Contents

1/15

э

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

August 19, 2021

Finding the k-th ranked element

- Finding the k-th ranked element in an unsorted array is called the selection problem
- Simplest approach is to sort the elements and then picking the k-th element
- Takes $\Theta(n \lg n)$ time can we do better?
- We could leverage the partition procedure of guicksort

2/15

э

Section outline

- Using partition of quickSort
 - quickSelect
- Analysis of quickSelect

Algorithm to find the *k*-th ranked of *n* elements

- Choose a pivot, use partition to place it correctly at p (say)
- 3 If the pivot is in the right place (at p = k), then done

Algorithm to find the *k*-th ranked of *n* elements

- Choose a pivot, use partition to place it correctly at p (say)
- 2 If the pivot is in the right place (at p = k), then done
- 3 If k > p, find (k p)-th ranked in the (n k) larger elements

Algorithm to find the k-th ranked of n elements

- Choose a pivot, use partition to place it correctly at p (say)
- 2 If the pivot is in the right place (at p = k), then done
- 3 If k > p, find (k p)-th ranked in the (n k) larger elements
 - **9** Find the *k*-th ranked among the p-1 smaller elements

4/15

イロト イポト イラト イラト

Algorithm to find the k-th ranked of n elements

- Choose a pivot, use partition to place it correctly at p (say)
- 2 If the pivot is in the right place (at p = k), then done
- 3 If k > p, find (k p)-th ranked in the (n k) larger elements
- Find the k-th ranked among the p 1 smaller elements

Example (5th of 17,12,6,23,19,8,5,10)

```
6, 8, 5, 10 17, 12, 23, 19 – 1<sup>st</sup> of
17, 12, 19, 23 – 1<sup>st</sup> of
12, 17 – done
```


3

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Analysis of quickSelect

Worst case analysis

- Worst case running time: $O(n^2)$
- Happens when all pivots at an end in each round
- \mathcal{E}_I event of pivot at any end when working with *I* elements
- $\Pr[\mathcal{E}_{I}] = \frac{2}{I}$, if I > 1; $\Pr[\mathcal{E}_{1}] = 1$
- Probabilility for worst case (assuming events are independent): $\prod_{l=2}^{n} \Pr[\mathcal{E}_{l}] = \prod_{l=2}^{n} \frac{2}{l} = \frac{2^{n-1}}{n!} \approx \frac{2^{n-1}}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}} = \frac{1}{\sqrt{8\pi n} \left(\frac{n}{2e}\right)^{n}}$

- rapidly decreases as n increases

() <) <)
 () <)
 () <)
</p>

145

Analysis of quickSelect

Worst case analysis

- Worst case running time: $O(n^2)$
- Happens when all pivots at an end in each round
- \mathcal{E}_{I} event of pivot at any end when working with *I* elements

•
$$\Pr[\mathcal{E}_{I}] = \frac{2}{7}$$
, if $I > 1$; $\Pr[\mathcal{E}_{1}] = 1$

• Probabilility for worst case (assuming events are independent): $\prod_{l=2}^{n} \Pr[\mathcal{E}_{l}] = \prod_{l=2}^{n} \frac{2}{l} = \frac{2^{n-1}}{n!} \approx \frac{2^{n-1}}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}} = \frac{1}{\sqrt{8\pi n} \left(\frac{n}{2e}\right)^{n}}$

- rapidly decreases as n increases

• Worst case is so unlikely, can we show that average case performance is better?

< ロ > < 同 > < 回 > < 回 >

145

Optimistic analysis

- Possibility of the worst case situation is quite low $-\left(\frac{2}{7}\right)$
- Suppose that pivot has value is in the middle 50% of all elements
- Then, in the worst case also, 25% of the elements can always be discarded

6/15

Image: A math

Optimistic analysis

- Possibility of the worst case situation is quite low $-\left(\frac{2}{7}\right)$
- Suppose that pivot has value is in the middle 50% of all elements
- Then, in the worst case also, 25% of the elements can always be discarded

•
$$T(n) \leq cn + T\left(\frac{3n}{4}\right); T(0) \leq c$$

• $T(n) \leq cn \sum_{k=0}^{\left\lceil \log_{\frac{4}{3}} n \right\rceil} \left(\frac{3}{4}\right)^{k} = 4cn \left(1 - \frac{3}{4}^{\left\lceil \log_{\frac{4}{3}} n \right\rceil} + 1\right) \in O(n)$

6/15

Image: A math

Pragmatic analysis

- Some rounds discard less than 25% elements
- Group rounds into phases so that 25% discarded after each phase
- Random variable X_k rounds per phase, maximum $\left|\log_{\frac{4}{2}} n\right|$ phases

Pragmatic analysis

- Some rounds discard less than 25% elements
- Group rounds into phases so that 25% discarded after each phase
- Random variable X_k rounds per phase, maximum $\left|\log_{\frac{4}{2}} n\right|$ phases

•
$$\mathsf{E}[T(n)] \leq \mathsf{E}\left[cn\sum_{k=0}^{\left\lceil\log_{\frac{4}{3}}n\right\rceil}X_{k}\left(\frac{3}{4}\right)^{k}\right] = cn\sum_{k=0}^{\left\lceil\log_{\frac{4}{3}}n\right\rceil}\mathsf{E}[X_{k}]\left(\frac{3}{4}\right)^{k}$$

Pragmatic analysis

- Some rounds discard less than 25% elements
- Group rounds into phases so that 25% discarded after each phase
- Random variable X_k rounds per phase, maximum $\left|\log_{\frac{4}{2}} n\right|$ phases

•
$$E[T(n)] \le E\left[cn\sum_{k=0}^{\lfloor \log_{\frac{4}{3}}n \rfloor} X_k \left(\frac{3}{4}\right)^k\right] = cn\sum_{k=0}^{\lfloor \log_{\frac{4}{3}}n \rfloor} E[X_k] \left(\frac{3}{4}\right)^k$$

• $E[X_k] = 2$ (see next), so $E[T(n)] \le 8cn \in O(n)$

Computation of $E[X_k]$

• By definition:
$$E[X_k] = \sum_{i=0}^{\infty} i \Pr[X_k = i]$$

- Event $[X_k = i]$: (i 1) pivots have value outside middle 50%, but *i*-th pivot is within middle 50%
- Assuming uniform and independent distribution of the pivot position, $\Pr[X_k = i] = \frac{1}{2^i}$ • $E[X_k] = \sum_{i=0}^{\infty} i \Pr[X_k = i] \le \sum_{i=0}^{\infty} \frac{i}{2^i} = 2$ NB $\sum_{i=1}^{\infty} ir^{i-1} = \frac{1}{(1-r)^2}, |r| < 1$

< < >> < <</>

3

Section outline

Selection via median of medians

Pivot via median of medians

- Example of selection via median of medians
- Practice problems and developments

9/15

4 3 5

Pivot via median of medians

Pivot deterministically chosen:

Proceed as in quickselect – larger or smaller elements definitely discarded while recursing

10/15

Chittaranjan Mandal (IIT Kharagpur)

< ロ > < 同 > < 回 > < 回 >

Pivot via median of medians

Pivot deterministically chosen:

- Divide into groups of 5
- Por each group, find that median of the group
- Oetermine median of the medians and use as pivot
- Proceed as in quickselect larger or smaller elements definitely discarded while recursing

•
$$3\left(\left\lfloor\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2\right\rfloor\right)+2 > \frac{3n}{10}-6$$
 elements are definitely discarded

• At most
$$n - \frac{3n}{10} + 6 = \frac{7n}{10} + 6$$
 retained

•
$$T(n) \leq O(n) + T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\left\lceil \frac{n}{5} \right\rceil\right)$$

•
$$T(n) \le O(1), n < 140, (why?)$$

- Key observation: $\frac{1}{5} + \frac{7}{10} < 1$
- $T(n) \in O(n)$ but constants are large

Chittaranjan Mandal (IIT Kharagpur)

Example of selection by median of medians I

Finding the 8-th ranked among 34 elements

14	32	23	5	10	60	29	57	2	52	44	27	21	11
24	43	12	17	48	1	58	6	30	63	34	8	55	39
37	25	3	64	19	41								

Finding medians of groups of 5 or smaller

5	10	14	23	32
11	21	24	27	44
6	30	34	58	63
3	19	41	64	

2	29	52	57	60
1	12	17	43	48
8	25	37	39	55

Finding median of medians...

11/15

Chittaranjan Mandal (IIT Kharagpur)

< ロ > < 同 > < 回 > < 回 >

Example of selection by median of medians II

Finding the 4-th ranked among 7 elements							
14 52 24 17 34 37 19							
Finding medians of groups of 5 or smaller							
14 17 24 34 52 19 37							
Finding median of medians							
19 24							
Position of modian of modians (10) is 2 among 7 alements, required							

Position of median of medians (19) is 3 among 7 elements, required rank is 4... lower than required rank, find 1-th ranked among 4 elements, by way of problem decomposition...

э

2

3

6

8

17

Example of selection by median of medians III

Position of median of medians (24) is 15 among 34 elements, required rank is 8... higher than required rank, find the 8-th ranked among 14 elements, by way of problem decomposition...

Finding the 8-th ranked among 14 elements

5	10	14	23	19	2	3	8	6	17	11	21	12	1
---	----	----	----	----	---	---	---	---	----	----	----	----	---

Finding medians of groups of 5 or smaller

5	10	14	19	23
1	11	12	21	

Finding median of medians...

Example of selection by median of medians IV

Position of median of medians (11) is 8 among 14 elements, required rank is 8... same as required rank, done!

8-th ranked among the 34 integers is 11

Practice problems and developments

- Work out the recurrence equation for selection using median of medians when:
 - the group size is 3
 - the group size is 7
- In each case workout whether or not the resulting algorithm will be O(n) or not
- The median-of-medians algorithm is by Blum, Floyd, Pratt, Rivest, Tarjan (1973)
- An algorithm that makes 5n + o(n) comparisons is due Schonhage, Pippenger, Paterson (1976).
- Same people, same year, an algorithm that makes 3n + o(n) comparisons, Schonhage, Pippenger, Paterson (1976).
- Much later, an algorithm that makes 2.95n + o(n) comparisons, due to Dor and Zwick (1995).

15/15

(*) * (*) *)

< < >> < <</>