]
Contents

@ Red-Black trees

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 1/13



Section outline

based corrections
@ Correction with colour

@ Red-Black trees change and rotation
@ Definition @ RBT deletion and colour
@ Simple RBT properties correction
@ Maximally skewed RBT @ Practice problems

@ RBT insertion with rotation

@

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 2/13



Definition
Definition

Definition (Red-Black Tree [RBT])

A red-black tree (RBT), developed by Guibas and Sedgewick, 1978, is
a binary search tree that satisfies the following red-black properties:

@ Every node has a color that is either red or black.
@ Every leaf (NULL pointer treated as a leaf node) is black.
@ If a node is red, both children are black.

@ Every path from a given node down to any descendant leaf
contains the same number of black nodes.

@ The root of the tree is black (this property is sometimes dropped).

Definition (Black height [bh]of a node)

The number of black nodes on any path to a leaf (not including the
initial node but including the leaf).

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 3/13



Simple RBT properties
Simple RBT properties

Example (An RBT of bh 2)
B )2

Al E |2

T D)1 G)
cl1 = F |1 H (1

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 4/13



Simple RBT properties
Simple RBT properties

Example (An RBT of bh 2)

Search in RBT
Same as in BST @

<

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 4/13



Red-Black trees Simple RBT properties

Simple RBT properties

Example (An RBT of bh 2)

Search in RBT
Same as in BST

<

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

@ Perfect binary tree of height h
has 21 — 1 nodes

@

March 11, 2017 4/13



Red-Black trees Simple RBT properties

Simple RBT properties

Example (An RBT of bh 2)

Search in RBT
Same as in BST

<

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

@ Perfect binary tree of height h
has 21 — 1 nodes

@ Corresponds to the minimum
number of nodes in a RBT of
bh (h+ 1) — having only black
nodes

@

March 11, 2017 4/13



Red-Black trees Simple RBT properties

Simple RBT properties

Example (An RBT of bh 2)

Search in RBT
Same as in BST

<

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

Perfect binary tree of height h
has 21 — 1 nodes

Corresponds to the minimum
number of nodes in a RBT of
bh (h+ 1) — having only black
nodes

Tree can be inflated without
altering its bh, inserting red
nodes between adjacent black
nodes

Height of inflated tree is

2h+ 1, maximum number of
nodes in a RBT of bh his
22(h+1) _ 1 @

March 11, 2017 4/13



LTl e
Maximally skewed RBT

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 5/13



Ll Ly L
Maximally skewed RBT

H |1 T @ Let the RBT rooted at T have bh of b

= = @ L-ST of T is a RBT of bh b — 1 without
any red nodes — a perfect binary tree of
height b — 2 having 2, 1 — 1 nodes

AX P, E |2 @ R-Child of T is a red node with:

=2 @ L-ST as a RBT of bh b — 1 without
D)1 G)? any red nodes
== = o R-ST as a maximally skewed RBT
H[1 ofbh b — 1

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 5/13



Ll Ly L
Maximally skewed RBT

H |1 T @ Let the RBT rooted at T have bh of b

= = @ L-ST of T is a RBT of bh b — 1 without
any red nodes — a perfect binary tree of
height b — 2 having 2, 1 — 1 nodes

AX P, E |2 @ R-Child of T is a red node with:

==L @ L-ST as a RBT of bh b — 1 without
D )T G)! any red nodes
== = o R-ST as a maximally skewed RBT
H |1 of bh b — 1

o NB={ 5.5 i1 1) s Nb_1) o0

b .
@ By substitution, N(b) = Y. 2/ = 2b+1 2 {#
=1

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 5/13



RBT insertion with rotation based corrections
RBT insertion with rotation based corrections
@ First insert key as a red node in a leaf position as in a BST

@ If insertion happens below a black node, no problem, otherwise
red-red violation

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 6/13



RBT insertion with rotation based corrections
RBT insertion with rotation based corrections

@ First insert key as a red node in a leaf position as in a BST
@ If insertion happens below a black node, no problem, otherwise
red-red violation
@ Violation may be corrected via bh preserving rotations
NB corrections propagate upward as root changes from black to red
@ Finally, blacken root if it became red

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 6/13




RBT insertion with rotation based corrections
RBT insertion with rotation based corrections

@ First insert key as a red node in a leaf position as in a BST
@ If insertion happens below a black node, no problem, otherwise
red-red violation
@ Violation may be corrected via bh preserving rotations
NB corrections propagate upward as root changes from black to red
@ Finally, blacken root if it became red

Z)2 Z)2

~ vy |1 Y

m

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 6/13




RBT insertion with rotation based corrections
RBT insertion with rotation based corrections

@ First insert key as a red node in a leaf position as in a BST
@ If insertion happens below a black node, no problem, otherwise
red-red violation
@ Violation may be corrected via bh preserving rotations
NB corrections propagate upward as root changes from black to red
@ Finally, blacken root if it became red
@ Complexity: O(lg n)

Z)2 Z)2

~ vy |1 Y

m

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 6/13




Correction with colour change and rotation
Correction with colour change and rotation

Superior node in red-red violation has red sibling
@ These siblings must have a black common parent

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 7/13




Correction with colour change and rotation
Correction with colour change and rotation

Superior node in red-red violation has red sibling
@ These siblings must have a black common parent

@ Transmit the black colour of the root to both children (bh is
preserved) and colour the root red

@ Root has changed from black to read, so new violations possible,
changes will propagate up

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 7/13




Correction with colour change and rotation
Correction with colour change and rotation

Superior node in red-red violation has red sibling
@ These siblings must have a black common parent

@ Transmit the black colour of the root to both children (bh is
preserved) and colour the root red

@ Root has changed from black to read, so new violations possible,
changes will propagate up

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 7/13




Correction with colour change and rotation
Correction with colour change and rotation

Superior node in red-red violation has red sibling
@ These siblings must have a black common parent

@ Transmit the black colour of the root to both children (bh is
preserved) and colour the root red

@ Root has changed from black to read, so new violations possible,
changes will propagate up

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 7/13




Correction with colour change and rotation
Efficient red-red correction

Superior node in red-red violation has black sibling
@ Now the siblings have different colours, so no black transmission
@ Use single or double rotations to push extra red to sibling

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 8/13



Correction with colour change and rotation
Efficient red-red correction

Superior node in red-red violation has black sibling
@ Now the siblings have different colours, so no black transmission
@ Use single or double rotations to push extra red to sibling

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 8/13



Correction with colour change and rotation
Efficient red-red correction

Superior node in red-red violation has black sibling
@ Now the siblings have different colours, so no black transmission
@ Use single or double rotations to push extra red to sibling

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 8/13



Correction with colour change and rotation
Efficient red-red correction

Superior node in red-red violation has black sibling
@ Now the siblings have different colours, so no black transmission
@ Use single or double rotations to push extra red to sibling

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 8/13



Correction with colour change and rotation
Efficient red-red correction

Superior node in red-red violation has black sibling
@ Now the siblings have different colours, so no black transmission
@ Use single or double rotations to push extra red to sibling
@ No upward propagation of changes
@ Complexity: O(lg n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 8/13



RBT deletion and colour correction
RBT deletion and colour correction

@ Basic deletion is as in BST
@ If the deleted node is black, black height deficiency (BHD) results

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 9/13



RBT deletion and colour correction
RBT deletion and colour correction

@ Basic deletion is as in BST
@ If the deleted node is black, black height deficiency (BHD) results

Case A: Black root of black deficient sub-tree has black sibling

and black nephews
° BHD due to delete Z

W
Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 9/13



RBT deletion and colour correction
RBT deletion and colour correction

@ Basic deletion is as in BST
@ If the deleted node is black, black height deficiency (BHD) results

Case A: Black root of black deficient sub-tree has black sibling
and black nephews

°° O
AR A PO

@ Black ST root (Y) coloured red, no red-red violation with children
@ BHD of both sibling sub-trees moved to common parent

W
Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 9/13



RBT deletion and colour correction
RBT deletion and colour correction

@ Basic deletion is as in BST
@ If the deleted node is black, black height deficiency (BHD) results

Case A: Black root of black deficient sub-tree has black sibling
and black nephews

A

@ Black ST root (Y) coloured red, no red-red violation with children
@ BHD of both sibling sub-trees moved to common parent

@ If root of new sub-tree is red, colour it black to remove BHD and
correct red-red violation

W
Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 9/13




Red-Black trees RBT deletion and colour correction

Correction with colour change and rotation

Case B: Black root of black deficient sub-tree has black sibling
and at least one red nephew

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 10/13




Red-Black trees RBT deletion and colour correction

Correction with colour change and rotation

Case B: Black root of black deficient sub-tree has black sibling
and at least one red nephew

@ Transfer a node from the sibling sub-tree to the BHD sub-tree at
the expense of the red node

@ Colour the transferred node to black to resolve the BHD

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 10/13



Red-Black trees RBT deletion and colour correction

Another case of correction

Case C: Black root of black deficient sub-tree has red sibling

A A

NB Parent must be black; sub-trees of the red sibling must be black

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 11/13




RBT deletion and colour correction
Another case of correction

Case C: Black root of black deficient sub-tree has red sibling

NB Parent must be black; sub-trees of the red sibling must be black

@ Apply a single rotation so that the sub-tree with BDH has a black
rooted sibling

@ Now apply rules of the earlier cases — does not revisit this case

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 11/13




RBT deletion and colour correction
Another case of correction

Case C: Black root of black deficient sub-tree has red sibling

NB Parent must be black; sub-trees of the red sibling must be black

@ Apply a single rotation so that the sub-tree with BDH has a black
rooted sibling

@ Now apply rules of the earlier cases — does not revisit this case

v

Deletion in RBT can be done in ©(Ig n) time @

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 11/13



Practice problems
Practice problems

Rank of a node in a RBT
@ Store the size of every red-black sub-tree in the local root

size[leaf] = 0
size[node] = 1 + size[left[node]] +
size[right [node]]

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 12/13




Practice problems
Practice problems

Rank of a node in a RBT
@ Store the size of every red-black sub-tree in the local root

size[leaf] = 0
size[node] = 1 + size[left[node]] +
size[right [node]]

@ Node of order r can be found in ©(lg n) time
@ Rank of a given key can be found in ©(lg n) time
@ Number of nodes in tree can be found in ©(1) time

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 12/13




Practice problems
Practice problems

Rank of a node in a RBT
@ Store the size of every red-black sub-tree in the local root

size[leaf] = 0
size[node] = 1 + size[left[node]] +
size[right [node]]

@ Node of order r can be found in ©(lg n) time
@ Rank of a given key can be found in ©(lg n) time
@ Number of nodes in tree can be found in ©(1) time

@ Size can be updated during insert and delete operations on path
back to root from point of insertion/deletion

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 12/13




Practice problems
Practice problems (contd.)

@ Insert into an RBT in the given sequence: 2, 1,4,5,9,3,6,7

@ Delete from the RBT in the given sequence: 5, 3, 7
@ Indicate, with justification, whether the following statements are
true or false
e The subtree of the root of a Red-Black tree is always itself a

red-black tree.
e The sibling of a null child reference in a red-black tree is either

another null child reference or a red node.
e The maximum height of a RBT of n nodes is 2Ig(n+ 1)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 11, 2017 13/13



	Red-Black trees
	Definition
	Simple RBT properties
	Maximally skewed RBT
	RBT insertion with rotation based corrections
	Correction with colour change and rotation
	RBT deletion and colour correction
	Practice problems


	resultado2: 
	hours: 20
	minutes: 10
	seconds: 04
	cronohours: 00
	cronominutes: 00
	crseconds: 00
	day: 15
	month: 12
	year: 2022
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00


