]
Contents

e Knuth-Morris-Pratt algorithm

0 String searching 0 Boyer-Moore algorithm

9 Karp-Rabin fingerprint
algorithm

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 1/24

Section outline

@ String search

@ Brute force approach
o String searching

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 2/24

String search
String search

Given a pattern string p, find first match in text ¢
N: # characters in text

Length of pattern is small compared to the length of the text (N > M)

°

°

@ M: # characters in pattern

°

@ Pattern can be pre-preprocessed
°

Text cannot be pre-processed

Example
Search Text, N = 21
nfnlefe|n]l]e[d]e|[n]e]e[n]ele|[d]Il]e][n]I]d
Search Pattern, M = 6
njfel|e|d|l]|e

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 3/24

Brute force approach
Brute force approach

@ Check for pattern starting at every text position
@ Running time depends on pattern and text
@ Worst case: MN comparisons, in practice almost linear

@ Slow if M and N are large, and have lots of repetition

Example (Worst case of brute force approach)

Search Pattern
aJaJafJaJa]b

Search Text

a a a a a
a a a a a
a a a a

a a a

a a

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017

4/24

Section outline

@ String matching using
hashing

© Karp-Rabin fingerprint e Efficient hash computation

algorithm

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 5/24

String matching using hashing
String matching using hashing

Example
Search pattern o a7
5[9[2]6]5 59265 % 97 = 95
Search Text
3[1]4]1]5]9]2]6[5]3[5[8]9[7]|3[3]4]6
31|14 (1]|5 31415 % 97 = 84
11411[5]9 14159 % 97 = 94
411|592 41592 % 97 =76
1]5[9]2]6] 15926 % 97 = 18

@ Match not possible unless computed hash of text substring under
consideration matches hash of search string

@ In case of match, actual comparison is needed to confirm match @

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 6/24

Efficiont hash computation
Efficient hash computation

Example
@ Pre-compute: 10000 % 97 =9
First hash: 31415 % 97 = 84

o

o ...
@ Previous hash: 41592 % 97 = 76
)

Efficient next hash computation

of 15926 (% 97):

= (41592 — (4 x 10000)) x 10 + 6
=(76 —(4x9)) x10+6

=406

=18

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 7124

Efficiont hash computation
Efficient hash computation

@ Choose modulus to be a

Example large prime (q)

@ Each window of M expected

SNCCcompHIcAI0000R oA to be uniformly distributed in

@ First hash: 31415 % 97 = 84 [0,9—1]

o ... @ Expected running time is

@ Previous hash: 41592 % 97 = 76 o (N +M (%(N - M)))

@ Efficient next hash computation @ Worst case: O(MN) —when?

of 15926 (% 97):

= (41592 — (4 x 10000)) x 10 + 6
=(76 —(4x9)) x10+6

=406

=18

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 7124

Karp-Rabin fingerprint algorithm Efficient hash computation

Efficient hash computation

Example

Pre-compute: 10000 % 97 =9
First hash: 31415 % 97 = 84

Previous hash: 41592 % 97 = 76

Efficient next hash computation
of 15926 (% 97):

- (41592 — (4 x 10000)) x 10 + 6

(76 — (4 x9)) x 10 + 6
= 406
- 18

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

@ Choose modulus to be a

large prime (q)

Each window of M expected
to be uniformly distributed in

[07 q- 1]
Expected running time is
0 (N+ M(%(N— M)))

@ Worst case: ©(MN) —when?

@ Possible if the computed

hash matches every time and
confirmational matching is
needed

Published in 1987 as Efficient
randomized paz‘tern-matchir@
algorithms

March 31, 2017 7/24

Section outline

computation
@ KMP failure function

e Knuth-Morris-Pratt algorithm algorithm
@ Optimised pattern matching @ Overall complexity of KMP
with KMP @ Optimised failure function
@ KMP algorithm computation

@ KMP failure function

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 8/24

Knuth-Morris-Pratt algorithm Optimi:

d pattern r

hing with KMP

Optimised pattern matching with KMP

Example

Search text

Search pattern

alalclalafafa]b]c]afa]b

1]/2[3[4|5]|6
alalc|lal|alb

@ Suppose aacaa is received; current state will be 6 and b will be expected

@ If bis not received, the pattern will have to be moved forward

@ Instead of moving forward by one position (brute force approach), better to align the prefix

aa with the suffix aa at the point of failure — amounts to resuming comparison at state 3

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

March 31, 2017

9/24

Knuth-Morris-Pratt algorithm Optimi:

d pattern r

hing with KMP

Optimised pattern matching with KMP

Example

Search text

Search pattern

alalclalafafa]b]c]afa]b

1|2

3

4

5

a a

c

a

a

@ Suppose aacaa is received; current state will be 6 and b will be expected

@ If bis not received, the pattern will have to be moved forward

@ Instead of moving forward by one position (brute force approach), better to align the prefix
aa with the suffix aa at the point of failure — amounts to resuming comparison at state 3

@ We want the longest prefix (aa) that is a suffix at the point of failure (state 6)

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

March 31, 2017

9/24

Optimised pattern matohing with KM
Optimised pattern matching with KMP

Example

Search text
alalclalafafa]b]c]afa]b

Search pattern
1|2 |3|4]|5]|6
alalc|a|a|b

@ Suppose aacaa is received; current state will be 6 and b will be expected

If b is not received, the pattern will have to be moved forward

@ Instead of moving forward by one position (brute force approach), better to align the prefix
aa with the suffix aa at the point of failure — amounts to resuming comparison at state 3

@ We want the longest prefix (aa) that is a suffix at the point of failure (state 6)

@ Similarly, if after receiving aaca another a is not received; failure is at state 5; comparison
may be resumed from state 2

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 9/24

Knuth-Morris-Pratt algorithm Optimi:

d pattern r

hing with KMP

Optimised pattern matching with KMP

Example

Search text

Search pattern

alalclalafafa]b]c]afa]b

1|2

3

4

5

a a

c

a

a

@ Suppose aacaa is received; current state will be 6 and b will be expected

@ Instead of moving forward by one position (brute force approach), better to align the prefix
aa with the suffix aa at the point of failure — amounts to resuming comparison at state 3

If b is not received, the pattern will have to be moved forward

@ We want the longest prefix (aa) that is a suffix at the point of failure (state 6)

@ Similarly, if after receiving aaca another a is not received; failure is at state 5; comparison

may be resumed from state 2

@ Failure transitions are meant to step back in the pattern string, staying at the same place

implies co-loop, so on failure at state 3 (on —c), matching is resumed at state 2

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

March 31, 2017

9/24

Optimised pattern matohing with KM
Optimised pattern matching with KMP

Example

Search text
alalclalafafa]b]c]afa]b

Search pattern
112|345
alalc|a|a
0|1 2 |1 2|3

Failure function

T|o

@ Suppose aacaa is received; current state will be 6 and b will be expected

If b is not received, the pattern will have to be moved forward

@ Instead of moving forward by one position (brute force approach), better to align the prefix
aa with the suffix aa at the point of failure — amounts to resuming comparison at state 3

@ We want the longest prefix (aa) that is a suffix at the point of failure (state 6)

@ Similarly, if after receiving aaca another a is not received; failure is at state 5; comparison
may be resumed from state 2

@ Failure transitions are meant to step back in the pattern string, staying at the same place
implies co-loop, so on failure at state 3 (on —c), matching is resumed at state 2

@ The point of resumption for failure at a certain point is the failure function

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 9/24

Knuth-Morris-Pratt algorithm KMP algorithm

KMP algorithm

Example

Search pattern

Search text

alajclalafafa|b]cfafa]b

1 2 | 3| 4 6
ala|c|a b
0 1 2 1 &)

Failure function

Use knowledge of search pattern
Build automaton from pattern
Run automaton on text

On failure, go back to the longest

proper prefix that is a suffix at the
point of the last match — to avoid
looping (at state 3, for example)

Chittaranjan Mandal (lIT Kharagpur)

Algorithms March 31, 2017

@

10/24

LT
KMP algorithm

Example

Search text

Search pattern

213|4]|5

alajclalafafa|b]cfafa]b

Tl

Use knowledge of search pattern

a a C a a
O|1 21|23
Failure function
)
@ Build automaton from pattern
@ Run automaton on text
()

Chittaranjan Mandal (lIT Kharagpur)

On failure, go back to the longest
proper prefix that is a suffix at the
point of the last match — to avoid
looping (at state 3, for example)

@ 1/ startof P
@ fori«11to N// span through T

o
o
o

o

while j > 0 and T[i]#P[j]
j«fail[j] // fail while no match

if j=M return i—M+1

// terminate (success)

j«<—j+1 // move forward in pattern

@ return NoMatch terminate (failure)

Algorithms

March 31, 2017 10/24

Knuth-Morris-Pratt algorithm KMP failure function computation

KMP failure function computation

Base case fail[1]=0 — need to start over again v’
@ Need to compute fail[:], assuming fail[y], 7 < » are available

Inductive cases, starting with kK = 1 (when o/ =¢)

° failk[z — 1] indicates the longest proper prefix (say «) that is a suffix

atP[1 —1]; a = cif fail"[, — 1] = 0

Exit case where fail“[. — 1] = 0 No prefix, so resume matching

at the beginning, faills] =1 v/

Case P[. — 1] = PJ[fail*[s — 1

(0]

a

?

1l

a

fail*[s — 1]

72— 1

7

@ Thus, a - P[: — 1] is the longest proper prefix that is also a
suffix at P[s], so fail[¢] = fail[s — 1] + 1 v/

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

@

March 31, 2017 11/24

Knuth-Morris-Pratt algorithm KMP failure function computation

KMP failure function computation (contd.)

Inductive cases, starting with kK = 1 (when o' = ¢, contd.)
e fail"[s — 1] indicates the longest proper prefix (say «) that is a suffix

atP[—1];a = eif fail"[, — 1] = 0

Case P[. — 1] # P[fail*[s — 1]]
a b . d |« a
fail"[s — 1] =1 |

@ Now, a-P[i — 1lis not an admissible suffix at P[], as

P[: — 1] # P[fail
e But, fail[fail“[s — 1]] = fail**'[s — 1] indicates the longest

[+ = 1]]

proper prefix (say f) that is a suffix at P[fail[s — 1]]
B a? ?21...| B b . d |« a
fail" [, — 1] fail"[1 — 1] 11|

@ Now, 3 is the longest proper prefix of P and also a suffix of «
@ Thus, if P[fail"+1 [t —1]] =P[i — 1], - P[z — 1] is the longest

proper prefix at P[z], so fail[:] = fail** [— 1] +1 v

@ Continue induction with k < k+1 ()

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

March 31, 2017

@

12/24

KMP failure function computation
KMP failure function computation example

Example (Some steps of failure function computation for “aacaab”)

@ Consider failure at P[:] (say, P[6]=b)

@ We would like to identify the longest proper prefix that is a suffix at P[]

@ The longest proper prefix that is a suffix at P[: — 1] is denoted by fail[z — 1]
@ So, if P[z — 1]=P[fail[z — 1]], then fail[:]=fail[s — 1]+1

@ P[5]=a; PI[fail[5]]=P[2]=a; so fail[6]=fail[5]+1=2+1=3

V.
Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 13/24

KMP failure function computation
KMP failure function computation example

Example (Some steps of failure function computation for “aacaab”)

1\(/21\2/51\3

Consider failure at P[:] (say, P[6]=b)

We would like to identify the longest proper prefix that is a suffix at P[z]
The longest proper prefix that is a suffix at P[» — 1] is denoted by fail[z — 1]
So, if P[z — 1]=P[fail[z — 1]], then fail[:]=fail[s — 1]+1

P[5]=a; P[fail[5]]=P[2]=a; so fail[6]=fail[5]+1=2+1=3

If P[z» — 1]#P([fail[z — 1]], then continue checking from

P[fail[fail[» — 1]]]=PJfail?[z — 1]], and so on, but stopping at P[1]

While computing fail[4], we find P[3]=c and PI[fail[3](=2)]=a;
P[3]#P[fail[3](=2)], so go further back to fail’[3]=1 and stop there

(at P[1]=a) |
Algorithms March 31, 2017 13/ 24

KMP failure function algorithm
KMP failure function computation algorithm

KMPCompFail(P[1..M])

Q j«o0
Q fori1toM// span

through M!

Q fail[i]«j

// next prepare for

fail[i+1]

© while (j>0 and
Pi]#P(i]) do

Q j«—fail[j]

Q@ done

Q i+

Chittaranjan Mandal (lIT Kharagpur)

Example (FF for “aacaab’)

o

Search pattern

? 112 3 |4|5| 6

P |aja| c |a|a| b

faill) o1 2 |[1]2] 8

c

Pl | — | a 2 ala| a

a

] 2

B == o [~|-| 1

0

77 1121 1 |2]|3] 1
Algorithms March 31, 2017 14/24

KMP failure function algorithm
KMP failure function algorithm (contd.)

KMPCompFail(P[1..M]) Example (FF for “aacaab”)
Q <0 Search pattern
Q fori«1to M// span through M! . 1[213[4[5] 6 [7]8
Q faillil+] Pl [clald|clal] ¢ [a]d
// next prepare for fail[i+1] fail[J JO|1 1|12 3 |2]|3
(4 while (10 and Plil£P(l do [pr [[oo ¢ |4 d |,
Q j«fail[j] c
g done 5 |=|0]0]=]- 1 _ | =
jj+1
O endfor 717 11111123 2 34

p

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 15/24

il iy L
Complexity of computing fail[:] and running KMP
KMPCompFail(P[1..M])

Q j«o0
Q forie1to M/ span through ! @ In L5 is decreased by at least 1

while (j>0 and P[i]#£P[j])

Q faillil«j
()

Q j«fail[j]
Q@ done

Q i+t

Q endfor

Example (FF for “aacaab”)

T —

Search pattern

12|34 |5|6
alaljclalal|b
o|1(2(1]2]|3

Failure function

Chittaranjan Mandal (lIT Kharagpur)

@ Note that fail[j]<]

@ Overall j can go back in L5 only as
much as it has progressed in L7

@ L7 is executed M times

@ Complexity of KMPCompFail is
O(M) (from 2M))

@

Algorithms March 31, 2017 16/24

il iy L
Complexity of computing fail[:] and running KMP
KMPCompFail(P[1..M])

Q <0

@ fori«1to M// span through M!

o
o
o
o

o

fail[i]

while (j>0 and P[i]#£P[j])

j«fail[j]

done
j—j+1

Q endfor
Example (FF for “aacaab”)

T —

Search pattern

12|34 |5|6
alaljclalal|b
o|1(2(1]2]|3

Failure function

Chittaranjan Mandal (lIT Kharagpur)

Note that fail[j]<]

In L5 j is decreased by at least 1
Overall j can go back in L5 only as
much as it has progressed in L7

@ L7 is executed M times

Complexity of KMPCompkFail is
O(M) (from 2M))

Using similar reasoning
complexity of the KMP algorithm
is O(N) (from 2N)

Overall complexity is O(M + N)
Publication: Fast pattern matching
in strings, D E Knuth, J H Morris,
V R Pratt, SIAM JoC, v6, n2, June
1997

Algorithms March 31, 2017 16 /24

Optimised failure function computation
Optimised failure function computation

KMPOptFail(P[1..M], fail[1..M])

@ Consider the failure at P[5]=a;

fail[5]=2
@ But P[2]=a, so after failing to °
match a at P[5], failure is (s]

guaranteed at P[2]

@ This definite failure could be
remedied by going all the way
back to fail®[5]=0

@ Function KMPOptFail does the
required post-processisng —
employing dynamic programming

@ fori+2to M // bottom-up DP
if P[i]=P[fail[i] // definite failure
fail[i]«tail[fail[i]] // fail all
© endfor // way back via DP
Example (Opt FF for “aacaab”)

Search pattern

1/2[3[4|5]|6
alalclalalb
o/0|2|0|0]|3

Optimised failure fn

V.

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

March 31, 2017

17/24

Section outline

@ Bad character shift rule
@ Good suffix shift rule

0 Boyer-Moore algorithm @ GSS computation
@ Key aspects

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 18/24

Key aspects
Key aspects

The Boyer-Moore algorithm is based on three ideas:
@ Scanning the pattern pat from right to left: P[M], P[M — 1], ...

@ The “bad character shift rule”: skips over parts of pattern where
there is no possibility of matching the current character in the text

@ The “good suffix shift rule”: aligns only matching pattern
characters against target characters already successfully matched

@ These rules work independently, but are more effective together

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 19/24

Bad character shift rule
Bad character shift rule

Example (Skipping over bad characters)

Text string
D|o njulrf[tjufr]e] [t][h]e] [flufJtJu]fr]e
flul|t|lu]|r]|e
Search pattern (r#e)
WV
Algorithms March 31, 2017 20/24

Bad character shift rule
Bad character shift rule

Example (Skipping over bad characters)

Text string
Do nfufrftfu]rJe] Jt]hJe] [fluJtJuJfrJe
f ultjulf|ri]e
Search pattern (r#e)
Text string
D[o nJulr[tJufr]Je] Jt]hJe] [fJuJtJuJrJe
fluf[t|lulr]|e
Search pattern (i#¢e)

Chittaranjan Mandal (lIT Kharagpur) Algorithms

March 31, 2017

4
20/24

Bad character shift rule
Bad character shift rule

Example (Skipping over bad characters)

Text string
Do nfufrJtfu]rJe] Jt]hJe] [flJufJtJuJrJe
fluft|fu]|r]|e
Search pattern (r#e)
Text string
D[o nJulr[tJufr]Je] Jt]hJe] [fJuJtJuJrJe
fluf[t|lulr]|e
Search pattern (i#4€e)
Text string
Do [nfJufJrJtfuJrJe] Jt]hJe] JfJuJtJu]rTJe

flu|t|lul|r|e
Search pattern (r#u)

WV
Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 20/24

Boyer-Moore algorithm Bad character shift rule

Bad character shift rule

Example (Skipping over bad characters)

Search pattern (e#t)

Text string
D[o nfufrJtfu]rJe] Jt]hJe] [flJufJtJuJrJe
flul|t|lu]|r]|e
Search pattern (r#e)
Text string
D[o nJulr[tJufr]Je] Jt]hJe] [fJuJtJuJrJe
flul|t|ulr]e
Search pattern (i#4€e)
Text string
Do [nfJufJrJtfuJrJe] Jt]hJe] JfJuJtJu]rTJe
flu|t|lul|r|e
Search pattern (r#u)
Text string
D[o] [nJuJrftJu]r]Je t[hle] [fJuJtJuJrJe
flul[t|lul|r]|e

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

March 31, 2017

20/24

Bad character shift rule
Bad character shift rule

Example (Skipping over bad characters)

Text string
Do nfufrJtfu]rJe] Jt]hJe] [flJufJtJuJrJe
fluft|fu]|r]|e
Search pattern (r#e)
Text string
D[o nJulr[tJufr]Je] Jt]hJe] [fJuJtJuJrJe
fluf[t|lulr]|e
Search pattern (i#4€e)
Text string
Do [nfJufJrJtfuJrJe] Jt]hJe] JfJuJtJu]rTJe

flu|t|lul|r|e
Search pattern (r#u)
Text string
D[o] [nJuJrftJu]r]Je t[hle] [fJuJtJuJrJe
flul[t|lul|r]|e
Search pattern (e#t)
Text string
D[o] [nJuJrftJu]rTJe t[h]e fluJtJufrJe
flu|t|lu|r|e
Search pattern (' '£e)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 20/24

Bad character shift rule
Bad character shift rule (contd)

@ If the current character ¢ of the text T does not match the
corresponding character in the pattern, jump to the right most
occurrence of ¢ in P without shifting backwards

@ If c does not occur ahead in P, just slide P all the way back

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 21/24

Bad character shift rule
Bad character shift rule (contd)

@ If the current character ¢ of the text T does not match the
corresponding character in the pattern, jump to the right most
occurrence of ¢ in P without shifting backwards

@ If c does not occur ahead in P, just slide P all the way back

Definition (R,(x))

R,(x) is the position of the rightmost occurrence of character x before
position 2

@

March 31, 2017 21/24

Chittaranjan Mandal (lIT Kharagpur) Algorithms

Bad character shift rule
Bad character shift rule (contd)

@ If the current character ¢ of the text T does not match the
corresponding character in the pattern, jump to the right most
occurrence of ¢ in P without shifting backwards

@ If c does not occur ahead in P, just slide P all the way back

Definition (R,(x))

R,(x) is the position of the rightmost occurrence of character x before
position 2

_Jo it Ay <Pl =c
o Veel, fifc) = { max {j < ¢|P[j] = ¢} otherwise
@ R,(c)is computed in O(|X| + M) time
@ When a mismatch occurs at pattern position z in P, shift by
+ — R,(T[k]) characters so that the next occurrence of T[k] in P is
underneath position kin T
@ Best case time complexity for BCS is O(N/M) — sublinear! @
@ R,(x) may be realised as R[1i, x], but inefficient

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 21/24

Good suffix shift rule
Good suffix shift rule

Example (Comparing shifts by BCS and GSS for r # uy)

Search pattern (r£u)

Text string
Do [nJufrJtfu]fr]e [t]h]le] [fJuJtJulr]e
flu|t|lul|r]|e

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

March 31, 2017

@

22/24

Boyer-Moore algorithm Good suffix shift rule

Good suffix shift rule

Example (Comparing shifts by BCS and GSS for r # uy)

Text string
Do [nJuJrJtJu]rTJe [t[h]Je] JfJuJtJuJfrJe
flul[tjul|ri|e
Search pattern (r#u)
Text string
Dlo] [nJuJfrJtJufr]e t[hfe] [fluftJulrJe
flultjul|r]|e
Search pattern (BCS)
Text string
Do [nJuJrJtJu]rTJe t[hle fluJtJufr]Je
flul|t]|u e
Search pattern (GSS)

o lets=P[i.M=Thi+y.9+MandP: — 1] #T[i+j— 1]
@ The GSS rule aligns the substring s with its rightmost occurrence
in P (but not as a suffix) that is preceded by a character different

from P[i — 1]

@ Similar to the optimised KMP failure function from the right end

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

March 31, 2017

@

22/24

Boyer-Moore algorithm GSS computation

GSS computation

Example (P has the form: § - b-a - v a- a, mismatch at a- «)

Search pattern

Reversed search pattern 0|12 |3|4|5 /|6
112|345/ 6|7||-|b|jalal|c|al|a
alalclalal|b|- 07 36 05 04 | 235 | 02 | Of
0/|]0|2|010|3]|0 Opt failure fn from the right
Opt failure fn — -] -]-J]1T147]-

+ Computed GSS

@ KMP: fail[6]=3, fail@P’[..aab], resume@ P’[aac]
@ BM: fail@P[6 — 3 + 1 = 4](caa), resume@ P[6 — 6 + 11](baa), gss[4]=1

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017 23/24

GSS computation
GSS computation

Example (P has the form: § - b-a - v a- a, mismatch at a- «)

Search pattern
Reversed search pattern 0|12 |3|4|5 /|6
112|345/ 6|7||-|b|jalal|c|al|a
alalclalal|b|- 07 36 05 04 | 235 | 02 | Of
0/|]0|2|010|3]|0 Opt failure fn from the right
Opt failure fn — -] -]-J]1T147]-

+ Computed GSS

@ KMP: fail[6]=3, fail@P’[..aab], resume@ P’[aac]

@ BM: fail@P[6 — 3 + 1 = 4](caa), resume@ P[6 — 6 + 11](baa), gss[4]=1
@ KMP: fail[3]=2, fail@P’[..ac], resume@ P'[aa]

@ BM: fail@P[6 — 2 + 1 = 5](aa), resume@ P[6 — 3 + 1 = 4](ca), gss[5]=4

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 31, 2017

23/24

Boyer-Moore algorithm GSS computation

GSS computation

Example (P has the form: § - b-a - v a- a, mismatch at a- «)

Search pattern

Reversed search pattern

0| 1|2 |3|4|5)6

1123|456 |7 b|la|a|c|a]|a
alalclalal|b|- 07 36 05 04 | 235 | 02 | Of
0/|]0|2|010|3]|0 Opt failure fn from the right

Opt failure fn —

[- [-1 -[1]4]-

+ Computed GSS

KMP: fail[6]=3, fail@P’[..aab], resume@ P’'[aac]
BM: fail@P[6 — 3 + 1 = 4](caa), resume@ P[6 — 6 + 11](baa), gss[4]=1

KMP: fail[3]=2, fail@P’|..ac], resume@ P'[aq]
BM: fail@P[6 — 2 + 1 = 5](aa), resume@ P[6 — 3 + 1 = 4](ca), gss[5]=4

KMP: fail[1]=fail[2]=fail[4]=fail[5]=0
BM: unfilled cells are marked with ‘=" indicating start over

Chittaranjan Mandal (lIT Kharagpur)

Algorithms March 31, 2017

23/24

Boyer-Moore algorithm GSS computation

GSS computation

Example (P has the form: § - b-a - v a- a, mismatch at a- «)

Search pattern

Reversed search pattern 0|12 |3|4|5 /|6
112|345/ 6|7||-|b|jalal|c|al|a
alalclalal|b|- 07 36 05 04 | 23 | 0o | O
0/|]0|2|010|3]|0 Opt failure fn from the right

Opt failure fn —

[- [-1 -[1]4]-

+ Computed GSS

KMP: fail[6]=3, fail@P’[..aab], resume@ P’'[aac]
BM: fail@P[6 — 3 + 1 = 4](caa), resume@ P[6 — 6 + 11](baa), gss[4]=1

KMP: fail[3]=2, fail@P’|..ac], resume@ P'[aq]
BM: fail@P[6 — 2 + 1 = 5](aa), resume@ P[6 — 3 + 1 = 4](ca), gss[5]=4

KMP: fail[1]=fail[2]=fail[4]=fail[5]=0
BM: unfilled cells are marked with ‘= indicating start over

Here, KMP does not help for P[M], but BCS can, eg Rs(c) = 4
On mismatch on c at P[], can use max(GSSJ[:], R.(c))

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

March 31, 2017

23/24

GSS computation
GSS computation (contd.)

Example (P also has the form: (longest) 5 - v - 5, mismatch at a - «)
@ fail[9]=4, so gss[7]=2 (as

for earlier form of P)
@ fail[2,3,4,5,7,8,10]=1,

.. gss[11-1]=gss[10]=
max{9,8,7,6,4,3,1} =9

Reversed search pattern
11234 |5|6|7|8|9]10] 11
I | flo|s|r |l |f|o]l f -
O(1 (1|1 101|141 3
Optimised failure function —
Search pattern (M = 10)
0 1 2,/ 3|4 |5 |6 |7 |8]9]10
- f I o] f I r s | o f I
311 | 110 |40 |18 |17 | 0 | 15 | 14 | 15 | 12| Oy
Optimised failure function from the right
| 7[6]5]4[383[2[]2]0]-]9
+ Computed GSS

@ Note the prospect of matching “fI” at the head of P, indicated by gss[8]=0
@ gss[6]=-2, gss[5]=-3, gss[4]=-4, gss[3]=-5, gss[2]=-6, gss[1]=-7
@ For: < max{y|P[y] = 0} A (fail[s] = 0 V fail[s] = 1),gss[¢] = —

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

@ fail[M + 1]=3, so
gss[8]=0
@ gss[1,2,3,4,5,6]="7

March 31, 2017 24 /24

	String searching
	String search
	Brute force approach

	Karp-Rabin fingerprint algorithm
	String matching using hashing
	Efficient hash computation

	Knuth-Morris-Pratt algorithm
	Optimised pattern matching with KMP
	KMP algorithm
	KMP failure function computation
	KMP failure function algorithm
	Overall complexity of KMP
	Optimised failure function computation

	Boyer-Moore algorithm
	Key aspects
	Bad character shift rule
	Good suffix shift rule
	GSS computation

	resultado2:
	hours: 20
	minutes: 08
	seconds: 27
	cronohours: 00
	cronominutes: 00
	crseconds: 03
	day: 15
	month: 12
	year: 2022
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00

