entities. The following high-level pseudocode describes the
basic recursive step in the construction of the interval tree. The initial call is root = IntTree(S), where
S is the initial set of intervals. Unlike most of the data structures we have seen so far, this one is not built by
the successive insertion of intervals (although it would be possible to do so). Rather we assume that a set of
intervals S is given as part of the constructor, and the entire structure is built all at once. We assume that each
interval in S is represented as a pair (xlo, xhi). An example is shown in the following figure.
We assert that the height of the tree is O(log n). To see this observe that there are 2n endpoints. Each time
through the recursion we split this into two subsets L and R of sizes at most half the original size (minus the
elements of M ). Thus after at most lg(2n) levels we will reduce the set sizes to 1, after which the recursion
bottoms out. Thus the height of the tree is O(log n).
Implementing this constructor efficiently is a bit subtle. We need to compute the median of the set of all
endpoints, and we also need to sort intervals by left endpoint and right endpoint. The fastest way to do this is to
presort all these values and store them in three separate lists. Then as the sets L, R, andM are computed, we
simply copy items from these sorted lists to the appropriate sorted lists, maintaining their order as we go. If we
do so, it can be shown that this procedure builds the entire tree in O(n log n) time.
The algorithm for answering a stabbing query was derived above. We summarize this algorithm below. Let xq

denote the x-coordinate of the query line.
This procedure actually has one small source of inefficiency, which was intentionally included to make code
look more symmetric. Can you spot it? Suppose that xq = t.xmed? In this case we will recursively search the
right subtree. However this subtree contains only intervals that are strictly to the right of xmed and so is a waste
of effort. However it does not affect the asymptotic running time.
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Interval tree construction
IntTreeNode IntTree(IntervalSet S) {

if (|S| == 0) return null // no more

xMed = median endpoint of intervals in S // median endpoint

L = {[xlo, xhi] in S | xhi < xMed} // left of median
R = {[xlo, xhi] in S | xlo > xMed} // right of median
M = {[xlo, xhi] in S | xlo <= xMed <= xhi} // contains median
ML = sort M in increasing order of xlo // sort M
MR = sort M in decreasing order of xhi

t = new IntTreeNode(xMed, ML, MR) // this node
t.left = IntTree(L) // left subtree
t.right = IntTree(R) // right subtree
return t

}
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Fig. 108: Interval Tree.

Line Stabbing Queries for an Interval Tree
stab(IntTreeNode t, Scalar xq) {

if (t == null) return // fell out of tree
if (xq < t.xMed) { // left of median?

for (i = 0; i < t.ML.length; i++) { // traverse ML
if (t.ML[i].lo <= xq) print(t.ML[i])// ..report if in range
else break // ..else done

}
stab(t.left, xq) // recurse on left

}
else { // right of median

for (i = 0; i < t.MR.length; i++) { // traverse MR
if (t.MR[i].hi >= xq) print(t.MR[i])// ..report if in range
else break // ..else done

}
stab(t.right, xq) // recurse on right

}
}
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As mentioned earlier, the time spent processing each node is O(1 + k′) where k′ is the total number of points
that were recorded at this node. Summing over all nodes, the total reporting time is O(k + v), where k is the
total number of intervals reported, and v is the total number of nodes visited. Since at each node we recurse on
only one child or the other, the total number of nodes visited v is O(log n), the height of the tree. Thus the total
reporting time is O(k + log n).

Vertical Segment Stabbing Queries: Now let us return to the question that brought us here. Given a set of horizontal
line segments in the plane, we want to know how many of these segments intersect a vertical line segment. Our
approach will be exactly the same as in the interval tree, except for how the elements ofM (those that intersect
the splitting line x = xmed) are handled.
Going back to our interval tree solution, let us consider the setM of horizontal line segments that intersect the
splitting line x = xmed and as before let us consider the case where the query segment q with endpoints (xq, ylo)
and (xq, yhi) lies to the left of the splitting line. The simple trick of sorting the segments of M by their left
endpoints is not sufficient here, because we need to consider the y-coordinates as well. Observe that a segment
ofM stabs the query segment q if and only if the left endpoint of a segment lies in the following semi-infinite
rectangular region.

{(x, y) | x ≤ xq and ylo ≤ y ≤ yhi}.
This is illustrated in the figure below. Observe that this is just an orthogonal range query. (It is easy to generalize
the procedure given last time to handle semi-infinite rectangles.) The case where q lies to the right of xmed is
symmetrical.

xmed

q

Fig. 109: The segments that stab q lie within the shaded semi-infinite rectangle.

So the solution is that rather than storing ML as a list sorted by the left endpoint, instead we store the left
endpoints in a 2-dimensional range tree (with cross-links to the associated segments). Similarly, we create a
range tree for the right endpoints and representMR using this structure.
The segment stabbing queries are answered exactly as above for line stabbing queries, except that part that
searches ML and MR (the for-loops) are replaced by searches to the appropriate range tree, using the semi-
infinite range given above.
We will not discuss construction time for the tree. (It can be done in O(n log n) time, but this involves some
thought as to how to build all the range trees efficiently). The space needed is O(n log n), dominated primarily
from the O(n log n) space needed for the range trees. The query time isO(k+log3 n), since we need to answer
O(log n) range queries and each takes O(log2 n) time plus the time for reporting. If we use the spiffy version
of range trees (which we mentioned but never discussed) that can answer queries in O(k+ log n) time, then we
can reduce the total time to O(k + log2 n).

Lecture 25: Hereditary Segment Trees and Red-Blue Intersection
Red-Blue Segment Intersection: We have been talking about the use of geometric data structures for solving query

problems. Often data structures are used as intermediate structures for solving traditional input/output problems,
which do not involve preprocessing and queries. (Another famous example of this is HeapSort, which introduces
the heap data structure for sorting a list of numbers.) Today we will discuss a variant of a useful data structure,
the segment tree. The particular variant is called a hereditary segment tree. It will be used to solve the following
problem.
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Red-Blue Segment Intersection: Given a setB ofm pairwise disjoint “blue” segments in the plane and a setR
of n pairwise disjoint “red” segments, count (or report) all bichromatic pairs of intersecting line segments
(that is, intersections between red and blue segments).

It will make things simpler to think of the segments as being open (not including their endpoints). In this way,
the pairwise disjoint segments might be the edges of a planar straight line graph (PSLG). Indeed, one of the most
important application of red-blue segment intersection involves computing the overlay of two PSLG’s (one red
and the other blue) This is also called the map overlay problem, and is often used in geographic information
systems. The most time consuming part of the map overlay problem is determining which pairs of segments
overlap. See the figure below.

Fig. 110: Red-blue line segment intersection. The algorithm outputs the white intersection points between segments
of different colors. The segments of each color are pairwise disjoint (except possibly at their endpoints).

Let N = n +m denote the total input size and let k denote the total number of bichromatic intersecting pairs.
We will present an algorithm for this problem that runs in O(k+N log2 N) time for the reporting problem and
O(N log2 N) time for the counting problem. Both algorithms use O(N logN) space. Although we will not
discuss it (but the original paper does) it is possible to remove a factor of log n from both the running time and
space, using a somewhat more sophisticated variant of the algorithm that we will present.
Because the set of red segments are each pairwise disjoint as are the blue segments, it follows that we could
solve the reporting problem by our plane sweep algorithm for segment intersection (as discussed in an earlier
lecture) in O((N + k) logN) time and O(N) space. Thus, the more sophisticated algorithm is an improvement
on this. However, plane sweep will not allow us to solve the counting problem.

The Hereditary Segment Tree: Recall that we are given two sets B and R, consisting of, respectively,m and n line
segments in the plane, and let N = m+ n. Let us make the general position assumption that the 2N endpoints
of these line segments have distinct x-coordinates. The x-coordinates of these endpoints subdivide the x-axis
into 2N + 1 intervals, called atomic intervals. We construct a balanced binary tree whose leaves are in 1–1
correspondence with these intervals, ordered from left to right. Each internal node u of this tree is associated
with an interval Iu of the x-axis, consisting of the union of the intervals of its descendent leaves. We can think
of each such interval as a vertical slab Su whose intersection with the x-axis is Iu. (See the figure below, left.)
We associate a segment s with a set of nodes of the tree. A segment is said to span interval Iu if its projection
covers this interval. We associate a segment s with a node u if s spans Iu but s does not span Ip, where p is u’s
parent. (See the figure above, right.)
Each node (internal or leaf) of this tree is associated with a list, called the blue standard list, Bu of all blue line
segments whose vertical projection contains Iu but does not contain Ip, where p is the parent of u. Alternately,
if we consider the nodes in whose standard list a segment is stored, the intervals corresponding to these nodes
constitute a disjoint cover of the segment’s vertical projection. The node is also associated with a red standard
list, denoted Ru, which is defined analogously for the red segments. (See the figure below, left.)
Each node u is also associated with a list B∗

u, called the blue hereditary list, which is the union of the Bv for
all proper descendents v or u. The red hereditary list R∗

u is defined analogously. (Even though a segment may
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Fig. 111: Hereditary Segment Tree: Intervals, slabs and the nodes associated with a segment.
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Fig. 112: Hereditary Segment Tree with standard lists (left) and hereditary lists (right).

occur in the standard list for many descendents, there is only one copy of each segment in the hereditary lists.)
The segments of Ru and Bu are called the long segments, since they span the entire interval. The segments of
R∗

u and B∗
u are called the short segments, since they do not span the entire interval.

By the way, if we ignored the fact that we have two colors of segments and just considered the standard lists,
the resulting tree is called a segment tree. The addition of the hereditary lists makes this a hereditary segment
tree. Our particular data structure differs from the standard hereditary segment tree in that we have partitioned
the various segment lists according to whether the segment is red or blue.

Time and Space Analysis: We claim that the total size of the hereditary segment tree is O(N logN). To see this
observe that each segment is stored in the standard list of at most 2 logN nodes. The argument is very similar to
the analysis of the 1-dimensional range tree. If you locate the left and right endpoints of the segment among the
atomic intervals, these define two paths in the tree. In the same manner as canonical sets for the 1-dimensional
range tree, the segment will be stored in all the “inner” nodes between these two paths. (See the figure below.)
The segment will also be stored in the hereditary lists for all the ancestors of these nodes. These ancestors lie
along the two paths to the left and right, and hence there are at most 2 logN of them. Thus, each segment
appears in at most 4 logN lists, for a total size of O(N logN).

s

hereditary lists containing s

standard lists containing s

Fig. 113: Standard and hereditary lists containing a segment s.

The tree can be built inO(N logN) time. InO(N logN) time we can sort the 2N segment endpoints. Then for
each segment, we search for its left and right endpoints and insert the segment into the standard and hereditary
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lists for the appropriate nodes and we descend each path in O(1) time for each node visited. Since each segment
appears in O(logN) lists, this will take O(logN) time per segment and O(N logN) time overall.

Computing Intersections: Let us consider how to use the hereditaray segment tree to count and report bichromatic
intersections. We will do this on a node-by-node basis. Consider any node u. We classify the intersections into
two types, long-long intersections are those between a segment of Bu and Ru, and long-short intersections are
those between a segment of B∗

u and Ru or between R∗
u and Bu. Later we will show that by considering just

these intersection cases, we will consider every intersection exactly once.

Long-long intersections: Sort each of the listsBu andRu of long segments in ascending order by y-coordinate.
(Since the segments of each set are disjoint, this order is constant throughout the interval for each set.) Let
〈b1, b2, . . . , bmu

〉 and 〈r1, r2, . . . , rnu
〉 denote these ordered lists. Merge these lists twice, once according

to their order along the left side of the slab and one according to their order along the right side of the slab.
Observe that for each blue segment b ∈ Bu, this allows us to determine two indices i and j, such that b
lies between ri and ri+1 along the left boundary and between rj and rj+1 along the right boundary. (For
convenience, we can think of segment 0 as an imaginary segment at y = −∞.)
It follows that if i < j then b intersects the red segments ri+1, . . . , rj . (See the figure below, (a)). On the
other hand, if i ≥ j then b intersects the red segments rj+1, . . . , ri. (See the figure below, (b)). We can
count these intersections in O(1) time or report them in time proportional to the number of intersections.
For example, consider the segment b = b2 in the figure below, (c). On the left boundary it lies between r3
and r4, and hence i = 3. On the right boundary it lies between r0 and r1, and hence j = 0. (Recall that r0
is at y = −∞.) Thus, since i ≥ j it follows that b intersects the three red segments {r1, r2, r3}.
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rj
rj

rj+1

ir
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Fig. 114: Red-blue intersection counting/reporting. Long-long intersections.

The total time to do this is dominated by theO(mu logmu+nu log nu) time needed to sort both lists. The
merging and counting only requires linear time.

Long-short intersections: There are two types of long-short intersections to consider. Long red and short blue,
and long blue and short red. Let us consider the first one, since the other one is symmetrical.
As before, sort the long segments ofRu in ascending order according to y-coordinate, letting 〈r1, r2, . . . , rnu

〉
denote this ordered list. These segments naturally subdivide the slab into nu+1 trapezoids. For each short
segment b ∈ B∗

u, perform two binary searches among the segments of Ru to find the lowest segment ri
and the highest segment rj that b intersects. (See the figure above, right.) Then b intersects all the red
segments ri, ri+1, . . . , rj .
Thus, after O(log nu) time for the binary searches, the segments of Ru intersecting b can be counted in
O(1) time, for a total time of O(m∗

u log nu). Reporting can be done in time proportional to the number of
intersections reported. Adding this to the time for the long blue and short red case, we have a total time
complexity of O(m∗

u log nu + n∗
u logmu).

If we let Nu = mu + nu + m∗
u + n∗

u, then observe that the total time to process vertex u is O(Nu logNu)
time. Summing this over all nodes of the tree, and recalling that

∑

u Nu = O(N logN) we have a total time
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Fig. 115: Red-blue intersection counting/reporting: Long-short intersections.

complexity of

T (N) =
∑

u

Nu logNu ≤
(

∑

u

Nu

)

logN = O(N log2 N).

Correctness: To show that the algorithm is correct, we assert that each bichromatic intersection is counted exactly
once. For any bichromatic intersection between bi and rj consider the leaf associated with the atomic interval
containing this intersection point. As we move up to the ancestors of this leaf, we will encounter bi in the
standard list of one of these ancestors, denoted ui, and will encounter rj at some node, denoted uj . If ui = uj

then this intersection will be detected as a long-long intersection at this node. Otherwise, one is a proper ancestor
of the other, and this will be detected as a long-short intersection (with the ancestor long and descendent short).

Lecture 26: Kirkpatrick’s Planar Point Location
Point Location: The point location problem (in 2-space) is: given a polygonal subdivision of the plane (that is, a

PSLG) with n vertices, preprocess this subdivision so that given a query point q, we can efficiently determine
which face of the subdivision contains q. We may assume that each face has some identifying label, which is to
be returned. We also assume that the subdivision is represented in any “reasonable” form (e.g. as a DCEL). In
general q may coincide with an edge or vertex. To simplify matters, we will assume that q does not lie on an
edge or vertex, but these special cases are not hard to handle.
It is remarkable that although this seems like such a simple and natural problem, it took quite a long time to
discover a method that is optimal with respect to both query time and space. It has long been known that
there are data structures that can perform these searches reasonably well (e.g. quad-trees and kd-trees), but for
which no good theoretical bounds could be proved. There were data structures of with O(log n) query time but
O(n log n) space, and O(n) space but O(log2 n) query time.
The first construction to achieve bothO(n) space andO(log n) query time was a remarkably clever construction
due to Kirkpatrick. It turns out that Kirkpatrick’s idea has some large embedded constant factors that make it
less attractive practically, but the idea is so clever that it is worth discussing, nonetheless. Later we will discuss
a more practical randomized method that is presented in our text.

Kirkpatrick’s Algorithm: Kirkpatrick’s idea starts with the assumption that the planar subdivision is a triangulation,
and further that the outer face is a triangle. If this assumption is not met, then we begin by triangulating all the
faces of the subdivision. The label associated with each triangular face is the same as a label for the original face
that contained it. For the outer face is not a triangle, first compute the convex hull of the polygonal subdivision,
triangulate everything inside the convex hull. Then surround this convex polygon with a large triangle (call the
vertices a, b, and c), and then add edges from the convex hull to the vertices of the convex hull. It may sound
like we are adding a lot of new edges to the subdivision, but recall from earlier in the semester that the number
of edges and faces in any straight-line planar subdivision is proportional to n, the number of vertices. Thus the
addition only increases the size of the structure by a constant factor.
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Note that once we find the triangle containing the query point in the augmented graph, then we will know the
original face that contains the query point. The triangulation process can be performed in O(n log n) time by a
plane sweep of the graph, or in O(n) time if you want to use sophisticated methods like the linear time polygon
triangulation algorithm. In practice, many straight-line subdivisions, may already have convex faces and these
can be triangulated easily in O(n) time.

a b

c

Fig. 116: Triangulation of a planar subdivision.

Let T0 denote the initial triangulation. What Kirkpatrick’s method does is to produce a sequence of triangula-
tions, T0, T1, T2, . . . , Tk, where k = O(log n), such that Tk consists only of a single triangle (the exterior face
of T0), and each triangle in Ti+1 overlaps a constant number of triangles in Ti.
We will see how to use such a structure for point location queries later, but for now let us concentrate on how
to build such a sequence of triangulations. Assuming that we have Ti, we wish to compute Ti+1. In order to
guarantee that this process will terminate after O(log n) stages, we will want to make sure that the number of
vertices in Ti+1 decreases by some constant factor from the number of vertices in Ti. In particular, this will
be done by carefully selecting a subset of vertices of Ti and deleting them (and along with them, all the edges
attached to them). After these vertices have been deleted, we need retriangulate the resulting graph to form
Ti+1. The question is: How do we select the vertices of Ti to delete, so that each triangle of Ti+1 overlaps only
a constant number of triangles in Ti?
There are two things that Kirkpatrick observed at this point, that make the whole scheme work.

Constant degree: We will make sure that each of the vertices that we delete have constant (≤ d) degree (that
is, each is adjacent to at most d edges). Note that the when we delete such a vertex, the resulting hole will
consist of at most d− 2 triangles. When we retriangulate, each of the new triangles, can overlap at most d
triangles in the previous triangulation.

Independent set: We will make sure that no two of the vertices that are deleted are adjacent to each other,
that is, the vertices to be deleted form an independent set in the current planar graph Ti. This will make
retriangulation easier, because when we remove m independent vertices (and their incident edges), we
create m independent holes (non triangular faces) in the subdivision, which we will have to retriangulate.
However, each of these holes can be triangulated independently of one another. (Since each hole contains
a constant number of vertices, we can use any triangulation algorithm, even brute force, since the running
time will be O(1) in any case.)

An important question to the success of this idea is whether we can always find a sufficiently large independent
set of vertices with bounded degree. We want the size of this set to be at least a constant fraction of the current
number of vertices. Fortunately, the answer is “yes,” and in fact it is quite easy to find such a subset. Part of the
trick is to pick the value of d to be large enough (too small and there may not be enough of them). It turns out
that d = 8 is good enough.

Lemma: Given a planar graph with n vertices, there is an independent set consisting of vertices of degree at
most 8, with at least n/18 vertices. This independent set can be constructed in O(n) time.

We will present the proof of this lemma later. The number 18 seems rather large. The number is probably
smaller in practice, but this is the best bound that this proof generates. However, the size of this constant is
one of the reasons that Kirkpatrick’s algorithm is not used in practice. But the construction is quite clever,
nonetheless, and once a optimal solution is known to a problem it is often not long before a practical optimal
solution follows.
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Kirkpatrick Structure: Assuming the above lemma, let us give the description of how the point location data struc-
ture, the Kirkpatrick structure, is constructed. We start with T0, and repeatedly select an independent set of
vertices of degree at most 8. We never include the three vertices a, b, and c (forming the outer face) in such an
independent set. We delete the vertices from the independent set from the graph, and retriangulate the resulting
holes. Observe that each triangle in the new triangulation can overlap at most 8 triangles in the previous trian-
gulation. Since we can eliminate a constant fraction of vertices with each stage, after O(log n) stages, we will
be down to the last 3 vertices.
The constant factors here are not so great. With each stage, the number of vertices falls by a factor of 17/18. To
reduce to the final three vertices, implies that (18/17)k = n or that

k = log18/17 n ≈ 12 lg n.

It can be shown that by always selecting the vertex of smallest degree, this can be reduced to a more palatable
4.5 lg n.
The data structure is based on this decomposition. The root of the structure corresponds to the single triangle
of Tk. The nodes at the next lower level are the triangles of Tk−1, followed by Tk−2, until we reach the leaves,
which are the triangles of our initial triangulation, T0. Each node for a triangle in triangulation Ti+1, stores
pointers to all the triangles it overlaps in Ti (there are at most 8 of these). Note that this structure is a directed
acyclic graph (DAG) and not a tree, because one triangle may have many parents in the data structure. This is
shown in the following figure.
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Fig. 117: Kirkpatrick’s point location structure.

To locate a point, we start with the root, Tk. If the query point does not lie within this single triangle, then we
are done (it lies in the exterior face). Otherwise, we search each of the (at most 8) triangles in Tk−1 that overlap
this triangle. When we find the correct one, we search each of the triangles in Tk−2 that overlap this triangles,
and so forth. Eventually we will find the triangle containing the query point in the last triangulation, T0, and this
is the desired output. See the figure below for an example.
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Fig. 118: Point location search.

Construction and Analysis: The structure hasO(log n) levels (one for each triangulation), it takes a constant amount
of time to move from one level to the next (at most 8 point-in-triangle tests), thus the total query time isO(log n).
The size of the data structure is the sum of sizes of the triangulations. Since the number of triangles in a
triangulation is proportional to the number of vertices, it follows that the size is proportional to

n(1 + 17/18 + (17/18)2 + (17/18)3 + . . .) ≤ 18n,

(using standard formulas for geometric series). Thus the data structure size is O(n) (again, with a pretty hefty
constant).
The last thing that remains is to show how to construct the independent set of the appropriate size. We first
present the algorithm for finding the independent set, and then prove the bound on its size.

(1) Mark all nodes of degree ≥ 9.
(2) While there exists an unmarked node do the following:

(a) Choose an unmarked vertex v.
(b) Add v to the independent set.
(c) Mark v and all of its neighbors.

It is easy to see that the algorithm runs in O(n) time (e.g., by keeping unmarked vertices in a stack and repre-
senting the triangulation so that neighbors can be found quickly.)
Intuitively, the argument that there exists a large independent set of low degree is based on the following simple
observations. First, because the average degree in a planar graph is less than 6, there must be a lot of vertices of
degree at most 8 (otherwise the average would be unattainable). Second, whenever we add one of these vertices
to our independent set, only 8 other vertices become ineligible for inclusion in the independent set.
Here is the rigorous argument. Recall from Euler’s formula, that if a planar graph is fully triangulated, then the
number of edges e satisfies e = 3n − 6. If we sum the degrees of all the vertices, then each edge is counted
twice. Thus the average degree of the graph is

∑

v

deg(v) = 2e = 6n− 12 < 6n.

Next, we claim that there must be at least n/2 vertices of degree 8 or less. To see why, suppose to the contrary
that there were more than n/2 vertices of degree 9 or greater. The remaining vertices must have degree at least
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3 (with the possible exception of the 3 vertices on the outer face), and thus the sum of all degrees in the graph
would have to be at least as large as

9
n

2
+ 3

n

2
= 6n,

which contradicts the equation above.
Now, when the above algorithm starts execution, at least n/2 vertices are initially unmarked. Whenever we
select such a vertex, because its degree is 8 or fewer, we mark at most 9 new vertices (this node and at most 8
of its neighbors). Thus, this step can be repeated at least (n/2)/9 = n/18 times before we run out of unmarked
vertices. This completes the proof.

Lecture 27: Divide-and-Conquer Algorithm for Voronoi Diagrams
Planar Voronoi Diagrams: Recall that, given n points P = {p1, p2, . . . , pn} in the plane, the Voronoi polygon of a

point pi, V (pi), is defined to be the set of all points q in the plane for which pi is among the closest points to q
in P . That is,

V (pi) = {q : |pi − q| ≤ |pj − q|, ∀j &= i}.

The union of the boundaries of the Voronoi polygons is called the Voronoi diagram of P , denoted V D(P ). The
dual of the Voronoi diagram is a triangulation of the point set, called the Delaunay triangulation. Recall from
our discussion of quad-edge data structure, that given a good representation of any planar graph, the dual is easy
to construct. Hence, it suffices to show how to compute either one of these structures, from which the other can
be derived easily in O(n) time.
There are four fairly well-known algorithms for computing Voronoi diagrams and Delaunay triangulations in
the plane. They are

Divide-and-Conquer: (For both VD and DT.) The firstO(n log n) algorithm for this problem. Not widely used
because it is somewhat hard to implement. Can be generalized to higher dimensions with some difficulty.
Can be generalized to computing Vornoi diagrams of line segments with some difficulty.

Randomized Incremental: (For DT and VD.) The simplest. O(n log n) time with high probability. Can be
generalized to higher dimensions as with the randomized algorithm for convex hulls. Can be generalized
to computing Voronoi diagrams of line segments fairly easily.

Fortune’s Plane Sweep: (For VD.) A very clever and fairly simple algorithm. It computes a “deformed”
Voronoi diagram by plane sweep in O(n log n) time, from which the true diagram can be extracted easily.
Can be generalized to computing Voronoi diagrams of line segments fairly easily.

Reduction to convex hulls: (For DT.) Computing a Delaunay triangulation of n points in dimension d can
be reduced to computing a convex hull of n points in dimension d + 1. Use your favorite convex hull
algorithm. Unclear how to generalize to compute Voronoi diagrams of line segments.

We will cover all of these approaches, except Fortune’s algorithm. O’Rourke does not give detailed explanations
of any of these algorithms, but he does discuss the idea behind Fortune’s algorithm. Today we will discuss the
divide-and-conquer algorithm. This algorithm is presented in Mulmuley, Section 2.8.4.

Divide-and-conquer algorithm: The divide-and-conquer approach works like most standard geometric divide-and-
conquer algorithms. We split the points according to x-coordinates into 2 roughly equal sized groups (e.g. by
presorting the points by x-coordinate and selecting medians). We compute the Voronoi diagram of the left side,
and the Voronoi diagram of the right side. Note that since each diagram alone covers the entire plane, these two
diagrams overlap. We then merge the resulting diagrams into a single diagram.
The merging step is where all the work is done. Observe that every point in the the plane lies within two
Voronoi polygons, one in V D(L) and one in V D(R). We need to resolve this overlap, by separating overlapping
polygons. Let V (l0) be the Voronoi polygon for a point from the left side, and let V (r0) be the Voronoi polygon
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for a point on the right side, and suppose these polygons overlap one another. Observe that if we insert the
bisector between l0 and r0, and through away the portions of the polygons that lie on the “wrong” side of the
bisector, we resolve the overlap. If we do this for every pair of overlapping Voronoi polygons, we get the final
Voronoi diagram. This is illustrated in the figure below.

Left/Right Diagrams and Contour

Final Voronoi Diagram

Fig. 119: Merging Voronoi diagrams.

The union of these bisectors that separate the left Voronoi diagram from the right Voronoi diagram is called the
contour. A point is on the contour if and only if it is equidistant from 2 points in S, one in L and one in R.

(0) Presort the points by x-coordinate (this is done once).
(1) Split the point set S by a vertical line into two subsets L and R of roughly equal size.
(2) Compute V D(L) and V D(R) recursively. (These diagrams overlap one another.)
(3) Merge the two diagrams into a single diagram, by computing the contour and discarding the portion of the

V D(L) that is to the right of the contour, and the portion of V D(R) that is to the left of the contour.

Assuming we can implement step (3) in O(n) time (where n is the size of the remaining point set) then the
running time will be defined by the familiar recurrence

T (n) = 2T (n/2) + n,

which we know solves to O(n log n).

Computing the contour: What makes the divide-and-conquer algorithm somewhat tricky is the task of computing the
contour. Before giving an algorithm to compute the contour, let us make some observations about its geomtetric
structure. Let us make the usual simplifying assumptions that no 4 points are cocircular.

Lemma: The contour consists of a single polygonal curve (whose first and last edges are semiinfinite) which is
monotone with respect to the y-axis.

Proof: A detailed proof is a real hassle. Here are the main ideas, though. The contour separates the plane into
two regions, those points whose nearest neighbor lies in L from those points whose nearest neighbor lies
in R. Because the contour locally consists of points that are equidistant from 2 points, it is formed from
pieces that are perpendicular bisectors, with one point from L and the other point from R. Thus, it is a
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piecewise polygonal curve. Because no 4 points are cocircular, it follows that all vertices in the Voronoi
diagram can have degree at most 3. However, because the contour separates the plane into only 2 types of
regions, it can contain only vertices of degree 2. Thus it can consist only of the disjoint union of closed
curves (actually this never happens, as we will see) and unbounded curves. Observe that if we orient the
contour counterclockwise with respect to each point in R (clockwise with respect to each point in L), then
each segment must be directed in the−y directions, because L andR are separated by a vertical line. Thus,
the contour contains no horizontal cusps. This implies that the contour cannot contain any closed curves,
and hence contains only vertically monotone unbounded curves. Also, this orientability also implies that
there is only one such curve.

Lemma: The topmost (bottommost) edge of the contour is the perpendicular bisector for the two points forming
the upper (lower) tangent of the left hull and the right hull.

Proof: This follows from the fact that the vertices of the hull correspond to unbounded Voronoi polygons, and
hence upper and lower tangents correspond to unbounded edges of the contour.

These last two theorem suggest the general approach. We start by computing the upper tangent, which we know
can be done in linear time (once we know the left and right hulls, or by prune and search). Then, we start tracing
the contour from top to bottom. When we are in Voronoi polygons V (l0) and V (r0) we trace the bisector
between l0 and r0 in the negative y-direction until its first contact with the boundaries of one of these polygons.
Suppose that we hit the boundary of V (l0) first. Assuming that we use a good data structure for the Voronoi
diagram (e.g. quad-edge data structure) we can determine the point l1 lying on the other side of this edge in the
left Voronoi diagram. We continue following the contour by tracing the bisector of l1 and r0.
However, in order to insure efficiency, we must be careful in how we determine where the bisector hits the edge
of the polygon. Consider the figure shown below. We start tracing the contour between l0 and r0. By walking
along the boundary of V (l0) we can determine the edge that the contour would hit first. This can be done in
time proportional to the number of edges in V (l0) (which can be as large as O(n)). However, we discover that
before the contour hits the boundary of V (l0) it hits the boundary of V (r0). We find the new point r1 and now
trace the bisector between l0 and r1. Again we can compute the intersection with the boundary of V (l0) in time
proportional to its size. However the contour hits the boundary of V (r1) first, and so we go on to r2. As can be
seen, if we are not smart, we can rescan the boundary of V (l0) over and over again, until the contour finally hits
the boundary. If we do this O(n) times, and the boundary of V (l0) is O(n), then we are stuck with O(n2) time
to trace the contour.

0

0

1

2

Contour

l

r

r

r

Fig. 120: Tracing the contour.

We have to avoid this repeated rescanning. However, there is a way to scan the boundary of each Voronoi
polygon at most once. Observe that as we walk along the contour, each time we stay in the same polygon
V (l0), we are adding another edge onto its Voronoi polygon. Because the Voronoi polygon is convex, we know
that the edges we are creating turn consistently in the same direction (clockwise for points on the left, and
counterclockwise for points on the right). To test for intersections between the contour and the current Voronoi
polygon, we trace the boundary of the polygon clockwise for polygons on the left side, and counterclockwise
for polygons on the right side. Whenever the contour changes direction, we continue the scan from the point
that we left off. In this way, we know that we will never need to rescan the same edge of any Voronoi polygon
more than once.
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Lecture 28: Delaunay Triangulations and Convex Hulls
Delaunay Triangulations and Convex Hulls: At first, Delaunay triangulations and convex hulls appear to be quite

different structures, one is based on metric properties (distances) and the other on affine properties (collinearity,
coplanarity). Today we show that it is possible to convert the problem of computing a Delaunay triangulation
in dimension d to that of computing a convex hull in dimension d+ 1. Thus, there is a remarkable relationship
between these two structures.
We will demonstrate the connection in dimension 2 (by computing a convex hull in dimension 3). Some of
this may be hard to visualize, but see O’Rourke for illustrations. (You can also reason by analogy in one lower
dimension of Delaunay triangulations in 1-d and convex hulls in 2-d, but the real complexities of the structures
are not really apparent in this case.)
The connection between the two structures is the paraboloid z = x2 + y2. Observe that this equation defines
a surface whose vertical cross sections (constant x or constant y) are parabolas, and whose horizontal cross
sections (constant z) are circles. For each point in the plane, (x, y), the vertical projection of this point onto
this paraboloid is (x, y, x2 + y2) in 3-space. Given a set of points S in the plane, let S′ denote the projection
of every point in S onto this paraboloid. Consider the lower convex hull of S′. This is the portion of the convex
hull of S′ which is visible to a viewer standing at z = −∞. We claim that if we take the lower convex hull of
S′, and project it back onto the plane, then we get the Delaunay triangulation of S. In particular, let p, q, r ∈ S,
and let p′, q′, r′ denote the projections of these points onto the paraboloid. Then p′q′r′ define a face of the lower
convex hull of S′ if and only if7pqr is a triangle of the Delaunay triangulation of S. The process is illustrated
in the following figure.

Project onto paraboloid. Compute convex hull. Project hull faces back to plane.

Fig. 121: Delaunay triangulations and convex hull.

The question is, why does this work? To see why, we need to establish the connection between the triangles of
the Delaunay triangulation and the faces of the convex hull of transformed points. In particular, recall that

Delaunay condition: Three points p, q, r ∈ S form a Delaunay triangle if and only if the circumcircle of these
points contains no other point of S.

Convex hull condition: Three points p′, q′, r′ ∈ S′ form a face of the convex hull of S′ if and only if the plane
passing through p′, q′, and r′ has all the points of S′ lying to one side.

Clearly, the connection we need to establish is between the emptiness of circumcircles in the plane and the
emptiness of halfspaces in 3-space. We will prove the following claim.

Lemma: Consider 4 distinct points p, q, r, s in the plane, and let p′, q′, r′, s′ be their respective projections onto
the paraboloid, z = x2 + y2. The point s lies within the circumcircle of p, q, r if and only if s′ lies on the
lower side of the plane passing through p′, q′, r′.

To prove the lemma, first consider an arbitrary (nonvertical) plane in 3-space, which we assume is tangent to
the paraboloid above some point (a, b) in the plane. To determine the equation of this tangent plane, we take
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derivatives of the equation z = x2 + y2 with respect to x and y giving

∂z

∂x
= 2x,

∂z

∂y
= 2y.

At the point (a, b, a2 + b2) these evaluate to 2a and 2b. It follows that the plane passing through these point has
the form

z = 2ax+ 2by + γ.

To solve for γ we know that the plane passes through (a, b, a2 + b2) so we solve giving

a2 + b2 = 2a · a+ 2b · b+ γ,

Implying that γ = −(a2 + b2). Thus the plane equation is

z = 2ax+ 2by − (a2 + b2).

If we shift the plane upwards by some positive amount r2 we get the plane

z = 2ax+ 2by − (a2 + b2) + r2.

How does this plane intersect the paraboloid? Since the paraboloid is defined by z = x2 + y2 we can eliminate
z giving

x2 + y2 = 2ax+ 2by − (a2 + b2) + r2,

which after some simple rearrangements is equal to

(x− a)2 + (y − b)2 = r2.

This is just a circle. Thus, we have shown that the intersection of a plane with the paraboloid produces a space
curve (which turns out to be an ellipse), which when projected back onto the (x, y)-coordinate plane is a circle
centered at (a, b).
Thus, we conclude that the intersection of an arbitrary lower halfspace with the paraboloid, when projected onto
the (x, y)-plane is the interior of a circle. Going back to the lemma, when we project the points p, q, r onto
the paraboloid, the projected points p′, q′ and r′ define a plane. Since p′, q′, and r′, lie at the intersection of
the plane and paraboloid, the original points p, q, r lie on the projected circle. Thus this circle is the (unique)
circumcircle passing through these p, q, and r. Thus, the point s lies within this circumcircle, if and only if its
projection s′ onto the paraboloid lies within the lower halfspace of the plane passing through p, q, r.

r p
s
q

q’

r’ s’
p’

Fig. 122: Planes and circles.

Now we can prove the main result.

Theorem: Given a set of points S in the plane (assume no 4 are cocircular), and given 3 points p, q, r ∈ S, the
triangle 7pqr is a triangle of the Delaunay triangulation of S if and only if triangle 7p′q′r′ is a face of
the lower convex hull of the projected set S′.
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From the definition of Delaunay triangulations we know that7pqr is in the Delaunay triangulation if and only
if there is no point s ∈ S that lies within the circumcircle of pqr. From the previous lemma this is equivalent to
saying that there is no point s′ that lies in the lower convex hull of S′, which is equivalent to saying that p′q′r′
is a face of the lower convex hull. This completes the proof.
In order to test whether a point s lies within the circumcircle defined by p, q, r, it suffices to test whether s′
lies within the lower halfspace of the plane passing through p′, q′, r′. If we assume that p, q, r are oriented
counterclockwise in the plane this this reduces to determining whether the quadruple p′, q′, r′, s′ is positively
oriented, or equivalently whether s lies to the left of the oriented circle passing through p, q, r.
This leads to the incircle test we presented last time.

in(p, q, r, s) = det









px py p2x + p2y 1
qx qy q2x + q2y 1
rx ry r2x + r2y 1
sx sy s2x + s2y 1









> 0.

Voronoi Diagrams and Upper Envelopes: We know that Voronoi diagrams and Delaunay triangulations are dual
geometric structures. We have also seen (informally) that there is a dual relationship between points and lines in
the plane, and in general, points and planes in 3-space. From this latter connection we argued that the problems
of computing convex hulls of point sets and computing the intersection of halfspaces are somehow “dual” to
one another. It turns out that these two notions of duality, are (not surprisingly) interrelated. In particular, in the
same way that the Delaunay triangulation of points in the plane can be transformed to computing a convex hull
in 3-space, it turns out that the Voronoi diagram of points in the plane can be transformed into computing the
intersection of halfspaces in 3-space.
Here is how we do this. For each point p = (a, b) in the plane, recall the tangent plane to the paraboloid above
this point, given by the equation

z = 2ax+ 2by − (a2 + b2).

Define H+(p) to be the set of points that are above this halfplane, that is, H+(p) = {(x, y, z) | z ≥ 2ax +
2by − (a2 + b2)}. Let S = {p1, p2, . . . , pn} be a set of points. Consider the intersection of the halfspaces
H+(pi). This is also called the upper envelope of these halfspaces. The upper envelope is an (unbounded)
convex polyhedron. If you project the edges of this upper envelope down into the plane, it turns out that you get
the Voronoi diagram of the points.

Theorem: Given a set of points S in the plane (assume no 4 are cocircular), let H denote the set of upper half-
spaces defined by the previous transformation. Then the Voronoi diagram of H is equal to the projection
onto the (x, y)-plane of the 1-skeleton of the convex polyhedron which is formed from the intersection of
halfspaces of S′.

q
p

p’q’

Fig. 123: Intersection of halfspaces.

It is hard to visualized this surface, but it is not hard to show why this is so. Suppose we have 2 points in the
plane, p = (a, b) and q = (c, d). The corresponding planes are:

z = 2ax+ 2by − (a2 + b2) and z = 2cx+ 2dy − (c2 + d2).
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If we determine the intersection of the corresponding planes and project onto the (x, y)-coordinate plane (by
eliminating z from these equations) we get

x(2a− 2c) + y(2b− 2d) = (a2 − c2) + (b2 − d2).

We claim that this is the perpendicular bisector between (a, b) and (c, d). To see this, observe that it passes
through the midpoint ((a+ c)/2, (b+ d)/2) between the two points since

a+ c

2
(2a− 2c) +

b+ d

2
(2b− 2d) = (a2 − c2) + (b2 − d2).

and, its slope is−(a−c)/(b−d), which is the negative reciprocal of the line segment from (a, b) to (c, d). From
this it can be shown that the intersection of the upper halfspaces defines a polyhedron whose edges project onto
the Voronoi diagram edges.

Lecture 29: Topological Plane Sweep
Topological Plane Sweep: In the last two lectures we have introduced arrangements of lines and geometric duality

as important tools in solving geometric problems on lines and points. Today give an efficient algorithm for
sweeping an arrangement of lines.
As we will see, many problems in computational geometry can be solved by applying line-sweep to an ar-
rangement of lines. Since the arrangement has size O(n2), and since there are O(n2) events to be processed,
each involving an O(log n) heap deletion, this typically leads to algorithms running in O(n2 log n) time, using
O(n2) space. It is natural to ask whether we can dispense with the additional O(log n) factor in running time,
and whether we need all of O(n2) space (since in theory we only need access to the current O(n) contents of
the sweep line).
We discuss a variation of plane sweep called topological plane sweep. This method runs in O(n2) time, and
uses onlyO(n) space (by essentially constructing only the portion of the arrangement that we need at any point).
Although it may appear to be somewhat sophisticated, it can be implemented quite efficiently, and is claimed to
outperform conventional plane sweep on arrangements of any significant size (e.g. over 20 lines).

Cuts and topological lines: The algorithm is called topological plane sweep because we do not sweep a straight ver-
tical line through the arrangement, but rather we sweep a curved topological line that has the essential properties
of a vertical sweep line in the sense that this line intersects each line of the arrangement exactly once. The notion
of a topological line is an intuitive one, but it can be made formal in the form of something called a cut. Recall
that the faces of the arrangement are convex polygons (possibly unbounded). (Assuming no vertical lines) the
edges incident to each face can naturally be partitioned into the edges that are above the face, and those that are
below the face. Define a cut in an arrangement to be a sequence of edges c1, c2, . . . , cn, in the arrangement, one
taken from each line of the arrangement, such that for 1 ≤ i ≤ n− 1, ci and ci+1 are incident to the same face
of the arrangement, and ci is above the face and ci+1 is below the face. An example of a topological line and
the associated cut is shown below.

c1

c2

c3 c4

c5

Fig. 124: Topological line and associated cut.

The topological plane sweep starts at the leftmost cut of the arrangement. This consists of all the left-unbounded
edges of the arrangement. Observe that this cut can be computed in O(n log n) time, because the lines intersect
the cut in inverse order of slope. The topological sweep line will sweep to the right until we come to the
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rightmost cut, which consists all of the right-unbounded edges of the arrangement. The sweep line advances by
a series of what are called elementary steps. In an elementary steps, we find two consecutive edges on the cut
that meet at a vertex of the arrangement (we will discuss later how to determine this), and push the topological
sweep line through this vertex. Observe that on doing so these two lines swap in their order along the sweep
line. This is shown below.

Fig. 125: Elementary step.

It is not hard to show that an elementary step is always possible, since for any cut (other than the rightmost cut)
there must be two consecutive edges with a common right endpoint. In particular, consider the edge of the cut
whose right endpoint has the smallest x-coordinate. It is not hard to show that this endpoint will always allow
an elementary step. Unfortunately, determining this vertex would require at least O(log n) time (if we stored
these endpoints in a heap, sorted by x-coordinate), and we want to perform each elementary step in O(1) time.
Hence, we will need to find some other method for finding elementary steps.

Upper and Lower Horizon Trees: To find elementary steps, we introduce two simple data structures, the upper hori-
zon tree (UHT) and the lower horizon tree (LHT). To construct the upper horizon tree, trace each edge of the
cut to the right. When two edges meet, keep only the one with the higher slope, and continue tracing it to the
right. The lower horizon tree is defined symmetrically. There is one little problem in these definitions in the
sense that these trees need not be connected (forming a forest of trees) but this can be fixed conceptually at least
by the addition of a vertical line at x = +∞. For the upper horizon we think of its slope as being +∞ and for
the lower horizon we think of its slope as being −∞. Note that we consider the left endpoints of the edges of
the cut as not belonging to the trees, since otherwise they would not be trees. It is not hard to show that with
these modifications, these are indeed trees. Each edge of the cut defines exactly one line segment in each tree.
An example is shown below.

Upper Horizon Tree Lower Horizon Tree

Fig. 126: Upper and lower horizon trees.

The important things about the UHT and LHT is that they give us an easy way to determine the right endpoints
of the edges on the cut. Observe that for each edge in the cut, its right endpoint results from a line of smaller
slope intersecting it from above (as we trace it from left to right) or from a line of larger slope intersecting it
from below. It is easy to verify that the UHT and LHT determine the first such intersecting line of each type,
respectively. It follows that if we intersect the two trees, then the segments they share in common correspond
exactly to the edges of the cut. Thus, by knowing the UHT and LHT, we know where are the right endpoints
are, and from this we can determine easily which pairs of consecutive edges share a common right endpoint,
and from this we can determine all the elementary steps that are legal. We store all the legal steps in a stack (or
queue, or any list is fine), and extract them one by one.

The sweep algorithm: Here is an overview of the topological plane sweep.

(1) Input the lines and sort by slope. Let C be the initial (leftmost) cut, a list of lines in decreasing order of
slope.
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(2) Create the initial UHT incrementally by inserting lines in decreasing order of slope. Create the initial LHT
incrementally by inserting line in increasing order of slope. (More on this later.)

(3) By consulting the LHT and UHT, determine the right endpoints of all the edges of the initial cut, and for
all pairs of consecutive lines (li, li+1) sharing a common right endpoint, store this pair in stack S.

(4) Repeat the following elementary step until the stack is empty (implying that we have arrived at the right-
most cut).
(a) Pop the pair (li, li+1) from the top of the stack S.
(b) Swap these lines within C, the cut (we assume that each line keeps track of its position in the cut).
(c) Update the horizon trees. (More on this later.)
(d) Consulting the changed entries in the horizon tree, determine whether there are any new cut edges

sharing right endpoints, and if so push them on the stack S.

The important unfinished business is to show that we can build the initial UHT and LHT in O(n) time, and
to show that, for each elementary step, we can update these trees and all other relevant information in O(1)
amortized time. By amortized time we mean that, even though a single elementary step can take more thanO(1)
time, the total time needed to perform all O(n2) elementary steps is O(n2), and hence the average time for each
step is O(1).
This is done by an adaptation of the same incremental “face walking” technique we used in the incremental
construction of line arrangements. Let’s consider just the UHT, since the LHT is symmetric. To create the initial
(leftmost) UHT we insert the lines one by one in decreasing order of slope. Observe that as each new line is
inserted it will start above all of the current lines. The uppermost face of the current UHT consists of a convex
polygonal chain, see the figure below left. As we trace the newly inserted line from left to right, there will be
some point at which it first hits this upper chain of the current UHT. By walking along the chain from left to
right, we can determine this intersection point. Each segment that is walked over is never visited again by this
initialization process (because it is no longer part of the upper chain), and since the initial UHT has a total of
O(n) segments, this implies that the total time spent in walking is O(n). Thus, after the O(n log n) time for
sorting the segments, the initial UHT tree can be built in O(n) additional time.

Initial UHT construction. Updating the UHT.

new line
v v

Fig. 127: Constructing and updating the UHT.

Next we show how to update the UHT after an elementary step. The process is quite similar, as shown in the
figure right. Let v be the vertex of the arrangement which is passed over in the sweep step. As we pass over v,
the two edges swap positions along the sweep line. The new lower edge, call it l, which had been cut off of the
UHT by the previous lower edge, now must be reentered into the tree. We extend l to the left until it contacts an
edge of the UHT. At its first contact, it will terminate (and this is the only change to be made to the UHT). In
order to find this contact, we start with the edge immediately below l the current cut. We traverse the face of the
UHT in counterclockwise order, until finding the edge that this line intersects. Observe that we must eventually
find such an edge because l has a lower slope than the other edge intersecting at v, and this edge lies in the same
face.

Analysis: A careful analysis of the running time can be performed using the same amortization proof (based on pebble
counting) that was used in the analysis of the incremental algorithm. We will not give the proof in full detail.
Observe that because we maintain the set of legal elementary steps in a stack (as opposed to a heap as would
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be needed for standard plane sweep), we can advance to the next elementary step in O(1) time. The only part
of the elementary step that requires more than constant time is the update operations for the UHT and LHT.
However, we claim that the total time spent updating these trees is O(n2). The argument is that when we are
tracing the edges (as shown in the previous figure) we are “essentially” traversing the edges in the zone for L in
the arrangement. (This is not quite true, because there are edges above l in the arrangement, which have been
cut out of the upper tree, but the claim is that their absence cannot increase the complexity of this operation,
only decrease it. However, a careful proof needs to take this into account.) Since the zone of each line in
the arrangement has complexity O(n), all n zones have total complexity O(n2). Thus, the total time spent in
updating the UHT and LHT trees is O(n2).

Lecture 30: Ham-Sandwich Cuts
Ham Sandwich Cuts of Linearly Separated Point Sets: We are given n red points A, and m blue points B, and

we want to compute a single line that simultaneously bisects both sets. (If the cardinality of either set is odd,
then the line passes through one of the points of the set.) We make the simplifying assumption that the sets are
separated by a line. (This assumption makes the problem much simpler to solve, but the general case can still
be solved in O(n2) time using arrangements.)
To make matters even simpler we assume that the points have been translated and rotated so this line is the y-
axis. Thus all the red points (set A) have positive x-coordinates, and hence their dual lines have positive slopes,
whereas all the blue points (set B) have negative x-coordinates, and hence their dual lines have negative slopes.
As long as we are simplifying things, let’s make one last simplification, that both sets have an odd number of
points. This is not difficult to get around, but makes the pictures a little easier to understand.
Consider one of the sets, say A. Observe that for each slope there exists one way to bisect the points. In
particular, if we start a line with this slope at positive infinity, so that all the points lie beneath it, and drop in
downwards, eventually we will arrive at a unique placement where there are exactly (n− 1)/2 points above the
line, one point lying on the line, and (n− 1)/2 points below the line (assuming no two points share this slope).
This line is called the median line for this slope.
What is the dual of this median line? If we dualize the points using the standard dual transformation: D(a, b) :
y = ax−b, then we get n lines in the plane. By starting a line with a given slope above the points and translating
it downwards, in the dual plane we moving a point from−∞ upwards in a vertical line. Each time the line passes
a point in the primal plane, the vertically moving point crosses a line in the dual plane. When the translating line
hits the median point, in the dual plane the moving point will hit a dual line such that there are exactly (n−1)/2
dual lines above this point and (n − 1)/2 dual lines below this point. We define a point to be at level k, Lk, in
an arrangement if there are at most k − 1 lines above this point and at most n − k lines below this point. The
median level in an arrangement of n lines is defined to be the *(n− 1)/2+-th level in the arrangement. This is
shown asM(A) in the following figure on the left.

M(B)

M(A)M(A) Ham sandwich point

Dual arrangement of A. Overlay of A and B’s median levels.

Fig. 128: Ham sandwich: Dual formulation.

Thus, the set of bisecting lines for setA in dual form consists of a polygonal curve. Because this curve is formed
from edges of the dual lines in A, and because all lines in A have positive slope, this curve is monotonically
increasing. Similarly, the median for B, M(B), is a polygonal curve which is monotonically decreasing. It
follows that A and B must intersect at a unique point. The dual of this point is a line that bisects both sets.
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We could compute the intersection of these two curves by a simultaneous topological plane sweep of both
arrangements. However it turns out that it is possible to do much better, and in fact the problem can be solved
in O(n + m) time. Since the algorithm is rather complicated, I will not describe the details, but here are the
essential ideas. The algorithm operates by prune and search. In O(n +m) time we will generate a hypothesis
for where the ham sandwich point is in the dual plane, and if we are wrong, we will succeed in throwing away
a constant fraction of the lines from future consideration.
First observe that for any vertical line in the dual plane, it is possible to determine in O(n + m) time whether
this line lies to the left or the right of the intersection point of the median levels,M(A) andM(B). This can be
done by computing the intersection of the dual lines of A with this line, and computing their median in O(n)
time, and computing the intersection of the dual lines of B with this line and computing their median in O(m)
time. IfA’s median lies belowB’s median, then we are to the left of the ham sandwich dual point, and otherwise
we are to the right of the ham sandwich dual point. It turns out that with a little more work, it is possible to
determine in O(n+m) time whether the ham sandwich point lies to the right or left of a line of arbitrary slope.
The trick is to use prune and search. We find two lines L1 and L2 in the dual plane (by a careful procedure that
I will not describe). These two lines define four quadrants in the plane. By determining which side of each line
the ham sandwich point lies, we know that we can throw away any line that does not intersect this quadrant from
further consideration. It turns out that by a judicious choice of L1 and L2, we can guarantee that a fraction of at
least (n+m)/8 lines can be thrown away by this process. We recurse on the remaining lines. By the same sort
of analysis we made in the Kirkpatrick and Seidel prune and search algorithm for upper tangents, it follows that
in O(n+m) time we will find the ham sandwich point.

Lecture 31: Shortest Paths and Visibility Graphs
Shortest paths: We are given a set of n disjoint polygonal obstacles in the plane, and two points s and t that lie

outside of the obstacles. The problem is to determine the shortest path from s to t that avoids the interiors of the
obstacles. (It may travel along the edges or pass through the vertices of the obstacles.) The complement of the
interior of the obstacles is called free space. We want to find the shortest path that is constrained to lie entirely
in free space.
Today we consider a simple (but perhaps not the most efficient) way to solve this problem. We assume that we
measure lengths in terms of Euclidean distances. How do we measure paths lengths for curved paths? Luckily,
we do not have to, because we claim that the shortest path will always be a polygonal curve.

Claim: The shortest path between any two points that avoids a set of polygonal obstacles is a polygonal curve,
whose vertices are either vertices of the obstacles or the points s and t.

Proof: We show that any path π that violates these conditions can be replaced by a slightly shorter path from
s to t. Since the obstacles are polygonal, if the path were not a polygonal curve, then there must be some
point p in the interior of free space, such that the path passing through p is not locally a line segment. If we
consider any small neighborhood about p (small enough to not contain s or t or any part of any obstacle),
then since the shortest path is not locally straight, we can shorten it slightly by replacing this curved
segment by a straight line segment jointing one end to the other. Thus, π is not shortest, a contradiction.
Thus π is a polygonal path. Suppose that it contained a vertex v that was not an obstacle vertex. Again we
consider a small neighbor hood about v that contains no part of any obstacle. We can shorten the path, as
above, implying that π is not a shortest path.

From this it follows that the edges that constitute the shortest path must travel between s and t and vertices of
the obstacles. Each of these edges must have the property that it does not intersect the interior of any obstacle,
implying that the endpoints must be visible to each other. More formally, we say that two points p and q are
mutually visible if the open line segment joining them does not intersect the interior of any obstacle. By this
definition, the two endpoints of an obstacle edge are not mutually visible, so we will explicitly allow for this
case in the definition below.
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Definition: The visibility graph of s and t and the obstacle set is a graph whose vertices are s and t the obstacle
vertices, and vertices v and w are joined by an edge if v and w are either mutually visible or if (v, w) is an
edge of some obstacle.

t t

s s

Fig. 129: Visibility graph.

It follows from the above claim that the shortest path can be computed by first computing the visibility graph and
labeling each edge with its Euclidean length, and then computing the shortest path by, say, Dijkstra’s algorithm
(see CLR). Note that the visibility graph is not planar, and hence may consist of Ω(n2) edges. Also note that,
even if the input points have integer coordinates, in order to compute distances we need to compute square
roots, and then sums of square roots. This can be approximated by floating point computations. (If exactness is
important, this can really be a problem, because there is no known polynomial time procedure for performing
arithmetic with arbitrary square roots of integers.)

Computing the Visibility Graph: We give an O(n2) procedure for constructing the visibility graph of n line seg-
ments in the plane. The more general task of computing the visibility graph of an arbitrary set of polygonal
obstacles is a very easy generalization. In this context, two vertices are visible if the line segment joining them
does not intersect any of the obstacle line segments. However, we allow each line segment to contribute itself as
an edge in the visibility graph. We will make the general position assumption that no three vertices are collinear,
but this is not hard to handle with some care. The algorithm is not output sensitive. If k denotes the number of
edges in the visibility graph, then an O(n log n+ k) algorithm does exist, but it is quite complicated.
The text gives anO(n2 log n) time algorithm. We will give anO(n2) time algorithm. Both algorithms are based
on the same concept, namely that of performing an angular sweep around each vertex. The text’s algorithm
operates by doing this sweep one vertex at a time. Our algorithm does the sweep for all vertices simultaneously.
We use the fact (given in the lecture on arrangements) that this angular sort can be performed for all vertices in
O(n2) time. If we build the entire arrangement, this sorting algorithm will involve O(n2) space. However it
can be implemented inO(n) space using an algorithm called topological plane sweep. Topological plane sweep
provides a way to sweep an arrangement of lines using a “flexible” sweeping line. Because events do not need
to sorted, we can avoid the O(log n) factor, which would otherwise be needed to maintain the priority queue.
Here is a high-level intuitive view of the algorithm. First, recall the algorithm for computing trapezoidal maps.
We shoot a bullet up and down from every vertex until it hits its first line segment. This implicitly gives us
the vertical visibility relationships between vertices and segments. Now, we imagine that angle θ continuously
sweeps out all slopes from −∞ to +∞. Imagine that all the bullet lines attached to all the vertices begin to turn
slowly counterclockwise. If we play the mind experiment of visualizing the rotation of these bullet paths, the
question is what are the significant event points, and what happens with each event? As the sweep proceeds, we
will eventually determine everything that is visible from every vertex in every direction. Thus, it should be an
easy matter to piece together the edges of the visibility graph as we go.
Let us consider this “multiple angular sweep” in greater detail.
It is useful to view the problem both in its primal and dual form. For each of the 2n segment endpoints v =
(va, vb), we consider its dual line v∗ : y = vax− vb. Observe that a significant event occurs whenever a bullet
path in the primal plane jumps from one line segment to another. This occurs when θ reaches the slope of the
line joining two visible endpoints v and w. Unfortunately, it is somewhat complicated to keep track of which
endpoints are visible and which are not (although if we could do so it would lead to a more efficient algorithm).
Instead we will take events to be all angles θ between two endpoints, whether they are visible or not. By duality,
the slope of such an event will correspond to the a-coordinate of the intersection of dual lines v∗ and w∗ in the
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Fig. 130: Visibility graph by multiple angular sweep.

dual arrangement. (Convince yourself of this.) Thus, by sweeping the arrangement of the 2n dual lines from
left-to-right, we will enumerate all the slope events in angular order.
Next let’s consider what happens at each event point. Consider the state of the angular sweep algorithm for
some slope θ. For each vertex v, there are two bullet paths emanating from v along the line with slope θ. Call
one the forward bullet path and the other the backward bullet path. Let f(v) and b(v) denote the line segments
that these bullet paths hit, respectively. If either path does not hit any segment then we store a special null
value. As θ varies the following events can occur. Assuming (through symbolic perturbation) that each slope is
determined by exactly two lines, whenever we arrive at an events slope θ there are exactly two vertices v and w
that are involved. Here are the possible scenarios:

f(v)(old)v

w

v

w

f(v)
v

w

f(v)
(new)

f(v)(old)

entry

v
w

f(v)
(new)

exitsame invisible

Fig. 131: Possible events.

Same segment: If v and w are endpoints of the same segment, then they are visible, and we add the edge (v, w)
to the visibility graph.

Invisible: Consider the distance from v to w. First, determine whether w lies on the same side as f(v) or b(v).
For the remainder, assume that it is f(v). (The case of b(v) is symmetrical).
Compute the contact point of the bullet path shot from v in direction θ with segment f(v). If this path hits
f(v) strictly before w, then we know that w is not visible to v, and so this is a “non-event”.

Segment entry: Consider the segment that is incident to w. Either the sweep is just about to enter this segment
or is just leaving it. If we are entering the segment, then we set f(v) to this segment.

Segment exit: If we are just leaving this segment, then the bullet path will need to shoot out and find the next
segment that it hits. Normally this would require some searching. (In particular, this is one of the reasons
that the text’s algorithm has the extra O(log n) factor—to perform this search.) However, we claim that
the answer is available to us in O(1) time.
In particular, since we are sweeping over w at the same time that we are sweeping over v. Thus we know
that the bullet extension from w hits f(w). All we need to do is to set f(v) = f(w).

This is a pretty simple algorithm (although there are a number of cases). The only information that we need to
keep track of is (1) a priority queue for the events, and (2) the f(v) and b(v) pointers for each vertex v. The
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priority queue is not stored explicitly. Instead it is available from the line arrangement of the duals of the line
segment vertices. By performing a topological sweep of the arrangement, we can process all of these events in
O(n2) time.

Lecture 32: Motion Planning
Motion planning: Last time we considered the problem of computing the shortest path of a point in space around a

set of obstacles. Today we will study a much more general approach to the more general problem of how to plan
the motion of one or more robots, each with potentially many degrees of freedom in terms of its movement and
perhaps having articulated joints.

Work Space and Configuration Space: The environment in which the robot operates is called its work space, which
consists of a set of obstacles that the robot is not allowed to intersect. We assume that the work space is static,
that is, the obstacles do not move. We also assume that a complete geometric description of the work space is
available to us.
For our purposes, a robot will be modeled by two main elements. The first is a configuration, which is a finite
sequence of values that fully specifies the position of the robot. The second element is the robot’s geometric
shape description. Combined these two element fully define the robot’s exact position and shape in space.
For example, suppose that the robot is a 2-dimensional polygon that can translate and rotate in the plane. Its
configuration may be described by the (x, y) coordinates of some reference point for the robot, and an angle θ
that describes its orientation. Its geometric information would include its shape (say at some canonical position),
given, say, as a simple polygon. Given its geometric description and a configuration (x, y, θ), this uniquely
determines the exact position R(x, y, θ) of this robot in the plane. Thus, the position of the robot can be
identified with a point in the robot’s configuration space.

R(0,0,0)

R(4,3,45)

Fig. 132: Configurations of a translating and rotating robot.

A more complex example would be an articulated arm consisting of a set of links, connected to one another by a
set of revolute joints. The configuration of such a robot would consist of a vector of joint angles. The geometric
description would probably consist of a geometric representation of the links. Given a sequence of joint angles,
the exact shape of the robot could be derived by combining this configuration information with its geometric
description. For example, a typical 3-dimensional industrial robot has six joints, and hence its configuration
can be thought of as a point in a 6-dimensional space. Why six? Generally, there are three degrees of freedom
needed to specify a location in 3-space, and 3 more degrees of freedom needed to specify the direction and
orientation of the robot’s end manipulator.
Given a point p in the robot’s configuration space, let R(p) denote the placement of the robot at this configura-
tion. The figure below illustrates this in the case of the planar robot defined above.
Because of limitations on the robot’s physical structure and the obstacles, not every point in configuration space
corresponds to a legal placement of the robot. Any configuration which is illegal in that it causes the robot
to intersect one of the obstacles is called a forbidden configuration. The set of all forbidden configurations is
denoted Cforb(R, S), and all other placements are called free configurations, and the set of these configurations
is denoted Cfree(R, S), or free space.
Now consider the motion planning problem in robotics. Given a robot R, an work space S, and initial config-
uration s and final configuration t (both points in the robot’s free configuration space), determine (if possible)
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Work space Configuration space

Fig. 133: Work space and configuration space.

a way to move the robot from one configuration to the other without intersecting any of the obstacles. This
reduces to the problem of determining whether there is a path from s to t that lies entirely within the robot’s free
configuration space. Thus, we map the task of computing a robot’s motion to the problem of finding a path for
a single point through a collection of obstacles.
Configuration spaces are typically higher dimensional spaces, and can be bounded by curved surfaces (especially
when rotational elements are involved). Perhaps the simplest case to visualize is that of translating a convex
polygonal robot in the plane amidst a collection of polygonal obstacles. In this cased both the work space and
configuration space are two dimensional. Consider a reference point placed in the center of the robot. As shown
in the figure above, the process of mapping to configuration space involves replacing the robot with a single
point (its reference point) and “growing” the obstacles by a compensating amount. These grown obstacles are
called configuration obstacles or C-obstacles.
This approach while very general, ignores many important practical issues. It assumes that we have complete
knowledge of the robot’s environment and have perfect knowledge and control of its placement. As stated we
place no requirements on the nature of the path, but in reality physical objects can not be brought to move and
stop instantaneously. Nonetheless, this abstract view is very powerful, since it allows us to abstract the motion
planning problem into a very general framework.
For the rest of the lecture we will consider a very simple case of a convex polygonal robot that is translating
among a convex set of obstacles. Even this very simple problem has a number of interesting algorithmic issues.

Planning the Motion of a Point Robot: As mentioned above, we can reduce complex motion planning problems to
the problem of planning the motion of a point in free configuration space. First we will consider the question of
how to plan the motion of a point amidst a set of polygonal obstacles in the plane, and then we will consider the
question of how to construct configuration spaces.
To determine whether there is a path from one point to another of free configuration space, we will subdivide
free space into simple convex regions. In the plane, we already know how to do this by computing a trapezoidal
map. We can construct a trapezoidal map for all of the line segments bounding the obstacles, then throw away
any faces that lie in the forbidden space. We also assume that we have a point location data structure for the
trapezoidal map.
Next, we create a planar graph, called a road map, based on the trapezoidal map. To do this we create a vertex
in the center of each trapezoid and a vertex at the midpoint of each vertical edge. We create edges joining each
center vertex to the vertices on its (at most four) edges.
Now to answer the motion planning problem, we assume we are given the start point s and destination point t.
We locate the trapezoids containing these two points, and connect them to the corresponding center vertices. We
can join them by a straight line segment, because the cells of the subdivision are convex. Then we determine
whether there is a path in the road map graph between these two vertices, say by breadth-first search. Note that
this will not necessarily produce the shortest path, but if there is a path from one position to the other, it will find
it.
This description ignores many practical issues that arise in motion planning, but it is the basis for many practical
motion planning problems. More realistic configuration spaces will contain more information (for example,

Lecture Notes 141 CMSC 754



t

s

Fig. 134: Motion planning using road maps.

encodings of the current joint rotation velocities) and will usually refine the road map to a much finer extent,
so that short paths can be approximated well, as well as handling other elements such as guaranteeing minimal
clearances around obstacles.

Configuration Obstacles and Minkowski Sums: Let us consider how to build a configuration space for a set of
polygonal obstacles. We consider the simplest case of translating a convex polygonal robot amidst a collection
of convex obstacles. If the obstacles are not convex, then we may subdivide them into convex pieces.
Consider a robot R, whose placement is defined by a translation #p = (x, y). Let R(x, y) (also denoted R(#p))
be the placement of the robot with its reference point at #p. Given an obstacle P , the configuration obstacle is
defined as all the placements ofR that intersect P , that is

CP = {#p | R(#p) ∩ P &= ∅}.

One way to visualize CP is to imagine “scraping” R along the boundary of P and seeing the region traced out
byR’s reference point.
The problem we consider next is, given R and P , compute the configuration obstacle CP . To do this, we first
introduce the notion of aMinkowski sum. Let us violate our notions of affine geometry for a while, and think of
points (x, y) in the plane as vectors. Given any two sets S1 and S2 in the plane, define their Minkowski sum to
be the set of all pairwise sums of points taken from each set:

S1 ⊕ S2 = {#p+ #q | #p ∈ S1, #q ∈ S2}.

Also, define−S = {−#p | #p ∈ S}. Observe that for the case of a translating robot, we can defineR(#p) asR⊕ #p.

P

R

CP

P

P+(−R)

−R

Fig. 135: Configuration obstacles and Minkowski sums.

Claim: Given a translating robotR and an obstacle P , CP = P ⊕ (−R).
Proof: We show that R(#q) intersects P if and only if #q ∈ P ⊕ (−R). Note that #q ∈ P ⊕ (−R) if and only if

there exist #p ∈ P and #r ∈ R such that #q = #p − #r. Similarly, R(#q)(= R ⊕ #q) intersects P if and only if
there exists points #r ∈ R and #p ∈ P such that #r + #q = #p. These two conditions are clearly equivalent.
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Note that the proof made no use of the convexity of R or P . It works for any shapes and in any dimension.
However, computation of the Minkowski sums is most efficient for convex polygons.
It is an easy matter to compute −R in linear time (by simply negating all of its vertices) the problem of com-
puting the C-obstacle CP reduces to the problem of computing a Minkowski sum of two convex polygons. We
claim that this can be done in O(m + n) time, where m is the number of vertices in R and n is the number of
vertices in P . We will leave the construction as an exercise.
The algorithm is based on the following observation. Given a vector #d, We say that a point p is extreme in
direction #d if it maximizes the dot product p · #d.

Observation: Given two polygons P and R, then the set of extreme points of P ⊕R in direction #d is the set of
sums of points p and r that are extreme in direction #d for P and R, respectively.

The book leaves the proof as an exercise. It follows easily by the linearity of the dot product.
From this observation, it follows that there is a simple algorithm for computing P ⊕R, when both are convex
polygons. In particular, we perform an angular sweep by considering a unit vector #d rotating counterclockwise
around a circle. As #d rotates, it is an easy matter to keep track of the vertex or edge of P and R that is extreme
in this direction. Whenever #d is perpendicular to an edge of either P or R, we add this edge to the vertex of
the other polygon. The algorithm is given in the text, and is illustrated in the figure below. The technique of
applying one or more angular sweeps to a convex polygon is called the method of rotating calipers.

R
r

e P+R

d

d

d

P

e+r

Fig. 136: Computing Minkowski sums.

Assuming P and R are convex, observe that each edge of P and each edge of R contributes exactly one edge
to P +R. (If two edges are parallel and on the same side of the polygons, then these edges will be combined
into one edge, which is as long as their sum.) Thus we have the following.

Claim: Given two convex polygons, P and R, with n and m edges respectively, their Minkowski sum P ⊕R
can be computed in O(n+m) time, and consist of at most n+m edges.

Complexity of Minkowski Sums: We have shown that free space for a translating robot is the complement of a
union of C-obstacles CPi, each of which is a Minkowski sum of the form Pi ⊕R, where Pi ranges over all the
obstacles in the environment. If Pi and R are polygons, then the resulting region will be a union of polygons.
How complex might this union be, that is, how many edges and vertices might it have?
To begin with, let’s see just how bad things might be. Suppose you are given a robot R with m sides and a set
of work-space obstacle P with n sides. How many sides might the Minkowski sum P ⊕ R have in the worst
case? O(n +m)? O(nm), even more? The complexity generally depends on what special properties if any P
andR have.

Nonconvex Robot and Nonconvex Obstacles: Suppose that both R and P are nonconvex simple polygons. Let m
be the number of sides ofR and n be the number of sides of P . Howmany sides might there be in theMinkowski
sum P ⊕R in the worst case? We can derive a quick upper bound as follows. First observe that if we triangulate
P , we can break it into the union of at most n− 2 triangles. That is:

P = ∪n−2
i=1 Ti,

R = ∪m−2
j=1 Sj .
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It follows that
P ⊕R = ∪n−2

i=1 ∪
m−2
j=1 (Ti ⊕ Sj).

Thus, the Minkowski sum is the union of O(nm) polygons, each of constant complexity. Thus, there are
O(nm) sides in all of these polygons. The arrangement of all of these line segments can have at most O(n2m2)
intersection points (if each side intersects with each other), and hence this is an upper bound on the number of
vertices in the final result.
Could things really be this bad? Yes they could. Consider the two polygons in the figure below left. There are
O(n2m2) ways that these two polygons can be “docked”, as shown on the right. The Minkowski sum P ⊕−R
is shown in the text. Notice that the large size is caused by the number of holes. (It might be argued that this is
not fair, since we are not really interested in the entire Minkowski sum, just a single face of the Minkowski sum.
Proving bounds on the complexity of a single face is an interesting problem, and the analysis is quite complex.)

P

R

Fig. 137: Minkowski sum of O(n2m2) complexity.

As a final observation, notice that the upper bound holds even if P (andR for that matter) is not a single simple
polygon, but any union of n triangles.

Convex Robot and Nonconvex Obstacles: We have seen that the worst-case complexity of the Minkowski sum
might range from O(n + m) to as high as O(n2m2), which is quite a gap. Let us consider an intermediate
but realistic situation. Suppose that we assume that P is an arbitrary n-sided simple polygon, and R is a convex
m-sided polygon. Typically m is much smaller than n. What is the combinatorial complexity of P ⊕R in the
worst case? As before we can observe that P can be decomposed into the union of n− 2 triangles Ti, implying
that

P ⊕R = ∪n−2
i=1 (Ti ⊕R).

Each Minkowski sum in the union is of complexitym+ 3. So the question is how many sides might there be in
the union of O(n) convex polygons each with O(m) sides? We could derive a bound on this quantity, but it will
give a rather poor bound on the worst-case complexity. To see why, consider the limiting case of m = 3. We
have the union of n convex objects, each of complexity O(1). This could have complexity as high as Ω(n2), as
seen by generating a criss-crossing pattern of very skinny triangles. But, if you try to construct such a counter
example, you won’t be able to do it.
To see why such a counterexample is impossible, suppose that you start with nonintersecting triangles, and then
take the Minkowski sum with some convex polygon. The claim is that it is impossible to generate this sort of
criss-cross arrangement. So how complex an arrangement can you construct? We will show the following.

Theorem: Let R be a convex m-gon and P and simple n-gon, then the Minkowski sum P ⊕ R has total
complexity O(nm).

Is O(nm) an attainable bound? The idea is to go back to our analogy of “scraping” R around the boundary of
P . Can we arrange P such that most of the edges ofR scrape over most of the n vertices of P ? Suppose thatR
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is a regular convex polygon with m sides, and that P has the comb structure shown in the figure below, where
the teeth of the comb are separated by a distance at least as large as the diameter of R. In this case R will have
many sides scrape across each of the pointy ends of the teeth, implying that the final Minkowski sum will have
total complexity Ω(nm).

R
P

P+R

Fig. 138: Minkowski sum of O(nm) complexity.

The Union of Pseudodisks: Consider a translating robot given as an m-sided convex polygon and a collection of
polygonal obstacles having a total of n vertices. We may assume that the polygonal obstacles have been trian-
gulated into at most n triangles, and so, without any loss of generality, let us consider an instance of anm-sided
robot translating among a set of n triangles. As argued earlier, each C-obstacle has O(3 +m) = O(m) sides,
for a total of O(nm) line segments. A naive analysis suggests that this many line segments might generate as
many as O(n2m2) intersections, and so the complexity of the free space can be no larger. However, we assert
that the complexity of the space will be much smaller, in fact its complexity will be O(nm).
To show that O(nm) is an upper bound, we need some way of extracting the special geometric structure of the
union of Minkowski sums. Recall that we are computing the union of Ti ⊕ R, where the Ti’s have disjoint
interiors. A set of convex objects {o1, o2, . . . , on} is called a collection of pseudodisks if for any two distinct
objects oi and oj both of the set-theoretic differences oi\oj and oj\oi are connected. That is, if the objects
intersect then they do not “cross through” one another. Note that the pseudodisk property is not a property of a
single object, but a property that holds among a set of objects.

oi

oj

oi

oj

oi

oj

oj

oi

Not pseudodisksPseudodisks

Fig. 139: Pseudodisks.

Lemma 1: Given a set convex objects T1, T2, . . . , Tn with disjoint interiors, and convexR, the set

{Ti ⊕R | 1 ≤ i ≤ n}

is a collection of pseudodisks.
Proof: Consider two polygons T1 and T2 with disjoint interiors. We want to show that T1 ⊕R and T2 ⊕R do

not cross over one another.
Given any directional unit vector #d, the most extreme point of R in direction #d is the point r ∈ R that
maximizes the dot product (#d · r). (Recall that we treat the “points” of the polygons as if they were
vectors.) The point of T1 ⊕R that is most extreme in direction d is the sum of the points t and r that are
most extreme for T1 andR, respectively.
Given two convex polygons T1 and T2 with disjoint interiors, they define two outer tangents, as shown in
the figure below. Let #d1 and #d2 be the outward pointing perpendicular vectors for these tangents. Because
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Fig. 140: Alternation of extremes.

these polygons do not intersect, it follows easily that as the directional vector rotates from #d1 to #d2, T1 will
be the more extreme polygon, and from #d2 to #d1 T2 will be the more extreme. See the figure below.
Now, if to the contrary T1⊕R and T2⊕R had a crossing intersection, then observe that we can find points
p1 p2, p3, and p4, in cyclic order around the boundary of the convex hull of (T1 ⊕ R) ∪ (T2 ⊕ R) such
that p1, p3 ∈ T1 ⊕R and p2, p4 ∈ T2 ⊕R. First consider p1. Because it is on the convex hull, consider
the direction #d1 perpendicular to the supporting line here. Let r, t1, and t2 be the extreme points ofR, T1

and T2 in direction #d1, respectively. From our basic fact about Minkowski sums we have

p1 = r + t1 p2 = r + t2.

Since p1 is on the convex hull, it follows that t1 is more extreme than t2 in direction #d1, that is, T1 is
more extreme than T2 in direction #d1. By applying this same argument, we find that T1 is more extreme
than T2 in directions #d1 and #d3, but that T2 is more extreme than T1 in directions #d2 and #d4. But this is
impossible, since from the observation above, there can be at most one alternation in extreme points for
nonintersecting convex polygons. See the figure below.

T  + R1

T  + R2

d3

d4

d1

d2

d1

d2d3

d4
T  extreme2

T  extreme1

T  extreme2
T  extreme1

Fig. 141: Proof of Lemma 1.

Lemma 2: Given a collection of pseudodisks, with a total of n vertices, the complexity of their union is O(n).
Proof: This is a rather cute combinatorial lemma. We are given some collection of pseudodisks, and told that

altogether they have n vertices. We claim that their entire union has complexity O(n). (Recall that in
general the union of n convex polygons can have complexity O(n2), by criss-crossing.) The proof is
based on a clever charging scheme. Each vertex in the union will be charged to a vertex among the original
pseudodisks, such that no vertex is charged more than twice. This will imply that the total complexity is
at most 2n.
There are two types of vertices that may appear on the boundary. The first are vertices from the original
polygons that appear on the union. There can be at most n such vertices, and each is charged to itself. The
more troublesome vertices are those that arise when two edges of two pseudodisks intersect each other.
Suppose that two edges e1 and e2 of pseudodisks P1 and P2 intersect along the union. Follow edge e1
into the interior of the pseudodisk e2. Two things might happen. First, we might hit the endpoint v of this
e1 before leaving the interior P2. In this case, charge the intersection to v. Note that v can get at most
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two such charges, one from either incident edge. If e1 passes all the way through P2 before coming to the
endpoint, then try to do the same with edge e2. Again, if it hits its endpoint before coming out of P1, then
charge to this endpoint. See the figure below.

v
v uv u

Charge v Charge u Cannot happen

e e e2 2 e e1 e1 12

Fig. 142: Proof of Lemma 2.

But what do we do if both e1 shoots straight through P2 and e2 shoots straight through P1? Now we have
no vertex to charge. This is okay, because the pseudodisk property implies that this cannot happen. If both
edges shoot completely through, then the two polygons must cross over each other.

Recall that in our application of this lemma, we have n C-obstacles, each of which has at mostm+ 3 vertices,
for a total input complexity of O(nm). Since they are all pseudodisks, it follows from Lemma 2 that the total
complexity of the free space is O(nm).

Lecture 33: Fixed-Radius Near Neighbors
Fixed-Radius Near Neighbor Problem: As a warm-up exercise for the course, we begin by considering one of the

oldest results in computational geometry. This problem was considered back in the mid 70’s, and is a funda-
mental problem involving a set of points in dimension d. We will consider the problem in the plane, but the
generalization to higher dimensions will be straightforward. The solution also illustrates a common class of
algorithms in CG, which are based on grouping objects into buckets that are arranged in a square grid.
We are given a set P of n points in the plane. It will be our practice throughout the course to assume that each
point p is represented by its (x, y) coordinates, denoted (px, py). Recall that the Euclidean distance between
two points p and q, denoted ‖pq‖, is

‖pq‖ =
√

(px − qx)2 + (py − qy)2.

Given the set P and a distance r > 0, our goal is to report all pairs of distinct points p, q ∈ P such that ‖pq‖ ≤ r.
This is called the fixed-radius near neighbor (reporting) problem.

Reporting versus Counting: We note that this is a reporting problem, which means that our objective is to report all
such pairs. This is in contrast to the corresponding counting problem, in which the objective is to return a count
of the number of pairs satisfying the distance condition.
It is usually easier to solve reporting problems optimally than counting problems. This may seem counterin-
tuitive at first (after all, if you can report, then you can certainly count). The reason is that we know that any
algorithm that reports some number k of pairs must take at least Ω(k) time. Thus if k is large, a reporting
algorithm has the luxury of being able to run for a longer time and still claim to be optimal. In contrast, we
cannot apply such a lower bound to a counting algorithm.
The approach described here seems to work only for the reporting case. There is a more efficient solution to the
counting problem, but this requires more sophisticated methods.

Simple Observations: To begin, let us make a few simple observations. This problem can easily be solved in O(n2)
time, by simply enumerating all pairs of distinct points and computing the distance between each pair. The
number of distinct pairs of n points is

(

n

2

)

=
n(n− 1)

2
.
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Letting k denote the number of pairs that reported, our goal will be to find an algorithm whose running time is
(nearly) linear in n and k, ideallyO(n+k). This will be optimal, since any algorithm must take the time to read
all the input and print all the results. (This assumes a naive representation of the output. Perhaps there are more
clever ways in which to encode the output, which would require less than O(k) space.)
To gain some insight to the problem, let us consider how to solve the 1-dimensional version, where we are just
given a set of n points on the line, say, x1, x2, . . . , xn. In this case, one solution would be to first sort the values
in increasing order. Let suppose we have already done this, and so:

x1 < x2 < . . . < xn.

Now, for i running from 1 to n, we consider the successive points xi+1, xi+2, xi+3, and so on, until we first find
a point whose distance exceeds r. We report xi together with all succeeding points that are within distance r.

x1 x2 x3 x4 x5 x6

r

Fig. 143: Fixed radius nearest neighbor on the line.

The running time of this algorithm involves the O(n log n) time needed to sort the points and the time required
for distance computations. Let ki denote the number of pairs generated when we visit pi. Observe that the
processing of pi involves ki+1 distance computations (one additional computation for the points whose distance
exceeds r). Thus, up to constant factors, the total running time is:

T (n, k) = n log n+
n
∑

i=1

(ki + 1) = n log n+ n+
n
∑

i=1

ki

= n log n+ n+ k = O(k + n log n).

This is close to theO(k+n) time we were hoping for. It seems that any approach based on sorting is doomed to
take at least Ω(n log n) time. So, if we are to improve upon this, we cannot sort. But is sorting really necessary?
Let us consider an approach based on bucketing.

1-dimensional Solution with Bucketing: Rather than sorting the points, suppose that we subdivide the line into in-
tervals of length r. In particular, we can take the line to be composed of an infinite collection of half-open
intervals:

. . . , [−3r,−2r), [−2r,−r), [−r, 0), [0, r), [r, 2r), [2r, 3r), . . .

We refer to these disjoint intervals as buckets. Given the interval [br, (b+ 1)r), its bucket index is the integer b.
Given any point x, it is easy to see that the index of the containing bucket is just b(x) = /x/r0. Thus, in O(n)
time we can associate the n points of P with a set of n integer bucket indices, b(x) for each x ∈ P . Although
there are an infinite number of buckets, at most n will be occupied, meaning that they contain at least one point
of P .
There are a number of ways to organize the occupied buckets. They could be sorted, but then we are back to
O(n log n) time. Since bucket indices are integers, a better approach is to store the occupied bucket indices in
a hash table. Recall from basic data structures that a hash table is a data structure that supports the following
operations in O(1) expected time:

insert(o, b) : Insert object o with key value b. We allow multiple objects to be inserted with the same key.
L← find(b) : Return a list L of references to objects having key value b. This operation takes O(1 + |L|)

expected time. If no keys have this value, then an empty list is returned.
remove(o, b) : Remove the object indicated by reference o, having key value b from the table.
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Each point is associated with the key value given by its bucket index b = /x/r0. Thus in O(1) expected time,
we can determine which bucket contains a given point and look this bucket up in the hash table.
The fact that the running time is in the expected case, rather than worst case is a bit unpleasant. However, it can
be shown that by using a good randomized hash function, the probability that the total running time is worse
than O(n) can be made arbitrarily small. If the algorithm performs significantly more than the expected number
of computations, we can simply chose a different random hash function and try again. This will lead to a very
practical solution.
How does bucketing help? Observe that if point p lies in bucket b, then any successors that lie within distance r
must lie either in bucket b or in b+ 1. This suggests the straightforward solution shown below.

Fixed-Radius Near Neighbor on the Line by Bucketing
(1) For each p ∈ P , insert p in the hash table with the key value b(p).
(2) For each p ∈ P do the following:

(a) Let b(p) be the bucket containing p.
(b) Enumerate all the points of buckets b(p) and b(p) + 1, and for each point q ∈ b(p) ∪ b(p) + 1 such that q ,= p and

|q − p| ≤ r, output the pair (p, q).

Note that this will output duplicate pairs (p, q) and (q, p). If this bothers you, we could add the additional
condition that q > p. The key question is determining the time complexity of this algorithm is how many
distance computations are performed in step (2b). We compare each point in bucket b with all the points in
buckets b and b + 1. However, not all of these distance computations will result in a pair of points whose
distance is within r. Might it be that we waste a great deal of time in performing computations for which we
receive no benefit? The lemma below shows that we perform no more than a constant factor times as many
distance computations and pairs that are produced.
It will simplify things considerably if, rather than counting distinct pairs of points, we simply count all (ordered)
pairs of points that lie within distance r of each other. Thus each pair of points will be counted twice, (p, q) and
(q, p). Note that this includes reporting each point as a pair (p, p) as well, since each point is within distance r
of itself. This does not affect the asymptotic bounds, since the number of distinct pairs is smaller by a factor of
roughly 1/2.

Lemma: Let k denote the number of (not necessarily distinct) pairs of points of P that are within distance r of
each other. LetD denote the total number distance computations made in step (2b) of the above algorithm.
Then D ≤ 2k.

Proof: We will make use of the following inequality in the proof:

xy ≤ x2 + y2

2
.

This follows by expanding the obvious inequality (x− y)2 ≥ 0.
Let B denote the (infinite) set of buckets. For any bucket b ∈ B, let b + 1 denote its successor bucket on
the line, and let nb denote the number of points of P in b. Define

S =
∑

b∈B

n2
b .

First we bound the total number of distance computations D as a function of S. Each point in bucket b
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computes the distance to every other point in bucket b and every point in bucket b+ 1, and hence

D =
∑

b∈B

nb(nb + nb+1) =
∑

b∈B

n2
b + nbnb+1 =

∑

b∈B

n2
b +

∑

b∈B

nbnb+1

≤
∑

b∈B

n2
b +

∑

b∈B

n2
b + n2

b+1

2

=
∑

b∈B

n2
b +

∑

b∈B

n2
b

2
+
∑

b∈B

n2
b+1

2
= S +

S

2
+

S

2
= 2S.

Next we bound the number of pairs reported from below as a function of S. Since each pair of points lying
in bucket b is within distance r of every other, there are n2

b pairs in bucket b alone that are within distance
r of each other, and hence (considering just the pairs generated within each bucket) we have k ≥ S.
Therefore we have

D ≤ 2S ≤ 2k,

which completes the proof.

By combining this with the O(n) expected time needed to bucket the points, it follows that the total expected
running time is O(n+ k).
A worthwhile exercise to consider at this point is the issue of the bucket width r. How would changing the value
of r affect the implementation of the algorithm and its efficiency? For example, if we used buckets of size r/2
or 2r, would the above algorithm (after suitable modifications) have the same asymptotic running time? Would
buckets of size any constant times r work?

Generalization to d dimensions: This bucketing algorithm is easy to extend to multiple dimensions. For example, in
dimension 2, we bucket points into a square grid in which each grid square is of side length r. (As before, you
might consider the question of what values of bucket sizes lead to a correct and efficient algorithm.) The bucket
index of a point p : (px, py) is a pair B(p) = (b(px), b(py)) = (/px/r0 , /py/r0). We apply a hash function that
accepts two arguments. To generalize the algorithm, for each point we consider the points in its surrounding
3× 3 subgrid of buckets. The result is shown in the following code fragment.

r

Fig. 144: Fixed radius nearest neighbor on the plane.

Fixed-Radius Near Neighbor in the Plane
(1) For each p = (px, py) of P , insert p in the hash table with the (2-dimensional) bucket index B(p) = (b(px), b(py)).
(2) For each p ∈ P do the following:

(a) Let B(p) = (b(px), b(py)) be the bucket index for p.
(b) Enumerate all the points of buckets (b(px) + i, b(py) + j), for i, j ∈ {−1, 0,+1}. For each such point q, if ‖pq‖ ≤ r,

output the pair (p, q).
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By generalizing the analysis used in the 1-dimensional case, it can be shown that the algorithm’s expected
running time is O(n+ k). The details are left as an exercise (we just have more terms to consider, but each cell
is involved with at most 9 other cells which is absorbed into the constant factor hidden by the O-notation).
This example problem serves to illustrate some of the typical elements of computational geometry. Geometry
itself did not play a significant role in the problem, other than the relatively easy task of computing distances. We
will see examples later this semester where geometry plays a much more important role. The major emphasis
was on accounting for the algorithm’s running time. Also note that, although we discussed the possibility of gen-
eralizing the algorithm to higher dimensions, we did not treat the dimension as an asymptotic quantity. In fact,
a more careful analysis reveals that this algorithm’s running time increases exponentially with the dimension.
(Can you see why?)

Lecture 34: Multidimensional Polytopes and Convex Hulls
Polytopes: Today we consider convex hulls in dimensions 3 and higher. Although dimensions greater than 3 may

seem rather esoteric, we shall see that many geometric optimization problems can be stated as some search over
a polytope in d-dimensional space, where d may be greater than 3.
Before delving into this, let us first present some basic terms. We define a polytope (or more specifically a d-
polytope) to be the convex hull of a finite set of points in Rd. We say that a set of k points is affinely independent
if no one point can be expressed as an affine combination (that is, a linear combination whose coefficients sum
to 1) of the others. For example, three points are affinely independent if they are not on the same line, four
points are affinely independent if they are not on the same plane, and so on. The convex hull of k + 1 affinely
independent points is called a simplex or k-simplex. For example, the line segment joining two points is a
1-simplex, the triangle defined by three points is a 2-simplex, and the tetrahedron defined by four points is a
3-simplex.

1−simplex0−simplex 3−simplex2−simplex Supporting hyperplane

hP

Fig. 145: Simplices and supporting hyperplane.

Any (d−1)-dimensional hyperplane h in d-dimensional space divides the space into (open) halfspaces, denoted
h− and h+, so that Rd = h− ∪ h ∪ h+. Let us define h− = h− ∪ h and h+ = h+ ∪ h to be the closures of
these halfspaces. We say that a hyperplane supports a polytope P (and is called a supporting hyperplane of P )
if h ∩ P is nonempty and P is entirely contained within either h− or h+. The intersection of the polytope and
any supporting hyerplane is called a face of P . Faces are themselves convex polytopes of dimensions ranging
from 0 to d − 1. The 0-dimensional faces are called vertices, the 1-dimensional faces are called edges, and the
(d− 1)-dimensional faces are called facets. (Note: When discussing polytopes in dimension 3, people often use
the term “face” when they mean “facet”. It is usually clear from context which meaning is intended.)

c
b

a

d

Facets: abc, abd, acd, bcd

Edges: ab, ac, ad, bc, bd, cd

Vertices: a, b, c, d

Fig. 146: A tetrahedron and its proper faces.

The faces of dimensions 0 to d− 1 are called proper faces. It will be convenient to define two additional faces.
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The empty set is said to be a face of dimension −1 and the entire polytope is said to be a face of dimension d.
We will refer to all the faces, including these two additional faces as the improper faces of the polytope.
There are a number of facts that follow from these definitions.

• The boundary of a polytope is the union of its proper faces.
• A polytope has a finite number of faces. Each face is a polytope.
• A polytope is the convex hull of its vertices.
• A polytope is the intersection of a finite number of closed halfspaces. (Note that the converse need not be
true, since the intersection of halfspaces may generally be unbounded. Such an unbounded convex body is
either called a polyhedron or a unbounded polytope.)

Observe that a d-simplex has a particularly regular face structure. If we let v0, v1, v2, . . . , vd denote the vertices
of the simplex, then for each 2-element set {vi, vj} there is an edge of the simplex joining these vertices, for
each 3-element set {vi, vj , vk} there is a 3-face joining these these three vertices, and so.

Fact: The number of j-dimensional faces on a d-simplex is equal to the number (j + 1)-element subsets of
domain of size d+ 1, that is,

(

d+ 1

j + 1

)

=
(d+ 1)!

(j + 1)!(d− j)!
.

Incidence Graph: How are polytopes represented? In addition to the geomtric properties of the polytope (e.g., the
coordinates of its vertices or the equation of its faces) it is useful to store discrete connectivity information,
which is often referred to as the topology of the polytope. There are many representations for polytopes. In
dimension 2, a simple circular list of vertices suffices. In dimension 3, we need some sort of graph structure.
There are many data structures that have been proposed. They are evaluated based on the ease with which the
polytope can be traversed and the amount of storage needed. (Examples include the winged-edge, quad-edge,
and half-edge data structures. We may discuss these later in the semester.)
A useful structure for polytopes in arbitrary dimensions is called the incidence graph. Each node of the incidence
graph corresponds to an (improper) face of the polytope. We create an edge between two faces if their dimension
differs by 1, and one (of lower dimension) is contained within the other (of higher dimension). An example is
shown in Fig. 147 below for a simplex. Note the similarity between this graph and the lattice of subsets based
on inclusion relation.

a dcb

ab ac ad bc bd cd

abc abd acd bcd

0

abcd

c
b

a

d

Fig. 147: The incidence graph for a tetrahedron.

Polarity: There are two natural ways to create polytopes. One is as the convex hull of a set of points and the other
is as the intersection of a collection of closed halfspaces (assuming it is bounded). These two concepts are
essentially identical, and this can be observed by the polar transformation, which maps points to hyperplanes
and vice versa. Fix any point O in d-dimensional space. We may think of O as the origin, and therefore, any
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point p ∈ Rd can be viewed as a d-element vector. (IfO is not the origin, then p can be identified with the vector
p−O.) The polar hyperplane of p, denoted p∗ is defined by

p∗ = {x ∈ R
d | (p · x) = 1},

where the expression (p ·x) is just the standard vector dot-product ((p ·x) = p1x1+p2x2+ · · ·+pdxd). Observe
that if p is on the unit sphere centered about O, then p∗ is a hyperplane that passes through p and is orthogonal
to the vector Op. As we move p away from the origin along this vector, the dual hyperplane moves closer to the
origin, and vice versa, so that the product of their distances from the origin is always 1.
Now, let h be any hyperplane that does not contain O. The pole of h, denoted h∗ is the point that satisfies

(h∗ · x) = 1 for all x ∈ h.

1/c

O

O

O

h+

O

h*

p*

O p*+
h*

p

p
h

Inclusion Reversing

Incidence Preserving

p

c

p*

The Polar Transformation

Fig. 148: The polar transformation and its properties.

Clearly this double transformation is an involution, that is, (p∗)∗ = p and (h∗)∗ = h. The polar transformation
preserves important geometric relationships. Given a hyperplane h, define

h+ = {x ∈ R
d | (x · h∗) < 1} h− = {x ∈ R

d | (x · h∗) > 1}.

That is, h+ is the open halfspace containing the origin and h− is the other open halfspace for h.

Claim: Let p be any point in Rd and let h be any hyperplane in Rd. The polar transformation satisfies the
following two properties.
Incidence preserving: The polarity transformation preserves incidence relationships between points and

hyerplanes. That is, p belongs to h if and only if h∗ belongs to p∗.
Inclusion Reversing: The polarity transformation reverses relative position relationships in the sense that

p belongs to h+ if and only if h∗ belongs to (p∗)+, and p belongs to h− if and only if h∗ belongs to
(p∗)−.

In general, any bijective transformation that preserves incidence relations is called a duality. The above claim
implies that polarity is a duality.
We can now formalize the aforementioned notion of polytope equivalence. The idea will be to transform a
polytope defined as the convex hull of a finite set of points to a polytope defined as the intersection of a finite
set of closed halfspaces. To do this, we need a way of mapping a point to a halfspace. Our approach will be to
take the halfspace that contains the origin. For any point p ∈ Rd define the following closed halfspace based on
its polar:

p# = p∗+ = {x ∈ R
d | (x · p) ≤ 1}.

(The notation is ridiculous, but this is easy to parse. First consider the polar hyperplane of p, and take the closed
halfspace containing the origin.) Observe that if a halfspace h+ contains p, then by the inclusion-reversing
property of polarity, the polar point h∗ is contained within p#.
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Now, for any set of points P ⊆ Rd, we define its polar image to be the intersection of these halfspaces

P# = {x ∈ R
d | (x · p) ≤ 1, ∀p ∈ P}.

Thus P# is the intersection of an (infinite) set of closed halfspaces, one for each point p ∈ P . A halfspace is
convex and the intersect of convex sets is convex, so P# is a convex set.
To see the connection with convex hulls, let S = {p1, . . . , pn} be a set of points and let P = conv(S). Let us
assume that the origin O is contained within P . (We can guarantee this in a number of ways, e.g., by translating
P so its center of mass coincides with the origin.) By definition, the convex hull is the intersection of the set of
all closed halfspaces that contain S. That is, P is the intersect of an infinite set of closed halfspaces. What are
these halfspaces? If h+ is a halfspace that contains all the points of S, then by the inclusion-reversing property
of polarity, the polar point h∗ is contained within all the hyperplanes p∗+i , which implies that h∗ ∈ P#. This
means that, through polarity, the halfspaces whose intersection is the convex hull of a set of points is essentially
equivalent to the polar points that lie within the polar image of the convex hull.

P

O O

P#
a

b c

ef

d

Convex Hull Polar Image

e*
d*

a*

b*
c*

f*

Fig. 149: The polar image of a convex hull.

Lemma: Let S = {p1, . . . , pn} be a set of points in Rd and let P = conv(S). Then its polar image is the
intersection of the corresponding polar halfspaces, that is,

P# =
n
⋂

i=1

p∗+i .

Furthermore:

(i) A point a ∈ Rd lies on the boundary of P if and only if the polar hyperplane a∗ supports P#.
(ii) Each k-face of P corresponds to a (d−1−k)-face of P# and given faces f1, f2 of P where f1 ⊆ f2,

the corresponding faces f#
1 , f

#
2 of P# satisfy f#

1 ⊇ f#
2 . (That is, inclusion relations are reversed.)

It is not hard to prove that the polar image of a polytope is an involution, that is (P#)# = P . (See Boissonnat
and Yvinec for proofs of all these facts.)
Thus, the polar image P# of a polytope is structurally isomorphic to P and all affine relations on P map through
polarity to P#. From a computational perspective, this means that we compute the polar of all the points of P ,
consider the halfspaces that contain the origin, and take the intersection of these halfspaces. Thus, the problems
of computing convex hulls and computing the intersection of halfspaces are computationally equivalent. (In
fact, once you have computed the incidence graph for one, you just flip it “upside-down” to get the other.)
For example, if you know your Platonic solids (tetrahedron, cube, octahedron, dodecahedron, and icosahedron),
you may remember that the square and octahedron are polar duals, the dodecahedron and icosohedron are polar
duals, and the tetrahedron is self-dual.

Simple and Simplicial Polytopes: Observe that if a polytope is the convex hull of a set of points in general position,
then for 0 ≤ j ≤ d− 1, each j-face is a j-simplex. A polytope is simplicial if all its proper faces are simplices.
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If we take a dual view, consider a polytope that is the intersection of a set of n halfspaces in general position.
Then each j-face is the intersection of exactly (d−j) hyperplanes. A polytope is said to be simple if each j-face
is the intersection of exactly (d−j)-hyperplanes. In particular, this implies that each vertex is incident to exactly
d facets. Further, each j-face can be uniquely identified with a subset of d− j hyperplanes, whose intersection
defines the face. Following the same logic as in the previous paragraph, it follows that the number of vertices in
such a polytope is naively at most O(nd). (Again, we’ll see later that the tight bound is O(n$d/2%).) It follows
from the results on polarity that a polytope is simple if any only if its polar is simplicial.
An important observation about simple polytopes is that the local region around each vertex is equivalent to a
vertex of a simplex. In particular, if we cut off a vertex of a simple polytope by a hyperplane that is arbitrarily
close to the vertex, the piece that has been cut off is a d-simplex.
It easy to show that among all polytopes having a fixed number of vertices, simplicial polytopes maximize the
number of faces of all higher degrees. (Observe that otherwise there must be degeneracy among the vertices.
Perturbing the points breaks the degeneracy, and will generally split faces of higher degree into multiple faces
of lower degree.) Dually, among all polytopes having a fixed number of facets, simple polytopes maximize the
number of faces of all lower degrees.
Another observation allows us to provide crude bounds on the number of faces of various dimensions. Consider
first a simplicial polytope having n vertices. Each (j − 1)-face can be uniquely identified with a subset of j
points whose convex hull gives this face. Of course, unless the polytope is a simplex, not all of these subsets will
give rise to a face. Nonetheless this yields the following naive upper bound on the numbers of faces of various
dimensions. By applying the polar transformation we in fact get two bounds, one for simplicial polytopes and
one for simple polytopes.

Simplicial Polytope Simple Polytope

Fig. 150: Simplicial and simple polytopes.

Lemma: (Naive bounds)
(i) The number faces of dimension j of a polytope with n vertices is at most

( n
j+1

)

.
(ii) The number of faces of dimension j of a polytope with n facets is at most

( n
d−j

)

.

These naive bounds are not tight. Tight bounds can be derived using more sophisticated relations on the numbers
of faces of various dimensions, called the Dehn-Sommerville relations. We will not cover these, but see the
discussion below of the Upper Bound Theorem.

The Combinatorics of Polytopes: Let P be a d-polytope. For −1 ≤ k ≤ d, let nk(P ) denote the number of k-faces
of P . Clearly n−1(P ) = nd(P ) = 1. The numbers of faces of other dimensions generally satisfy a number of
combinatorial relationships. The simplest of these is called Euler’s relation:

Theorem: (Euler’s Relation) Given any d-polytope P we have
∑d

k=−1(−1)knk(P ) = 0.

This says that the alternating sum of the numbers of faces sums to 0. For example, a cube has 8 vertices, 12
edges, 6 facets, and together with the faces of dimension −1 and d we have

−1 + 8− 12 + 6− 1 = 0.
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Although the formal proof of Euler’s relation is rather complex, there is a very easy way to see why its true.
First, consider the simplest polytope, namely a d-simplex, as the base case. (This is easy to see if you recall that
for a simplex nj =

(d+1
j+1

)

. If you take the expression (1− 1)d+1 and expand it symbolically (as you would for
example for (a+ b)2 = a2+2ab+ b2) you will get exactly the sum in Euler’s formula. Clearly (1− 1)d+1 = 0.
The induction part of the proof comes by observing that in order making a complex polytope out of a simple
one, essentially involves a series of splitting operation. Every time you split a face of dimension j, you do so by
adding a face of dimension j − 1. Thus, nj−1 and nj each increase by one, and so the value of the alternating
sum is unchanged.
Euler’s relation can be used to prove that the convex hull of a set of n points in 3-space hasO(n) edges andO(n)
faces. However, what happens as dimension increases? We will prove the following theorem. The remarkably
simple proof is originally due to Raimund Seidel. We will state the theorem both in its original and dual form.

The Upper Bound Theorem: A polytope defined by the convex hull of n points in Rd has O(n$d/2%) facets.
Upper Bound Theorem (Polar Form): A polytope defined by the intersection of n halfspaces inRd hasO(n$d/2%)

vertices.
Proof: It is not hard to show that among all polytopes, simplicial polytopes maximize the number of faces for

a given set of vertices and simple polytopes maximize the number of vertices for a given set of faces. We
will prove just the polar form of the theorem, and the other will follow by polar equivalence.
Consider a polytope defined by the intersection of n halfspaces in general position. Let us suppose by
convention that the xd axis is the vertical axis. Given a face, its highest vertex and lowest vertices are
defined as those having the maximum and minimum xd coordinates, respectively. (There are no ties if we
assume general position.)
The proof is based on a charging argument. We will place a charge at each vertex. We will then move the
charge for each vertex to a specially chosen incident face, in such a way that no face receives more than
two charges. Finally, we will show that the number of faces that receive charges is at most O(n$d/2%).
First, we claim that every vertex v is either the highest or lowest vertex for a j-face, where j ≥ *d/2+.
To see this, recall that the for a simple polytope, the neighborhood immediately surrounding any vertex is
isomorphic to a simplex. Thus, v is incident to exactly d edges (1-faces). (See Fig. 151 for an example in
dimension 5.) Consider a horizontal (that is, orthogonal to xd) hyperplane passing through v. Since there
are d edges in all, at least *d/2+ of these edges must lie on the same side of this hyperplane. (By general
position we may assume that no edge lies exactly on the hyperplane.)
As we observed earlier in the lecture, the local neighborhood about each vertex of a simple polytope is
isomorphic to a simplex, which imples that there is a face of dimension at least *d/2+ that spans these
edges and is incident to v. Therefore, v is the lowest or highest vertex for this face. We charge this face
for the charge on vertex v. Thus, we may charge every vertex of the polytope to face of dimension at
least *d/2+, and every such face will be charged at most twice (once by its lowest and once by its highest
vertex).

xd
v

This 3−face gets v’s charge

Fig. 151: Proof of the Upper Bound Theorem in dimension 5. In this case the three edges above v span a 3-face whose
lowest vertex is v.

All that remains is to count the number of faces that have been charged and multiply by 2. Recalling our
earlier lemma on the naive bound on the number of j-faces of a simple polytope with n facets is

( n
d−j

)

.
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(Each j-face is arises from the intersection of d − j hyperplanes and this is number of (d − j)-element
subsets of hyerplanes.) Summing this up over all the faces of dimension *d/2+ and higher we find that the
number of vertices is at most

2
d
∑

j=)d/2*

(

n

d− j

)

.

By changing the summation index to k = d − j and making the observation that
(n
k

)

is O(nk), we have
that the number of vertices is at most

2

$d/2%
∑

k=0

(

n

k

)

=

$d/2%
∑

k=0

O(nk).

This is a geometric series, and so is dominated asymptotically by its largest term. Therefore it follows that
the number of charges, that is, the number of vertices is at most

O
(

n$d/2%
)

,

and this completes the proof.

Is this bound tight? Yes it is. There is a family of polytopes, called cyclic polytopes, which match this asymptotic
bound. (See Boissonnat and Yvinec for a definition and proof.)

Lecture 35: Planar Graphs, Polygons and Art Galleries
Topological Information: In many applications of segment intersection problems, we are not interested in just a

listing of the segment intersections, but want to know how the segments are connected together. Typically, the
plane has been subdivided into regions, and we want to store these regions in a way that allows us to reason
about their properties efficiently.
This leads to the concept of a planar straight line graph (PSLG) or planar subdivision (or what might be called
a cell complex in topology). A PSLG is a graph embedded in the plane with straight-line edges so that no two
edges intersect, except possibly at their endpoints. (The condition that the edges be straight line segments may
be relaxed to allow curved segments, but we will assume line segments here.) Such a graph naturally subdivides
the plane into regions. The 0-dimensional vertices, 1-dimensional edges, and 2-dimensional faces. We consider
these three types of objects to be disjoint, implying each edge is topologically open (it does not include it
endpoints) and that each face is open (it does not include its boundary). There is always one unbounded face,
that stretches to infinity. Note that the underlying planar graph need not be a connected graph. In particular,
faces may contain holes (and these holes may contain other holes. A subdivision is called a convex subdivision
if all the faces are convex.

face
edge

vertex

convex subdivision

Fig. 152: Planar straight-line subdivision.

Planar subdivisions form the basic objects of many different structures that we will discuss later this semester
(triangulations and Voronoi diagrams in particular) so this is a good time to consider them in greater detail. The
first question is how should we represent such structures so that they are easy to manipulate and reason about.
For example, at a minimum we would like to be able to list the edges that bound each face of the subdivision in
cyclic order, and we would like to be able to list the edges that surround each vertex.
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Planar graphs: There are a number of important facts about planar graphs that we should discuss. Generally speak-
ing, an (undirected) graph is just a finite set of vertices, and collection of unordered pairs of distinct vertices
called edges. A graph is planar if it can be drawn in the plane (the edges need not be straight lines) so that no
two distinct edges cross each other. An embedding of a planar graph is any such drawing. In fact, in specify-
ing an embedding it is sufficient just to specify the counterclockwise cyclic list of the edges that are incident
to each vertex. Since we are interested in geometric graphs, our embeddings will contain complete geometric
information (coordinates of vertices in particular).
There is an important relationship between the number of vertices, edges, and faces in a planar graph (or more
generally an embedding of any graph on a topological 2-manifold, but we will stick to the plane). Let V denote
the number of vertices, E the number of edges, F the number of faces in a connected planar graph. Euler’s
formula states that

V − E + F = 2.

The quantity V − E + F is called the Euler characteristic, and is an invariant of the plane. In general, given a
orientable topological 2-manifold with g handles (called the genus) we have

V − E + F = 2− 2g.

Returning to planar graphs, if we allow the graph to be disconnected, and let C denote the number of connected
components, then we have the somewhat more general formula

V − E + F − C = 1.

In our example above we have V = 13, E = 12, F = 4 and C = 4, which clearly satisfies this formula. An
important fact about planar graphs follows from this.

Theorem: A planar graph with V vertices has at most 3(V − 2) edges and at most 2(V − 2) faces.
Proof: We assume (as is typical for graphs) that there are no multiple edges between the same pair of vertices

and no self-loop edges.
We begin by triangulating the graph. For each face that is bounded by more than three edges (or whose
boundary is not connected) we repeatedly insert new edges until every face in the graph is bounded by ex-
actly three edges. (Note that this is not a “straight line” planar graph, but it is a planar graph, nonetheless.)
An example is shown in the figure below in which the original graph edges are shown as solid lines.

Fig. 153: Triangulating a planar graph.

Let E′ ≥ E and F ′ ≥ F denote the number edges and faces in the modified graph. The resulting graph
has the property that it has one connected component, every face is bounded by exactly three edges, and
each edge has a different face on either side of it. (The last claim may involve a little thought.)
If we count the number of faces and multiply by 3, then every edge will be counted exactly twice, once
by the face on either side of the edge. Thus, 3F ′ = 2E′, that is E′ = 3F ′/2. Euler’s formula states that
V + E′ − F ′ = 2, and hence

V − 3F ′

2
+ F ′ = 2 ⇒ F ≤ F ′ = 2(V − 2),
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and using the face that F ′ = 2E′/3 we have

V − E′ +
2E′

3
= 2 ⇒ E ≤ E′ = 3(V − 2).

This completes the proof.

The fact that the numbers of vertices, edges, and faces are related by constant factors seems to hold only in
2-dimensional space. For example, a polyhedral subdivision of 3-dimensional space that has n vertices can
have as many as Θ(n2) edges. (As a challenging exercise, you might try to create one.) In general, there are
formulas, called the Dehn-Sommerville equations that relate the maximum numbers of vertices, edges, and faces
of various dimensions.
There are a number of reasonable representations that for storing PSLGs. The most widely used on is thewinged-
edge data structure. Unfortunately, it is probably also the messiest. There is another called the quad-edge data
structure which is quite elegant, and has the nice property of being self-dual. (We will discuss duality later in
the semester.) We will not discuss any of these, but see our text for a presentation of the doubly-connected edge
list (or DCEL) structure.

Simple Polygons: Now, let us change directions, and consider some interesting problems involving polygons in the
plane. We begin study of the problem of triangulating polygons. We introduce this problem by way of a cute
example in the field of combinatorial geometry.
We begin with some definitions. A polygonal curve is a finite sequence of line segments, called edges joined
end-to-end. The endpoints of the edges are vertices. For example, let v0, v2, . . . , vn denote the set of n + 1
vertices, and let e1, e2, . . . , en denote a sequence of n edges, where ei = vi−1vi. A polygonal curve is closed
if the last endpoint equals the first v0 = vn. A polygonal curve is simple if it is not self-intersecting. More
precisely this means that each edge ei does not intersect any other edge, except for the endpoints it shares with
its adjacent edges.

simple polygon

v0

v1

v2

v3
v4 v5

v6

closed but not simplepolygonal curve

Fig. 154: Polygonal curves

The famous Jordan curve theorem states that every simple closed plane curve divides the plane into two regions
(the interior and the exterior). (Although the theorem seems intuitively obvious, it is quite difficult to prove.)
We define a polygon to be the region of the plane bounded by a simple, closed polygonal curve. The term simple
polygon is also often used to emphasize the simplicity of the polygonal curve. We will assume that the vertices
are listed in counterclockwise order around the boundary of the polygon.

Art Gallery Problem: We say that two points x and y in a simple polygon can see each other (or x and y are visible)
if the open line segment xy lies entirely within the interior of P . (Note that such a line segment can start and
end on the boundary of the polygon, but it cannot pass through any vertices or edges.)
If we think of a polygon as the floor plan of an art gallery, consider the problem of where to place “guards”,
and how many guards to place, so that every point of the gallery can be seen by some guard. Victor Klee posed
the following question: Suppose we have an art gallery whose floor plan can be modeled as a polygon with
n vertices. As a function of n, what is the minimum number of guards that suffice to guard such a gallery?
Observe that are you are told about the polygon is the number of sides, not its actual structure. We want to know
the fewest number of guards that suffice to guard all polygons with n sides.
Before getting into a solution, let’s consider some basic facts. Could there be polygons for which no finite
number of guards suffice? It turns out that the answer is no, but the proof is not immediately obvious. You
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A polygon requiring n/3 guards.A guarding set

Fig. 155: Guarding sets.

might consider placing a guard at each of the vertices. Such a set of guards will suffice in the plane. But to
show how counterintuitive geometry can be, it is interesting to not that there are simple nonconvex polyhedra in
3-space, such that even if you place a guard at every vertex there would still be points in the polygon that are
not visible to any guard. (As a challenge, try to come up with one with the fewest number of vertices.)
An interesting question in combinatorial geometry is how does the number of guards needed to guard any simple
polygon with n sides grow as a function of n? If you play around with the problem for a while (trying polygons
with n = 3, 4, 5, 6 . . . sides, for example) you will eventually come to the conclusion that /n/30 is the right
value. The figure above shows a worst-case example, where /n/30 guards are required. A cute result from
combinatorial geometry is that this number always suffices. The proof is based on three concepts: polygon
triangulation, dual graphs, and graph coloring. The remarkably clever and simple proof was discovered by Fisk.

Theorem: (The Art-Gallery Theorem) Given a simple polygon with n vertices, there exists a guarding set with
at most /n/30 guards.

Before giving the proof, we explore some aspects of polygon triangulations. We begin by introducing a triangu-
lation of P . A triangulation of a simple polygon is a planar subdivision of (the interior of) P whose vertices are
the vertices of P and whose faces are all triangles. An important concept in polygon triangulation is the notion
of a diagonal, that is, a line segment between two vertices of P that are visible to one another. A triangulation
can be viewed as the union of the edges of P and a maximal set of noncrossing diagonals.

Lemma: Every simple polygon with n vertices has a triangulation consisting of n − 3 diagonals and n − 2
triangles.

(We leave the proof as an exercise.) The proof is based on the fact that given any n-vertex polygon, with n ≥ 4
it has a diagonal. (This may seem utterly trivial, but actually takes a little bit of work to prove. In fact it fails to
hold for polyhedra in 3-space.) The addition of the diagonal breaks the polygon into two polygons, of say m1

andm2 vertices, such thatm1 +m2 = n+2 (since both share the vertices of the diagonal). Thus by induction,
there are (m1 − 2) + (m2 − 2) = n+ 2 − 4 = n− 2 triangles total. A similar argument holds for the case of
diagonals.
It is a well known fact from graph theory that any planar graph can be colored with 4 colors. (The famous
4-color theorem.) This means that we can assign a color to each of the vertices of the graph, from a collection
of 4 different colors, so that no two adjacent vertices have the same color. However we can do even better for
the graph we have just described.
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Fig. 156: Polygon triangulation and a 3-coloring.
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Lemma: Let T be the triangulation graph of a triangulation of a simple polygon. Then T is 3-colorable.
Proof: For every planar graph G there is another planar graph G∗ called its dual. The dual G∗ is the graph

whose vertices are the faces ofG, and two vertices ofG∗ are connected by an edge if the two corresponding
faces of G share a common edge.
Since a triangulation is a planar graph, it has a dual, shown in the figure below. (We do not include the
external face in the dual.) Because each diagonal of the triangulation splits the polygon into two, it follows
that each edge of the dual graph is a cut edge, meaning that its deletion would disconnect the graph. As a
result it is easy to see that the dual graph is a free tree (that is, a connected, acyclic graph), and its maximum
degree is 3. (This would not be true if the polygon had holes.)

ear

Fig. 157: Dual graph of triangulation.

The coloring will be performed inductively. If the polygon consists of a single triangle, then just assign any
3 colors to its vertices. An important fact about any free tree is that it has at least one leaf (in fact it has at
least two). Remove this leaf from the tree. This corresponds to removing a triangle that is connected to the
rest triangulation by a single edge. (Such a triangle is called an ear.) By induction 3-color the remaining
triangulation. When you add back the deleted triangle, two of its vertices have already been colored, and
the remaining vertex is adjacent to only these two vertices. Give it the remaining color. In this way the
entire triangulation will be 3-colored.

We can now give the simple proof of the guarding theorem.

Proof: (of the Art-Gallery Theorem:) Consider any 3-coloring of the vertices of the polygon. At least one color
occurs at most /n/30 time. (Otherwise we immediately get there are more than n vertices, a contradiction.)
Place a guard at each vertex with this color. We use at most /n/30 guards. Observe that every triangle
has at least one vertex of each of the tree colors (since you cannot use the same color twice on a triangle).
Thus, every point in the interior of this triangle is guarded, implying that the interior of P is guarded. A
somewhat messy detail is whether you allow guards placed at a vertex to see along the wall. However,
it is not a difficult matter to push each guard infinitesimally out from his vertex, and so guard the entire
polygon.
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