
IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Contents

1 String searching

2 Karp-Rabin fingerprint
algorithm

3 Knuth-Morris-Pratt algorithm

4 Boyer-Moore algorithm

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 1 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

String searching

Section outline

1 String searching

String search
Brute force approach

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 2 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

String searching String search

String search

Given a pattern string p, find first match in text t

N: # characters in text

M: # characters in pattern

Length of pattern is small compared to the length of the text (N � M)

Pattern can be pre-preprocessed

Text cannot be pre-processed

Example

Search Text, N = 21
n n e e n l e d e n e e n e e d l e n l d

Search Pattern, M = 6
n e e d l e

Successful search
n n e e n l e d e n e e n e e d l e n l d

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 3 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

String searching Brute force approach

Brute force approach

Check for pattern starting at every text position

Running time depends on pattern and text

Worst case: MN comparisons, in practice almost linear

Slow if M and N are large, and have lots of repetition

Example (Worst case of brute force approach)
Search Pattern

a a a a a b
Search Text

a a a a a a a a a a a a a a a a a a b
a a a a a b

a a a a a b
a a a a a b

a a a a a b
: : :

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 4 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Karp-Rabin fingerprint algorithm

Section outline

2 Karp-Rabin fingerprint
algorithm

String matching using
hashing
Efficient hash computation

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 5 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Karp-Rabin fingerprint algorithm String matching using hashing

String matching using hashing

Example

Search pattern
5 9 2 6 5 59265 % 97 = 95

Search Text
3 1 4 1 5 9 2 6 5 3 5 8 9 7 3 3 4 6
3 1 4 1 5 31415 % 97 = 84

1 4 1 5 9 14159 % 97 = 94
4 1 5 9 2 41592 % 97 = 76

1 5 9 2 6 15926 % 97 = 18
: : :

Match not possible unless computed hash of text substring under
consideration matches hash of search string

In case of match, actual comparison is needed to confirm match

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 6 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Karp-Rabin fingerprint algorithm Efficient hash computation

Efficient hash computation

Example

Pre-compute: 10000 % 97 = 9

First hash: 31415 % 97 = 84

. . .

Previous hash: 41592 % 97 = 76

Efficient next hash computation

of 15926 (% 97):

= (41592 � (4 � 10000)) � 10 + 6
= (76 � (4 � 9)) � 10 + 6
= 406
= 18

Choose modulus to be a
large prime (q)

Each window of M expected
to be uniformly distributed in
[0;q � 1]

Expected running time is
O
�

N + M
�

1
q (N �M)

��

Worst case: �(MN) – when?

Possible if the computed
hash matches every time and
confirmational matching is
needed

Published in 1987 as Efficient
randomized pattern-matching
algorithms

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 7 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Karp-Rabin fingerprint algorithm Efficient hash computation

Efficient hash computation

Example

Pre-compute: 10000 % 97 = 9

First hash: 31415 % 97 = 84

. . .

Previous hash: 41592 % 97 = 76

Efficient next hash computation

of 15926 (% 97):

= (41592 � (4 � 10000)) � 10 + 6
= (76 � (4 � 9)) � 10 + 6
= 406
= 18

Choose modulus to be a
large prime (q)

Each window of M expected
to be uniformly distributed in
[0;q � 1]

Expected running time is
O
�

N + M
�

1
q (N �M)

��

Worst case: �(MN) – when?

Possible if the computed
hash matches every time and
confirmational matching is
needed

Published in 1987 as Efficient
randomized pattern-matching
algorithms

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 7 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Karp-Rabin fingerprint algorithm Efficient hash computation

Efficient hash computation

Example

Pre-compute: 10000 % 97 = 9

First hash: 31415 % 97 = 84

. . .

Previous hash: 41592 % 97 = 76

Efficient next hash computation

of 15926 (% 97):

= (41592 � (4 � 10000)) � 10 + 6
= (76 � (4 � 9)) � 10 + 6
= 406
= 18

Choose modulus to be a
large prime (q)

Each window of M expected
to be uniformly distributed in
[0;q � 1]

Expected running time is
O
�

N + M
�

1
q (N �M)

��

Worst case: �(MN) – when?

Possible if the computed
hash matches every time and
confirmational matching is
needed

Published in 1987 as Efficient
randomized pattern-matching
algorithms

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 7 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm

Section outline

3 Knuth-Morris-Pratt algorithm
Optimised pattern matching
with KMP
KMP algorithm
KMP failure function

computation
KMP failure function
algorithm
Overall complexity of KMP
Optimised failure function
computation

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 8 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm Optimised pattern matching with KMP

Optimised pattern matching with KMP
Example

Search pattern
1 2 3 4 5 6
a a c a a b

Search text
a a c a a a a b c a a b

1 2 3 4 5 6 7
a a c a a b

Suppose aacaa is received; current state will be 6 and b will be expected

If b is not received, the pattern will have to be moved forward

Instead of moving forward by one position (brute force approach), better to align the prefix
aa with the suffix aa at the point of failure – amounts to resuming comparison at state 3

We want the longest prefix (aa) that is a suffix at the point of failure (state 6)

Similarly, if after receiving aaca another a is not received; failure is at state 5; comparison
may be resumed from state 2

Failure transitions are meant to step back in the pattern string, staying at the same place
implies1-loop, so on failure at state 3 (on :c), matching is resumed at state 2

The point of resumption for failure at a certain point is the failure function

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 9 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm Optimised pattern matching with KMP

Optimised pattern matching with KMP
Example

Search pattern
1 2 3 4 5 6
a a c a a b

Search text
a a c a a a a b c a a b

1 2 3 4 5 6 7
a a c a a b

Suppose aacaa is received; current state will be 6 and b will be expected

If b is not received, the pattern will have to be moved forward

Instead of moving forward by one position (brute force approach), better to align the prefix
aa with the suffix aa at the point of failure – amounts to resuming comparison at state 3

We want the longest prefix (aa) that is a suffix at the point of failure (state 6)

Similarly, if after receiving aaca another a is not received; failure is at state 5; comparison
may be resumed from state 2

Failure transitions are meant to step back in the pattern string, staying at the same place
implies1-loop, so on failure at state 3 (on :c), matching is resumed at state 2

The point of resumption for failure at a certain point is the failure function

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 9 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm Optimised pattern matching with KMP

Optimised pattern matching with KMP
Example

Search pattern
1 2 3 4 5 6
a a c a a b

Search text
a a c a a a a b c a a b

1 2 3 4 5 6 7
a a c a a b

Suppose aacaa is received; current state will be 6 and b will be expected

If b is not received, the pattern will have to be moved forward

Instead of moving forward by one position (brute force approach), better to align the prefix
aa with the suffix aa at the point of failure – amounts to resuming comparison at state 3

We want the longest prefix (aa) that is a suffix at the point of failure (state 6)

Similarly, if after receiving aaca another a is not received; failure is at state 5; comparison
may be resumed from state 2

Failure transitions are meant to step back in the pattern string, staying at the same place
implies1-loop, so on failure at state 3 (on :c), matching is resumed at state 2

The point of resumption for failure at a certain point is the failure function

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 9 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm Optimised pattern matching with KMP

Optimised pattern matching with KMP
Example

Search pattern
1 2 3 4 5 6
a a c a a b

Search text
a a c a a a a b c a a b

1 2 3 4 5 6 7
a a c a a b

:c?

Suppose aacaa is received; current state will be 6 and b will be expected

If b is not received, the pattern will have to be moved forward

Instead of moving forward by one position (brute force approach), better to align the prefix
aa with the suffix aa at the point of failure – amounts to resuming comparison at state 3

We want the longest prefix (aa) that is a suffix at the point of failure (state 6)

Similarly, if after receiving aaca another a is not received; failure is at state 5; comparison
may be resumed from state 2

Failure transitions are meant to step back in the pattern string, staying at the same place
implies1-loop, so on failure at state 3 (on :c), matching is resumed at state 2

The point of resumption for failure at a certain point is the failure function

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 9 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm Optimised pattern matching with KMP

Optimised pattern matching with KMP
Example

Search pattern
1 2 3 4 5 6
a a c a a b
0 1 2 1 2 3

Failure function

Search text
a a c a a a a b c a a b

1 2 3 4 5 6 7
a a c a a b

:c?

Suppose aacaa is received; current state will be 6 and b will be expected

If b is not received, the pattern will have to be moved forward

Instead of moving forward by one position (brute force approach), better to align the prefix
aa with the suffix aa at the point of failure – amounts to resuming comparison at state 3

We want the longest prefix (aa) that is a suffix at the point of failure (state 6)

Similarly, if after receiving aaca another a is not received; failure is at state 5; comparison
may be resumed from state 2

Failure transitions are meant to step back in the pattern string, staying at the same place
implies1-loop, so on failure at state 3 (on :c), matching is resumed at state 2

The point of resumption for failure at a certain point is the failure function
Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 9 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm KMP algorithm

KMP algorithm
Example

Search pattern
1 2 3 4 5 6
a a c a a b
0 1 2 1 2 3

Failure function

Search text
a a c a a a a b c a a b

1 2 3 4 5 6 7
a a c a a b

Use knowledge of search pattern

Build automaton from pattern

Run automaton on text

On failure, go back to the longest
proper prefix that is a suffix at the
point of the last match – to avoid
looping (at state 3, for example)

1 j 1 // start of P

2 for i 1 to N // span through T

3 while j > 0 and T[i]6=P[j]

4 j fail[j] // fail while no match

5 if j=M return i�M+1

// terminate (success)

6 j j+1 // move forward in pattern

7 return NoMatch terminate (failure)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 10 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm KMP algorithm

KMP algorithm
Example

Search pattern
1 2 3 4 5 6
a a c a a b
0 1 2 1 2 3

Failure function

Search text
a a c a a a a b c a a b

1 2 3 4 5 6 7
a a c a a b

Use knowledge of search pattern

Build automaton from pattern

Run automaton on text

On failure, go back to the longest
proper prefix that is a suffix at the
point of the last match – to avoid
looping (at state 3, for example)

1 j 1 // start of P

2 for i 1 to N // span through T

3 while j > 0 and T[i]6=P[j]

4 j fail[j] // fail while no match

5 if j=M return i�M+1

// terminate (success)

6 j j+1 // move forward in pattern

7 return NoMatch terminate (failure)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 10 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm KMP failure function computation

KMP failure function computation

Base case fail[1]=0 – need to start over again X
Need to compute fail[{], assuming fail[|], | < { are available

Inductive cases, starting with k = 1 (when �0 = �)
failk [{� 1] indicates the longest proper prefix (say �) that is a suffix
at P[{� 1]; � = � if failk [{� 1] = 0
Exit case where failk [{� 1] = 0 No prefix, so resume matching

at the beginning, fail[{] = 1 X
Case P[{� 1] = P[failk [{� 1]]

� a ? : : : �0 � a : : :

failk [{� 1] {� 1 {
Thus, � � P[{� 1] is the longest proper prefix that is also a
suffix at P[{], so fail[{] = failk [{� 1] + 1 X

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 11 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm KMP failure function computation

KMP failure function computation (contd.)
Inductive cases, starting with k = 1 (when �0 = �, contd.)

failk [{� 1] indicates the longest proper prefix (say �) that is a suffix
at P[{� 1]; � = � if failk [{� 1] = 0
Case P[{� 1] 6= P[failk [{� 1]]
� b : : : �0 � a : : :

failk [{� 1] {� 1 {

Now, � � P[{� 1] is not an admissible suffix at P[{], as
P[{� 1] 6= P[failk [{� 1]]
But, fail[failk [{� 1]] = failk+1[{� 1] indicates the longest
proper prefix (say �) that is a suffix at P[failk [{� 1]]

� a? ? : : : � b : : : �0 � a : : :

failk+1[{� 1] failk [{� 1] {� 1 {

Now, � is the longest proper prefix of P and also a suffix of �
Thus, if P[failk+1[{� 1]] = P[i � 1], � � P[{� 1] is the longest
proper prefix at P[{], so fail[{] = failk+1[{� 1] + 1 X
Continue induction with k k + 1

�

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 12 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm KMP failure function computation

KMP failure function computation example
Example (Some steps of failure function computation for “aacaab”)

1 2 3 4 5 6 7
a a c a a b

Consider failure at P[{] (say, P[6]=b)
We would like to identify the longest proper prefix that is a suffix at P[{]
The longest proper prefix that is a suffix at P[{�1] is denoted by fail[{�1]
So, if P[{� 1]=P[fail[{� 1]], then fail[{]=fail[{� 1]+1
P[5]=a; P[fail[5]]=P[2]=a; so fail[6]=fail[5]+1=2+1=3

If P[{� 1] 6=P[fail[{� 1]], then continue checking from
P[fail[fail[{� 1]]]=P[fail2[{� 1]], and so on, but stopping at P[1]
While computing fail[4], we find P[3]=c and P[fail[3](=2)]=a;
P[3] 6=P[fail[3](=2)], so go further back to fail2[3]=1 and stop there
(at P[1]=a)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 13 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm KMP failure function computation

KMP failure function computation example
Example (Some steps of failure function computation for “aacaab”)

1 2 3 4 5 6 7
a a c a a b

Consider failure at P[{] (say, P[6]=b)
We would like to identify the longest proper prefix that is a suffix at P[{]
The longest proper prefix that is a suffix at P[{�1] is denoted by fail[{�1]
So, if P[{� 1]=P[fail[{� 1]], then fail[{]=fail[{� 1]+1
P[5]=a; P[fail[5]]=P[2]=a; so fail[6]=fail[5]+1=2+1=3
If P[{� 1] 6=P[fail[{� 1]], then continue checking from
P[fail[fail[{� 1]]]=P[fail2[{� 1]], and so on, but stopping at P[1]
While computing fail[4], we find P[3]=c and P[fail[3](=2)]=a;
P[3] 6=P[fail[3](=2)], so go further back to fail2[3]=1 and stop there
(at P[1]=a)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 13 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm KMP failure function algorithm

KMP failure function computation algorithm

1 2 3 4 5 6 7
a a c a a b

KMPCompFail(P[1..M])
1 j 0
2 for i 1 to M // span

through M!
3 fail[i] j

// next prepare for
fail[i+1]

4 while (j>0 and
P[i]6=P[j]) do

5 j fail[j]
6 done
7 j j+1
8 endfor

Example (FF for “aacaab”)

Search pattern
{ 1 2 3 4 5 6

P[{] a a c a a b
fail[{] 0 1 2 1 2 3

P[|4] – a
a
a

a a
c
a
a

|5 – –
1
0

– –
2
1
0

|7 1 2 1 2 3 1

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 14 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm KMP failure function algorithm

KMP failure function algorithm (contd.)

4 5 8 92 71 63
c a d c a c a d

KMPCompFail(P[1..M])
1 j 0
2 for i 1 to M // span through M!
3 fail[i] j

// next prepare for fail[i+1]
4 while (j>0 and P[i]6=P[j]) do
5 j fail[j]
6 done
7 j j+1
8 endfor

Example (FF for “aacaab”)

Search pattern
{ 1 2 3 4 5 6 7 8

P[{] c a d c a c a d
fail[{] 0 1 1 1 2 3 2 3

P[|4] – c c c a
d
c

a a

|5 – 0 0 – –
1
�

– –

|7 1 1 1 2 3 2 3 4

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 15 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm Overall complexity of KMP

Complexity of computing fail[{] and running KMP
KMPCompFail(P[1..M])

1 j 0
2 for i 1 to M // span through M!
3 fail[i] j
4 while (j>0 and P[i] 6=P[j])
5 j fail[j]
6 done
7 j j+1
8 endfor

Example (FF for “aacaab”)

Search pattern
1 2 3 4 5 6
a a c a a b
0 1 2 1 2 3

Failure function

Note that fail[j]<j
In L5 j is decreased by at least 1
Overall j can go back in L5 only as
much as it has progressed in L7
L7 is executed M times
Complexity of KMPCompFail is
O(M) (from 2M))

Using similar reasoning
complexity of the KMP algorithm
is O(N) (from 2N)
Overall complexity is O(M + N)
Publication: Fast pattern matching
in strings, D E Knuth, J H Morris,
V R Pratt, SIAM JoC, v6, n2, June
1997

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 16 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm Overall complexity of KMP

Complexity of computing fail[{] and running KMP
KMPCompFail(P[1..M])

1 j 0
2 for i 1 to M // span through M!
3 fail[i] j
4 while (j>0 and P[i] 6=P[j])
5 j fail[j]
6 done
7 j j+1
8 endfor

Example (FF for “aacaab”)

Search pattern
1 2 3 4 5 6
a a c a a b
0 1 2 1 2 3

Failure function

Note that fail[j]<j
In L5 j is decreased by at least 1
Overall j can go back in L5 only as
much as it has progressed in L7
L7 is executed M times
Complexity of KMPCompFail is
O(M) (from 2M))
Using similar reasoning
complexity of the KMP algorithm
is O(N) (from 2N)
Overall complexity is O(M + N)
Publication: Fast pattern matching
in strings, D E Knuth, J H Morris,
V R Pratt, SIAM JoC, v6, n2, June
1997

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 16 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Knuth-Morris-Pratt algorithm Optimised failure function computation

Optimised failure function computation

1 2 3 4 5 6 7
a a c a a b

Consider the failure at P[5]=a;
fail[5]=2

But P[2]=a, so after failing to
match a at P[5], failure is
guaranteed at P[2]

This definite failure could be
remedied by going all the way
back to fail3[5]=0

Function KMPOptFail does the
required post-processisng –
employing dynamic programming

KMPOptFail(P[1..M], fail[1..M])
1 for i 2 to M // bottom-up DP

2 if P[i]=P[fail[i]] // definite failure

3 fail[i] fail[fail[i]] // fail all

4 endfor // way back via DP

Example (Opt FF for “aacaab”)

Search pattern
1 2 3 4 5 6
a a c a a b
0 0 2 0 0 3
Optimised failure fn

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 17 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm

Section outline

4 Boyer-Moore algorithm
Key aspects

Bad character shift rule
Good suffix shift rule
GSS computation

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 18 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm Key aspects

Key aspects

The Boyer-Moore algorithm is based on three ideas:
Scanning the pattern pat from right to left: P[M], P[M � 1], ...
The “bad character shift rule”: skips over parts of pattern where
there is no possibility of matching the current character in the text
The “good suffix shift rule”: aligns only matching pattern
characters against target characters already successfully matched
These rules work independently, but are more effective together

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 19 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm Bad character shift rule

Bad character shift rule
Example (Skipping over bad characters)

Text string
D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (r6=e)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (t6=e)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (r6=u)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (e6=t)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (‘ ’6=e)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 20 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm Bad character shift rule

Bad character shift rule
Example (Skipping over bad characters)

Text string
D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (r6=e)
Text string

D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (t6=e)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (r6=u)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (e6=t)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (‘ ’6=e)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 20 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm Bad character shift rule

Bad character shift rule
Example (Skipping over bad characters)

Text string
D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (r6=e)
Text string

D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (t6=e)
Text string

D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (r6=u)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (e6=t)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (‘ ’6=e)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 20 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm Bad character shift rule

Bad character shift rule
Example (Skipping over bad characters)

Text string
D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (r6=e)
Text string

D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (t6=e)
Text string

D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (r6=u)
Text string

D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (e6=t)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (‘ ’6=e)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 20 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm Bad character shift rule

Bad character shift rule
Example (Skipping over bad characters)

Text string
D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (r6=e)
Text string

D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (t6=e)
Text string

D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (r6=u)
Text string

D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (e6=t)
Text string

D o n u r t u r e t h e f u t u r e
f u t u r e

Search pattern (‘ ’6=e)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 20 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm Bad character shift rule

Bad character shift rule (contd)
If the current character c of the text T does not match the
corresponding character in the pattern, jump to the right most
occurrence of c in P without shifting backwards
If c does not occur ahead in P, just slide P all the way back

Definition (R{(x))

R{(x) is the position of the rightmost occurrence of character x before
position {

8c 2 �, R{(c) =
�

0 if 6 9| < {jP[|] = c
max f| < {jP[j] = cg otherwise

R{(c) is computed in O(j�j+ M) time
When a mismatch occurs at pattern position { in P, shift by
{� R{(T[k]) characters so that the next occurrence of T[k] in P is
underneath position k in T
Best case time complexity for BCS is O(N=M) – sublinear!
R{(x) may be realised as R[i,x], but inefficient

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 21 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm Bad character shift rule

Bad character shift rule (contd)
If the current character c of the text T does not match the
corresponding character in the pattern, jump to the right most
occurrence of c in P without shifting backwards
If c does not occur ahead in P, just slide P all the way back

Definition (R{(x))

R{(x) is the position of the rightmost occurrence of character x before
position {

8c 2 �, R{(c) =
�

0 if 6 9| < {jP[|] = c
max f| < {jP[j] = cg otherwise

R{(c) is computed in O(j�j+ M) time
When a mismatch occurs at pattern position { in P, shift by
{� R{(T[k]) characters so that the next occurrence of T[k] in P is
underneath position k in T
Best case time complexity for BCS is O(N=M) – sublinear!
R{(x) may be realised as R[i,x], but inefficient

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 21 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm Bad character shift rule

Bad character shift rule (contd)
If the current character c of the text T does not match the
corresponding character in the pattern, jump to the right most
occurrence of c in P without shifting backwards
If c does not occur ahead in P, just slide P all the way back

Definition (R{(x))

R{(x) is the position of the rightmost occurrence of character x before
position {

8c 2 �, R{(c) =
�

0 if 6 9| < {jP[|] = c
max f| < {jP[j] = cg otherwise

R{(c) is computed in O(j�j+ M) time
When a mismatch occurs at pattern position { in P, shift by
{� R{(T[k]) characters so that the next occurrence of T[k] in P is
underneath position k in T
Best case time complexity for BCS is O(N=M) – sublinear!
R{(x) may be realised as R[i,x], but inefficient

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 21 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm Good suffix shift rule

Good suffix shift rule
Example (Comparing shifts by BCS and GSS for r 6= u1)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (r6=u)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (BCS)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (GSS)

Let s = P[{::M] = T[{+ |::|+ M] and P[{� 1] 6= T[i + j � 1]
The GSS rule aligns the substring s with its rightmost occurrence
in P (but not as a suffix) that is preceded by a character different
from P[i � 1]
Similar to the optimised KMP failure function from the right end

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 22 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm Good suffix shift rule

Good suffix shift rule
Example (Comparing shifts by BCS and GSS for r 6= u1)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (r6=u)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (BCS)

Text string
D o n u r t u r e t h e f u t u r e

f u t u r e
Search pattern (GSS)

Let s = P[{::M] = T[{+ |::|+ M] and P[{� 1] 6= T[i + j � 1]
The GSS rule aligns the substring s with its rightmost occurrence
in P (but not as a suffix) that is preceded by a character different
from P[i � 1]
Similar to the optimised KMP failure function from the right end

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 22 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm GSS computation

GSS computation
Example (P has the form: � � b � � �
 � a � �, mismatch at a � �)

Reversed search pattern
1 2 3 4 5 6 7
a a c a a b –
0 0 2 0 0 3 0

Opt failure fn!

Search pattern
0 1 2 3 4 5 6
– b a a c a a
07 36 05 04 23 02 01

Opt failure fn from the right
� � � 1 4 –
 Computed GSS

KMP: fail[6]=3, fail@Pr [::aab], resume@ Pr [aac]
BM: fail@P[6� 3 + 1 = 4](caa), resume@ P[6� 6 + 11](baa), gss[4]=1

KMP: fail[3]=2, fail@Pr [::ac], resume@ Pr [aa]
BM: fail@P[6� 2 + 1 = 5](aa), resume@ P[6� 3 + 1 = 4](ca), gss[5]=4
KMP: fail[1]=fail[2]=fail[4]=fail[5]=0
BM: unfilled cells are marked with ‘–’ indicating start over
Here, KMP does not help for P[M], but BCS can, eg R6(c) = 4
On mismatch on c at P[{], can use max(GSS[{];R{(c))

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 23 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm GSS computation

GSS computation
Example (P has the form: � � b � � �
 � a � �, mismatch at a � �)

Reversed search pattern
1 2 3 4 5 6 7
a a c a a b –
0 0 2 0 0 3 0

Opt failure fn!

Search pattern
0 1 2 3 4 5 6
– b a a c a a
07 36 05 04 23 02 01

Opt failure fn from the right
� � � 1 4 –
 Computed GSS

KMP: fail[6]=3, fail@Pr [::aab], resume@ Pr [aac]
BM: fail@P[6� 3 + 1 = 4](caa), resume@ P[6� 6 + 11](baa), gss[4]=1
KMP: fail[3]=2, fail@Pr [::ac], resume@ Pr [aa]
BM: fail@P[6� 2 + 1 = 5](aa), resume@ P[6� 3 + 1 = 4](ca), gss[5]=4

KMP: fail[1]=fail[2]=fail[4]=fail[5]=0
BM: unfilled cells are marked with ‘–’ indicating start over
Here, KMP does not help for P[M], but BCS can, eg R6(c) = 4
On mismatch on c at P[{], can use max(GSS[{];R{(c))

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 23 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm GSS computation

GSS computation
Example (P has the form: � � b � � �
 � a � �, mismatch at a � �)

Reversed search pattern
1 2 3 4 5 6 7
a a c a a b –
0 0 2 0 0 3 0

Opt failure fn!

Search pattern
0 1 2 3 4 5 6
– b a a c a a
07 36 05 04 23 02 01

Opt failure fn from the right
� � � 1 4 –
 Computed GSS

KMP: fail[6]=3, fail@Pr [::aab], resume@ Pr [aac]
BM: fail@P[6� 3 + 1 = 4](caa), resume@ P[6� 6 + 11](baa), gss[4]=1
KMP: fail[3]=2, fail@Pr [::ac], resume@ Pr [aa]
BM: fail@P[6� 2 + 1 = 5](aa), resume@ P[6� 3 + 1 = 4](ca), gss[5]=4
KMP: fail[1]=fail[2]=fail[4]=fail[5]=0
BM: unfilled cells are marked with ‘–’ indicating start over

Here, KMP does not help for P[M], but BCS can, eg R6(c) = 4
On mismatch on c at P[{], can use max(GSS[{];R{(c))

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 23 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm GSS computation

GSS computation
Example (P has the form: � � b � � �
 � a � �, mismatch at a � �)

Reversed search pattern
1 2 3 4 5 6 7
a a c a a b –
0 0 2 0 0 3 0

Opt failure fn!

Search pattern
0 1 2 3 4 5 6
– b a a c a a
07 36 05 04 23 02 01

Opt failure fn from the right
� � � 1 4 –
 Computed GSS

KMP: fail[6]=3, fail@Pr [::aab], resume@ Pr [aac]
BM: fail@P[6� 3 + 1 = 4](caa), resume@ P[6� 6 + 11](baa), gss[4]=1
KMP: fail[3]=2, fail@Pr [::ac], resume@ Pr [aa]
BM: fail@P[6� 2 + 1 = 5](aa), resume@ P[6� 3 + 1 = 4](ca), gss[5]=4
KMP: fail[1]=fail[2]=fail[4]=fail[5]=0
BM: unfilled cells are marked with ‘–’ indicating start over
Here, KMP does not help for P[M], but BCS can, eg R6(c) = 4
On mismatch on c at P[{], can use max(GSS[{];R{(c))

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 23 / 24

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Boyer-Moore algorithm GSS computation

GSS computation (contd.)
Example (P also has the form: (longest �) � �
 � �, mismatch at a � �)

Reversed search pattern
1 2 3 4 5 6 7 8 9 10 11
l f o s r l f o l f –
0 1 1 1 1 0 1 1 4 1 3

Optimised failure function!

fail[9]=4, so gss[7]=2 (as
for earlier form of P)
fail[2,3,4,5,7,8,10]=1,

) gss[11-1]=gss[10]=
max f9;8;7;6;4;3;1g = 9

Search pattern (M = 10)
0 1 2 3 4 5 6 7 8 9 10
– f l o f l r s o f l

311 110 49 18 17 06 15 14 13 12 01

Optimised failure function from the right
-7 -6 -5 -4 -3 -2 2 0 – 9

 Computed GSS

fail[M + 1]=3, so
gss[8]=0
gss[1,2,3,4,5,6]=?

Note the prospect of matching “fl” at the head of P, indicated by gss[8]=0
gss[6]=-2, gss[5]=-3, gss[4]=-4, gss[3]=-5, gss[2]=-6, gss[1]=-7
For { < max f|jP[|] = 0g ^ (fail[{] = 0 _ fail[{] = 1);gss[{] = {� |

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 24 / 24

	String searching
	String search
	Brute force approach

	Karp-Rabin fingerprint algorithm
	String matching using hashing
	Efficient hash computation

	Knuth-Morris-Pratt algorithm
	Optimised pattern matching with KMP
	KMP algorithm
	KMP failure function computation
	KMP failure function algorithm
	Overall complexity of KMP
	Optimised failure function computation

	Boyer-Moore algorithm
	Key aspects
	Bad character shift rule
	Good suffix shift rule
	GSS computation

	resultado2:
	hours: 20
	minutes: 08
	seconds: 27
	cronohours: 00
	cronominutes: 00
	crseconds: 03
	day: 15
	month: 12
	year: 2022
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00

