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Simple sorting

Section outline

@ Selection Sort
' . @ Bubble Sort
@ simple sorting @ Insertion Sort
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Simple sorting Selection Sort

Motivation of Selection Sort

@ Select smallest element
@ Interchange with top element
@ Repeat procedure leaving out the top element
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Simple sorting Selection Sort

Recursive Selection Sort

Editor:

void selectionSortR(int Z[], int sz) {
int sel, i, t;
if (sz<=0) return;
for (i=sz-1,minI=i,i-—;i=>0;1i—-)
// select the smallest element

if (Z2[1]1<Z[minI]]) minI = i;

// interchange the min element with the top element
t=7Z[minI];

Z[minI]=2Z[0];

z[0]=t;

// now sort the rest of the array
selectionSortR(Z+1, sz-1);
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Simple sorting Selection Sort

lterative Selection Sort

Editor:

void selectionSortI(int Z[], int sz) {
int sel, i, t;
for (j=sz; 3>0; j--) { // from full array, decrease
for (i=sz-1,minI=i,i-—-;i=>sz-7J;i--)
// sz—7 varies from 0 to sz-1 and i from sz-2 to sz—j
// select the smallest element

if (Z2[1]1<Z[minI]]) minI = i;

// interchange the min element with the top element
t=7Z[minI];

Z[minI]=Z[sz-7];

Z[sz-jl=t;

// now sort the rest of the array
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Motivation of Bubble Sort

@ Start from the bottom and move upwards

@ If an element is smaller than the one over it, then interchange the
two

@ The smaller element bubbles up
@ Smallest element at top at the end of the pass
@ Repeat procedure leaving out the top element
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Simple sorting Bubble Sort

Recursive Bubble Sort

Editor:

void bubbleSortR(int Z[], int sz) {
int 1i;
if (sz<=0) return;
for (i=sz-1;i>0;i--)
// the smallest element bubbles up to the top
if (2[i1<z2[i-11) {
int t;
t=7[1i];
Z[1]1=2[1-11];
Z[i-1]1=t;
}
// now sort the rest of the array
bubbleSortR (Z2+1, sz-1);
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Iterative Bubble Sort

Editor:

void bubbleSortI (int Z[], int sz) {
int i, 3;
for (j=sz; 3>0; j—-) // from full array, decrease
for (i=sz-1;i>sz-3j;i--)
// the smallest element bubbles up to the top
if (Z[i]<Z[i-1]) {
int t;
t=2[1i];
70i]=2[i-11;
Z[1-11=t;

}
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Insert sorted

Editor:

void insertSorted(int Z[], int ky, int sz) {

// insert ky at the correct place

// original array should have free locations

// sz is number of elements currently in the array

// sz is not the allocated size of the array

int i, pos=searchBinRAF (Z, ky, sz, 0);

if (pos<0) pos=-(pos+10);

// compensation specific to searchBinRAF

// now shift down all elements from pos onwards
for (i=sz;i>pos;i--) // start from the end! (why?)
zZ[1i1=2[i-1];

Z [posl=ky; // now the desired position i1s available
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Simple sorting Insertion Sort

Insertion Sort

Editor:

void insertionSort (int Z[], int sz) {
int 1i;
for (i=1;i<sz;i++)
// elements 0..(i-1) are sorted, element Z[1i]
// 1s to be placed so that elements 0..i are also
sorted
insertSorted (Z, Z[i], 1i);
}
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Mergesort

Section outline

@ Complexity of mergesort
@ In-place merging

e Mergesort @ Analysing mergesort with
@ Merging two sorted arrays in-place merging

@ Merge sort
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Merging two sorted arrays

First array [ 2]5]9[23]40 1|3]4]29]55]65] 68| Second array

Merged sequence
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Merging two sorted arrays

First array | 2]|5]9[23]40 3[4]29]55]65]68]Second array

Merged sequence
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Merging two sorted arrays

First array |5]9]23]40] 3|4]29]55]|65]68]Second array
Merged sequence
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Merging two sorted arrays

First array [5]9]23]40] 14]29[55]65]68] Second array
Merged sequence
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Merging two sorted arrays

First array [5]9]23]40] 129]55] 65| 68| Second array
Merged sequence
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Merging two sorted arrays

First array 129]55]65] 68 Second array
Merged sequence
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Merging two sorted arrays

First array [ 23]40] 129]55]65]68 | Second array
Merged sequence |1 |2 3.4 519
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Merging two sorted arrays

First array 129]55]65]68 | Second array

Merged sequence | 1]2|3[4[5[9]23]
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Merging two sorted arrays

First array 155]65] 68| Second array

Merged sequence | 1]2|3[4[5[9]23]29]
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Merging two sorted arrays

First array 155]65] 68| Second array

Merged sequence | 1]2|3[4[5[9]23]29]40]
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Merging two sorted arrays

First array 65|68 Second array

Merged sequence | 1]2|3[4[5]9]23]29]40[55]
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Merging two sorted arrays

First array Second array

Merged sequence | 1]2|3[4[5[9]|23]|29]40[55]65]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53



Merging two sorted arrays

First array Second array

Merged sequence |1]2]3[4]5|9]23|29]40]55]|65]68]
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Recursive definition of merging

@ M, N are number of elements in A and B, respectively
@ Array indices start from 0
@ Initial call: merge(A, N, 0, B,M,0, C,0) (1.1)
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Recursive definition of merging

@ M, N are number of elements in A and B, respectively
@ Array indices start from 0

@ Initial call: merge(A, N, 0, B,M,0, C,0) (1.1)
merge(A,N,i,B,M.,j, C, k)
(if (i > N A\ j > M) then done (1.2)
else if (i > N) then merge(A,N,i,B,M,j+1,C, k+ 1),
st Clk] = BJj] (1.3)
else if (j > M) then merge(A,N,i+1,B,M,j,C .k + 1),
= st C[k] = A[]] (1.4)
else if (A[/] < BJj]) then merge(A,N,i+1,B,M,j,C, k+ 1),
st Clk] = A[i] (1.5)
otherwise merge(A,N,i,B,M,j+1,C, k + 1),
(st Clk] = BJj] (1.6)
Definition is tail recursive @
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Recursive function for merging

Editor:

void merge (int A[], int N, int 1,

if

int B[], int M, int j, int C[], int k) {
(i > N && j >= M) return; // by clause (2)

else if (i >= N) { // by clause (3)

}

Clk] = B[3];
merge (A, N, i, B, M, j + 1, C , k + 1);
else if (j >= M) { // by clause (4)

Clk] = A[i];

merge (A, N, i + 1, B, M, j, C , k + 1);
else if (A[i] <= B[j]1) { // by clause (5)
Clk] = A[i];

merge (A, N, i + 1, B, M, j, C , k + 1);
else { // by clause (6)

Clk] = BI[J];

merge (A, N, i, B, M, j + 1, C , k + 1);
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Testing the recursive merging

Editor:

#include <stdio.h>

void showIArr (int A[], int n) {
int 1i;
for (i=0; i<n; i++) printf("%sd ", A[i]);
printf ("\n")

}

int main() {
int A[]={2, 5, 9, 23, 40};
int B[1={1, 3, 4, 29, 55, 65, 68};
int C[12];

printf ("after merging "); showIArr (A,5);
printf ("and "); showIArr (B,7);
merge (A, 5, 0, B, 7, 0, C , 0);
showIArr (C,12);
return 0; }
W
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Results of test

Shell:
$ make mergeSort ; ./mergeSort
ee mergeSort.c —0 mergeSort

after merging 2 5 9 23 40
and 1 3 4 29 55 65 68
1 23459 23 29 40 55 65 68

@
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Iterative function for merging

Editor:

void mergel (int A[
int i=0, 3=0, k=
do {

if (i >= N && j >= M) break; // by clause (2)
else if (i >= N) { // by clause (3)

1, int N, int B[], int M, int C[]) {
0; // by clause (1)

Clkl = BI[31; J++, k++;

} else if (j >= M) { // by clause (4)
Cl[k] = A[i]; it++; kt++;

} else if (A[i] <= B[j]) { // by clause (5)
Clk] = A[i]; i++; k++;

} else { // by clause (6)
Cl[k] = BI[jl; J+t+; k++;

}

} while (1);
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Testing the iterative merging

Editor:

void showIArr (int A[], int n) {
int 1i;
for (i=0; i<n; i++) printf("$d ", A[i]);
printf ("\n");

}

int main() {
int A[1={2, 5, 9, 23, 40};
int B[1={1, 3, 4, 29, 55, 65, 68};
int C[12];
printf ("after merging "); showIArr (A,5);
printf ("and "); showIArr(B,7);
printf ("by mergeR "); mergeR(A, 5, 0, B,

showIArr (C,12);
printf ("by mergel "); mergeI(A, 5, B, 7,

O 7
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Results of test

Shell:
$ make mergeSort ; ./mergeSort
cc mergeSort.c -0 mergeSort

after merging 2 5 9 23 40

and 1 3 4 29 55 65 68

by mergeR 1 2 3 4 5 9 23 29 40 55 65 68
by mergelI 1 2 3 4 5 9 23 29 40 55 65 68
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Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
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Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
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Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]

@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
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Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]

@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29

@ Sort first part
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Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]

@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29

@ Sort first part
12]5|9]23]40]68]
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Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
@ Sort first part
12]5|9]23]40]68]
@ Sort second part
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Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
@ Sort first part
12]5|9]23]40]68]
@ Sort second part

113[4]29]55(|65
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Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
@ Sort first part
12]5|9]23]40]68]
@ Sort second part

113[4]29]55(|65

@ After sorting the two parts:

First[2]5[9]23][40]68] [1]3]4]29]55]65]Second
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Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
@ Sort first part
12]5|9]23]40]68]
@ Sort second part

113[4]29]55(|65

@ After sorting the two parts:

First[2]5[9]23][40]68] [1]3]4]29]55]65]Second

@ Merge the two sorted sequences
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Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
@ Sort first part
12]5|9]23]40]68]
@ Sort second part

113[4]29]55(|65

@ After sorting the two parts:

First[2]5[9]23][40]68] [1]3]4]29]55]65]Second

@ Merge the two sorted sequences
merge (A, nA, B, nB, C)
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Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
@ Sort first part
12]5|9]23]40]68]
@ Sort second part

113[4]29]55(|65

@ After sorting the two parts:

First[2]5[9]23][40]68] [1]3]4]29]55]65]Second

@ Merge the two sorted sequences
merge (A, nA, B, nB, C)

@ After merging the two sorted parts (the required result)
11]2]3]4]5]9]23]29]40][55]65]68]
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Recursive definition of mergesort

@ N is the number of elements in A
@ Array indices start from 0
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Mergesort Merge sort

Recursive definition of mergesort

@ N is the number of elements in A
@ Array indices start from 0
mergeSort(A N, C)

(if (N < 1) then done (2.1)
let M =N/2 (2.2)
do mergeSort(A, M, C) (2.3)

do mergeSort(A+ M, N —-M,C) (2.4)
do merge(A,M,A+ M,N - M,C) (2.5)
do copyBack(A, C, N) (2.6)
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Code for mergeSort

Editor:

void mergeSort (int A[], int N, int C[]) {
int M;
if (N<=1) return; // by clause (1)
M = N/2; // by clause (2)
mergeSort (A, M, C); // by clause (3)
mergeSort (A + M, N - M, C); // by clause (4)
mergel (A, M, A + M, N - M, C); // by clause (5)
copyBack (A, C, N); // by clause (6)
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Code for mergeSort

Editor:
void mergeSort (int A[], int N, int C[]) {

}

int M;

if (N<=1) return; // by clause (1)

M = N/2; // by clause (2)

mergeSort (A, M, C); // by clause (3)
mergeSort (A + M, N - M, C); // by clause (4)
mergel (A, M, A + M, N - M, C); // by clause (5)
copyBack (A, C, N); // by clause (6)

void copyBack (int A[], int C[], int N) {

int 1i;
for (1=0;i<N;i++) A[i]=C[1i];
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Testing mergesort

Editor:

int main() {
int A[]1={23,5,40,2,9,68,55,4,3,1,65,29};
int C[12];
printf ("after sorting by mergeSort ");
mergeSort (A, 12, C);
printf ("\n"); showIArr(A,12);

return 0; }
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Results of testing mergesort

Shell:
$ make mergeSort ; ./mergeSort
ee mergeSort.c —0 mergeSort

after sorting by mergeSort
1 23459 23 29 40 55 65 68

@

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 24/53



Complexity of mergesort

T(n)=T(n/2)+ T(n/2)+©(n) =2T(n/2) + ©(nN)
T(0)=©(1)
T(n) =©(nlgn)
@ Given implementation requires extra storage space (equal to size
of input)
@ In-place version not trivial if O(NIg N) is to be preserved
@ Simple in-place version to be studied next
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Complexity of mergesort

T(n)=T(n/2)+ T(n/2)+©(n) =2T(n/2) + ©(n)
T(0)=©(1)
T(n) =©(nlgn)

@ Given implementation requires extra storage space (equal to size

of input)

@ In-place version not trivial if O(NIg N) is to be preserved

@ Simple in-place version to be studied next

@ Mergesort was invented by John von Neumann in 1945
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In-place merging
@ M is number of elements in the first half of A
@ N is the total number of elements in A
@ Array indices start from 0
@ |Initial call: merge(A, M, N)
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In-place merging
@ M is number of elements in the first half of A
@ N is the total number of elements in A

@ Array indices start from 0

@ Initial call: merge(A, M, N) (4.1)
mergelnPI(A, M, N)
if (M<0VvM>NvV N <0)then done (4.2)
= ¢ elseif (A[0] < A[M]) then mergeInPI(A+1,M -1, N—-1) (4.3)
else mergelnPI(cpySft(A, M), M, N — 1) (4.4)
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In-place merging
@ M is number of elements in the first half of A
@ N is the total number of elements in A
@ Array indices start from 0
@ |Initial call: merge(A, M, N)

(4.1)
mergelnPI(A, M, N)
if (M<0VM=>NVN <0) then done (4.2)
= ¢ elseif (A[0] < A[M]) then mergeInPI(A+1,M -1, N—-1) (4.3)
else mergelnPI(cpySft(A, M), M,N — 1) (4.4)

Editor:

void mergeInPl (int A[], int M, int N) {

if ( M<=0 or M >= N or N <= 0 ) return;

else if ( A[0] <= A[M] ) mergelInPl (A+1, M-1, N-1);
else { // cpySft() is inlined

int i, T = A[M];

for (i=M; i; i--) A[i] = A[i-1];

A[Q0] = T; mergeInPl (A+1, M-1, N-1);
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Analysing mergesort with in-place merging

a n=-1
T(n):{ 2T(g)+bn+cn2+d n>1n=2%d>0
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Analysing mergesort with in-place merging

a n=1
T(n):{ 2T(n)+bn+cn2+d n>1,n=29d>0

2
Letn=28
[ 7 ] bqu><1+c><1f2><1+d><1
[ 3 I 3 bxgx2+c><’272—2><2+d><2
[ 1 I 7 I 7 I 7 ] b><£><4—|—c><22—2><4—|—d><4
. axs
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Analysing mergesort with in-place merging

a n=-1
T(n):{ 2T(g>+bn+cn2+d n>1n=2%d>0

] bqu><1+c><1f2><1+d><1

3 ] bxgx2+c><’272—2><2+d><2
(3 (88 [ 3 ) bxfxdtexfpxdtdxs
... axa

@ lgnxbxn+(1+3+... 4 z—)xcxm+(n-1)xd+nxa=
lgnxbxn+2x(1-27"%") xexnm+(n—-1)xd+nxa=
lgnxbxn+2x (=) xexnm+(n—1)xd+nxa

@ Asymptotic bound: T(n) € ©(n?) ®
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Section outline

@ Worst and best cases of
complexity of quicksort

© Quicksort @ Average case complexity of
@ Simple version of quicksort quicksort
@ In-place Version of Quick @ Upper bound on harmonic
Sort series
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Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29
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Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9
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Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9
@ Partition all elements in the array into two sets,
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Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
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w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set
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w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set

o First set
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w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set

e First set 123]40]68]55] 65|29 |second set
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w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set
e First set 123]40]68]55] 65|29 |second set
@ Sort first set
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w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set
e First set 123]40]68]55] 65|29 |second set
@ Sort first set
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w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set
e First set 123]40]68]55] 65|29 |second set
@ Sort first set

9] [23]40]68]55[65[29]
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w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set
e First set 123]40]68]55] 65|29 |second set
@ Sort first set

9] [23]40]68]55[65]29]

@ Sort second set
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w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set
e First set 123]40]68]55] 65|29 |second set
@ Sort first set

9] [23]40]68]55[65]29]

@ Sort second set

123|29]40][55]65]68]
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w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set

e First set 123]40]68]55] 65|29 |second set
@ Sort first set

9] [23]40]68]55] 6529
@ Sort second set

9] [23]29]40]55]65] e8]
@ Entire array is now sorted

11]2]3]4|5]9]23]29]40[55]65]|68] &
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Outline of Quicksort

@ Given an array A of N elements
@ Pick up a suitable element p from the array
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Outline of Quicksort

@ Given an array A of N elements

@ Pick up a suitable element p from the array

@ Simple choice is to pick up the first element

@ Partition the elements of A based on p

@ Let first part be all elements < p or possibly < p
@ Second part — all elements > p
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Outline of Quicksort

@ Given an array A of N elements

@ Pick up a suitable element p from the array

@ Simple choice is to pick up the first element

@ Partition the elements of A based on p

@ Let first part be all elements < p or possibly < p

@ Second part — all elements > p

@ Sort the two parts (does not matter which part is sorted first)
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Outline of Quicksort

@ Given an array A of N elements

@ Pick up a suitable element p from the array

@ Simple choice is to pick up the first element

@ Partition the elements of A based on p

@ Let first part be all elements < p or possibly < p

@ Second part — all elements > p

@ Sort the two parts (does not matter which part is sorted first)
@ Now the whole of A is sorted
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Outline of Quicksort

@ Given an array A of N elements

@ Pick up a suitable element p from the array

@ Simple choice is to pick up the first element

@ Partition the elements of A based on p

@ Let first part be all elements < p or possibly < p

@ Second part — all elements > p

@ Sort the two parts (does not matter which part is sorted first)
@ Now the whole of A is sorted

@ Quicksort was invented by Tony Hoare in 1960
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Simple Partitioning Scheme

@ Elements are originally in an array A

123[5]40]|2]9]68]55]4]3]1]65]29

@ Let pivot element be 9

@ Partitioning is done in another array B:
Smaller Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53



Simple Partitioning Scheme

@ Elements are originally in an array A

[5]40]2]|9]68[55]4[3]1]65]29

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller (23 |Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53



Simple Partitioning Scheme

@ Elements are originally in an array A

[40]2[9]68]55|4][3]|1]65]29

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller (23 |Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53



Simple Partitioning Scheme

@ Elements are originally in an array A

2|9|68|55|4|3|1]|65[29

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller [40[23 Larger
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Simple Partitioning Scheme

@ Elements are originally in an array A

9(68]55(4|3]|1|65[29

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller [40]23]Larger
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Simple Partitioning Scheme

@ Elements are originally in an array A

68]55(4|3|1]|65[29

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller [40]23]Larger
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Simple Partitioning Scheme

@ Elements are originally in an array A

55]1413|1]65]|29

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller [40]23]Larger
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Simple Partitioning Scheme

@ Elements are originally in an array A

413[1]65|29

@ Let pivot element be 9

@ Partitioning is done in another array B:
Smaller [55]68][40]23]Larger
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Simple Partitioning Scheme

@ Elements are originally in an array A
@ Let pivot element be 9

@ Partitioning is done in another array B:
Smaller [5[2]4] [55]68][40]23]Larger
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Simple Partitioning Scheme

@ Elements are originally in an array A
@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller[5[2]4]3] [55]68][40]23]Larger
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Simple Partitioning Scheme
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@ Let pivot element be 9
@ Partitioning is done in another array B:
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Simple Partitioning Scheme

@ Elements are originally in an array A

@ Let pivot element be 9
@ Partitioning is done in another array B:
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Simple Partitioning Scheme

@ Elements are originally in an array A
@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller [5[2]4]3] 1] [29]65]55]68][40]23 |Larger
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Simple Partitioning Scheme

@ Elements are originally in an array A
@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller[5[2]4[3][1]  [9]  [29]65]55]68][40]23]Larger
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Simple Partitioning Scheme

@ Elements are originally in an array A
@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller[5]2[4[3]1]  [9]  [29]65]55]68]|[40]23]Larger

@ Need to be careful while partitioning to avoid getting into an
infinite loop

@ Can be ensured by getting out at least one copy of the pivot
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Recursive Definition of Simple Partitioning

@ Assume that all elements are distinct

@ M is the number of elements in A

@ Array indices start from 0

@ Initial call: simPartR(A, N,0,B,—1,N,p) (1.1)

@ Last clause skips over the pivot

@ At termination, pivot should be at B[j + 1], where it is explicitly
assigned
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Recursive Definition of Simple Partitioning

@ Assume that all elements are distinct

@ M is the number of elements in A

@ Array indices start from 0

@ Initial call: simPartR(A, N,0,B,—1,N,p) (1.1)
@ Last clause skips over the pivot

@ At termination, pivot should be at B[j + 1], where it is explicitly

assigned
simPartR(A, N, i, B,j, k, p)
(if(i>N)then(j+1)stB[j+1]=p (1.2)

else if (A[i] < p) then simPartR(A,N,i+1,B,j+ 1,k,p)
B st B[j + 1] = A[j] (1.3)
) elseif (A[i] > p) then simPartR(A,N,i+1,B,j,k —1,p)

st Blk — 1] = A[j] (1.4)

otherwise simPartR(A,N,i+1,B,j,k —1,p) (1.5) @
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Recursive Definition of Simple Partitioning

@ Assume that all elements are distinct

@ M is the number of elements in A

@ Array indices start from 0

@ Initial call: simPartR(A, N,0,B,—1,N,p) (1.1)
@ Last clause skips over the pivot

@ At termination, pivot should be at B[j + 1], where it is explicitly

assigned
simPartR(A, N, i, B,j, k, p)
(if(i>N)then(j+1)stB[j+1]=p (1.2)

else if (A[i] < p) then simPartR(A,N,i+1,B,j+ 1,k,p)
B st B[j + 1] = A[j] (1.3)
) elseif (A[i] > p) then simPartR(A,N,i+1,B,j,k —1,p)

st Blk — 1] = A[j] (1.4)

otherwise simPartR(A,N,i+1,B,j,k —1,p) (1.5) @

Definition is tail recursive
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Recursive Code for Simple Partitioning

Editor:

int simPartR(int A[], int N, int i,
int B[], int j, int k, int p) {
if (4 >=N) {
B[Jj+1] = p;
return (j+l); // by clause (2)
} else if (A[i] < p) {
B[j+1] = A[i];
return simPartR(A, N, i+l, B, Jj+1, k, p);
// by clause (3)
} else if (A[i] > p) {
Blk-1] = A[i];
return simPartR (A, N, i+l, B, Jj, k-1, p);
// by clause (4)
} else // by clause (5)
return simPartR (A, N, i+l1l, B, Jj, k, p);

}
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Recursive Definition of Simple Quick Sort

@ N is the number of elements in A
@ Array indices start from 0
@ Recursive simple partitioning is used
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Recursive Definition of Simple Quick Sort

@ N is the number of elements in A

@ Array indices start from 0

@ Recursive simple partitioning is used
quickSimSort(A, N, B)

if (N < 1) then done (1.1)

let p = simPartR(A, N, 0, B, —1, N, A[0])
= ¢ do copyBack(A, B, N) (1.2)

do quickSimSort(A, p, B) (1.3)

do quickSimSort(A+p+1,N—p—1,B) (1.4)
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Code for Simple Quick Sort

Editor:

void quickSimSort (int A[], int N, int B[]) {
int pPos;

if (N<=1) return;

pPos = simPartR (A, N, O,

// printf ("p=%d, pPos=%d, A[N=%d]: ", p, pPos, N);
// showIArr (A,N);

// pPos = simPartI (A, N, B, A[0]);

copyBack (A, B, N);

quickSimSort (A, pPos, B);

quickSimSort (A+pPos+1l, N-pPos-1, B);

}

v
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Result of running Simple Quick Sort

Editor:

int main() {
int A[]1={23,5,40,2,9,68,55,4,3,1,65,29};
int B[12];
quickSimSort (A, 12, B);
printf ("after sorting by quickSimSort \n\t");
showIArr (A,12);
return 0; }

Shell:
$ make quickSort ; ./quickSort
ee quickSort.c -0 quickSort

after sorting by quickSimSort
123459 23 29 40 55 65 68
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Iterative Code for Simple Partitioning

Editor:
int simPartI(int A[], int N, int B[], int p) {
int i=0, j=-1, k=N; // // by clause (1)
for (;;) {
if (1 >=N) {

B[J+1]=p;
return (j+1 // by clause (2)

)i
} else if (A[i] < p) {
il;

B[Jj+1] = A[i]; // by clause (3)
it+; J++;

} else if (A[i] > p) {
Blk-1] = A[i]l; // by clause (4)
it+; k—-—;

} else i++; // by clause (5)

}
}
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w Simple version of quicksort
Code & Results for Simple Quick Sort

Editor:

void quickSimSort (int A[], int N, int B[]) {
int pPos;

if (N<=1) return;

pPos = simPartI (A, N, B, A[O0]);
copyBack (A, B, N);

quickSimSort (A, pPos+l, B);
quickSimSort (A+pPos+1l, N-pPos-1, B);

Shell:
$ make quickSort ; ./quickSort
ce quickSort.c -0 quickSort

after sorting by quickSimSort
123459 23 29 40 55 65 68
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
123[5]40]|2]9]68]55]4]3][1]65]29]
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
123[5]40]|2]9]68]55]4]3][1]65]29] as 29@h > 9
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
123[5]40]|2]9]68]55]4]3]1]65]29] as 65@h > 9
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
123[5]40]|2]9]68]55]4]3]1]65]29] stuck, 23@! > 1@h
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]40]|2]9]68]55|4]3[23]65]|29] after interchange

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]40]|2]9]68]55|4]3[23]65]|29] as 1@1 < 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]40]|2]9]68]55|4]3[23]65]|29] as 5@ < 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]40]|2]9]68]55|4]3[23]65]|29] as 23@h > 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]40]|2]9]68]55|4]3[23]65]|29] stuck, 40@! > 3@h

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]3]2|9]68[55]4|40[23]65]29] after interchange

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1|5]3]2|9]68[55]4|40[23]65]|29] as 3@! < 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53



In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1|5]3]2|9]68][55]4|40[23]65]29] as 2@! < 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53



In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1|5]3]2|9]68][55]4|40[23]65]29] as 40@h > 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1|5]3]2|9]68][55]4|40[23]65]29] stuck, 9@! > 4@h

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]3]2|4]68[55]9]40[23]65]29] after interchange

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1|5]3]2|4]68[55]9]40[23]65]29] as 4@ < 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1|5]3]2|4]68[55]9]40[23]65]29] stuck, 68@| > 9@h

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]3]2]4]9[55]|68|40[23]65]29] after interchange

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]3]2]4]9[55]|68|40[23]65]29] as 68@h > 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5[3]2[4]9¢][55]68[40[23]65]29] as 55@h > 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5[3]2[4]9¢][55]68[40[23]65]29] stuck, 9@! > 4@h

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]3]2]4]9[55]|68|40[23]65]29] as A[l]=A[h]

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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w In-place Version of Quick Sort
In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
[1]5]3]2][4]9]55]68]40[23][65]29] as All]=A[h], end as | > h

@ Partitioning now terminates

@ Skip over smaller elements on the left: 1++

@ Skip over larger elements on the right: r—-

@ WhenA[l] == A[h] == p, skip from left: 1++

@ Stuck ifA[1]1>=p, A[h]l<=p, A[l]!=A[h]: interchange

@ Position of pivot element is (I-1) or (h) at termination

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @
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Code for Recursive In-place Partitioning

Editor:

int partitionR(int A[], int N, int 1, int h, int p) {

if (1 > h) return (1-1);

else if (A[l] < p) // skip smaller
return partitionR (A, N, 1+1, h, p);

else if (A[h] > p) // skip larger
return partitionR(A, N, 1, h-1, p);

else if (A[l]l==A[h]) // A[l]==A[h]l==p

// only skip copy of p in the left part
return partitionR (A, N, 1+1, h, p);

else { // stuck: A[l]l>=p, A[hl<=p, A[l]!=AT[h]
int t=A[1l]; A[l]=A[h]; A[h]=t;
// after interchange: A[l]<p, A[h]>=p
// if A[l] was p, then it is moved right
return partitionR (A, N, 1, h, p);

}

v
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Code for Iterative In-place Partitioning

Editor:

int partitionI(int A[], int N, int p) {
int 1=0, h=N-1;

for (;;) {
if (1 > h) return h; // instead of (1-1)
else if (A[1l] p) 1++;
else if (A[h] p) h——;
else if (A[1l ]==A[h]) L4rar g
else {
int t=A[1l]; A[l]=A[h]; A[h]=t;
}
}

}
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w In-place Version of Quick Sort
Code for Quicksort with In-place Partitioning

Editor:

void quickSort (int A[], int N) {
int pPos;

if (N<=1) return;

pPos = partitionR (A, N, 0, N-1, A[OQ]);
quickSort (A, pPos);

quickSort (A+pPos+l, N-pPos-1);

}

Editor:

void quickSort (int A[], int N) {
int pPos;

if (N<=1) return;

pPos = partitionI (A, N, A[O0]);
quickSort (A, pPos);

quickSort (A+pPos+l, N-pPos-1);
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w In-place Version of Quick Sort
Testing Quick Sort

Editor:
int main() {
int A[1={23,5,40,2,9,68,55,4,3,1,65,29};
int B[12];
quickSimSort (A, 12, B);
printf ("after sorting by quickSimSort \n\t");
showIArr (A,12);

quickSort (A, 12);
printf ("after sorting by quickSort \n\t");
showIArr (A,12);

return 0; }
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w In-place Version of Quick Sort
Results of Running Quick Sort

Shell:

$ make quickSort ; ./quickSort

cc quickSort.c -o quickSort after sorting by quickSimSort
123459 23 29 40 55 65 68

after sorting by quickSort
123459 23 29 40 55 65 68

@
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Worst and best cases of complexity of quicksort

Worst case Pivot is placed at one of the two ends
@ T(n)=T(n—1)+06(n)
e T(0)=06(1)
@ T(n)=0(rP)
Best case Pivot is placed in the middle to generates sub-sroblem of
the same size

@ T(n)=T(n/2)+ T(n/2) +0©(n)=2T(n/2) + ©(n)
e T(0)=0(1)
@ T(n)=0©(nlgn)
About e ltis an in-place sorting algorithm
@ It is an unstable sorting algorithm — elements of the

same value may be re-orded

@ Worst case when the pivot element get place at one
of the ends @
Happens when the array is already sorted
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Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution
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@ Pivot may be anywhere with a uniform distribution

@ T(n)= :ij:Pr[p = k] {cn+ T(k — 1) + T(n— k)} with T(0) as a constant
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Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

@ T(n)= :ij:Pr[p = k] {cn+ T(k — 1) + T(n— k)} with T(0) as a constant

© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1
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Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

® T(n) =S¥ Prlp= K| {on+ T(k — 1)+ T(n— K)} with T(0) as a constant
k=1
© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1

k=n
@ nT(n)=cr?+23 T(k—1)
k=1
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Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

® T(n) =S¥ Prlp= K| {on+ T(k — 1)+ T(n— K)} with T(0) as a constant
k=1
© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1
@ nT(n) =cn? +2k§::nT(k— 1)
k=1

k=n—1
@ (n—1)T(n—1)=c(n—1>+2 3> T(k—1), substituting n— 1 for n
k=1
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Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

® T(n) =S¥ Prlp= K| {on+ T(k — 1)+ T(n— K)} with T(0) as a constant
k=1
© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1
@ nT(n) =cn? +2k§::nT(k— 1)
k=1

k=n—1
@ (n—1)T(n—1)=c(n—1>+2 3> T(k—1), substituting n— 1 for n
k=1

@ nT(n)—(n—1)T(n—1) =c(2n— 1)+ 2T(n— 1), after substraction
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Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

® T(n) =S¥ Prlp= K| {on+ T(k — 1)+ T(n— K)} with T(0) as a constant
k=1
© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1
@ nT(n) =cn? +2k§::nT(k— 1)
k=1

k=n—1
@ (n—1)T(n—1)=c(n—1>+2 3> T(k—1), substituting n— 1 for n
k=1

@ nT(n)—(n—1)T(n—1) =c(2n— 1)+ 2T(n— 1), after substraction
@ nT(n)=(Mn+1)T(n—1)+c(2n—1)
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Average case complexity of quicksort

Pivot may be anywhere with a uniform distribution

T(n) = S~ Prlp = Kl {cn+ T(k — 1) + T(n — k)} with T(0) as a constant
k=1
T(n)=cn+ 1S {T(k = 1)+ T(n—K)} = on+ 2'S% T(k — 1)
= k=1
nT(n) = cm® + 2k§::n T(k—1)
k=1

k=n—1
(n—N)T(n—1)=c(n—1)24+2 3 T(k—1), substituting n— 1 for n
k=1

nT(n)—(n—1)T(n—1) =c(2n—1) +2T(n — 1), after substraction
nT(n)=(n+1)T(n—1)+c(2n—1)

T(n) < T(n—1) N 2c < T(n—1)+g

n+1 n n+1 n n

@
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Average case complexity of quicksort

Pivot may be anywhere with a uniform distribution

T(n) = S~ Prlp = Kl {cn+ T(k — 1) + T(n — k)} with T(0) as a constant
k=1
T(n)=cn+ 1S {T(k = 1)+ T(n—K)} = on+ 2'S% T(k — 1)
= k=1
nT(n) = cm® + 2k§::n T(k—1)
k=1

k=n—1
(n—N)T(n—1)=c(n—1)24+2 3 T(k—1), substituting n— 1 for n
k=1

nT(n)—(n—1)T(n—1) =c(2n—1) +2T(n — 1), after substraction
nT(n)=(n+1)T(n—1)+c(2n—1)

T(n) < T(n—1) N 2c T(n—1)

n+17— n n+1 n n

Let S(n) = () , then S(0) = @_T(O) and

@
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Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

® T(n) =S¥ Prlp= K| {on+ T(k — 1)+ T(n— K)} with T(0) as a constant
k=1
© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1
@ nT(n) =cn? +2k§::nT(k— 1)
k=1

k=n—1
(n—N)T(n—1)=c(n—1)24+2 3 T(k—1), substituting n— 1 for n
k=1

nT(n)—(n—1)T(n—1) =c(2n—1) +2T(n — 1), after substraction
nT(n)=(n+1)T(n—1)+c(2n—1)

T(n) < T(n—1) N 2c T(n—1)

n+17— n n+1 n n

Let S(n) = () , then S(0) = @_T(O) and

@ 5(n) < S(n 71)+— < S(n— .2)+2—C1+E < T(0)+ ($++2—:) — T(0)+2cH,
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Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

® T(n) =S¥ Prlp= K| {on+ T(k — 1)+ T(n— K)} with T(0) as a constant
k=1
© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1

k=n
@ nT(n)=cr?+23 T(k—1)
k=1

@ (n—1N)T(n—1)=c(n—1)2 +2k:zn:_1 T(k — 1), substituting n — 1 for n
k=1
@ nT(n)—(n—1)T(n—1) =c(2n— 1)+ 2T(n— 1), after substraction
@ nT(n)=(n+1)T(n—1)+c(2n—1)
° T(n) < T(n—1) N 2c T(n—1)
n+1 7~ n n+1 n n
@ Let S(n) = n() then S(0) = m_T(O) and
@ 5(n) < S(n 71)+— < S(n— 2)+2—C1+§ T(0)+ (210+...+2—:) = T(0)+2cH,

@ Thus, T(n) < (n+1)(T(0)+2cHn) < (n+1)T(0) +2c(n+1)Ig(n+ 1) € O(nlgn)
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w Upper bound on harmonic series
Upper bound on harmonic series

@ Consider H, where n = 2K — 1
@ Now,

1 '2"3"4"5"6"7 ot Tt Ty
—— 2
<1 1 1 1 1 1 1 1 1 1
ST Aoty tytaitatitotamt ot ET T wT
~N YM—\— —- 2 2 2
1 2 4
ok—1
=1 +.1 +1 +...+ 1
—~ =~ =~ ~~
20 21 22 ok—1
=k
@ Total numberofterms n=1+2+... 4+ 2k=1 =2k _4
k—1,n+1 1 _ 1
@ Also, 2 _7andF_ o
2
@ Thus, k = Ig(n+ 1) and Hn < k = Ig(n+ 1) @
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Quicksort with In-place Partitioning — Showing

Details

Editor:

void quickSort (int A[], int N) {
int pPos; int p;

if (N<=1) return;

printf ("before partition: "); showIArr (A,N);
pPos = partitionI (A, N, p=A[0]);

printf (" after pPos =%3d: ", pPos);

showIArr (A,N); printf ("\n");

quickSort (A, pPos);

quickSort (A+pPos+l, N-pPos-1);

}

v
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w Upper bound on harmonic series
A Detailed Run of Quicksort

Shell:

S make
e

before
after

before
after

before
after

before
after

before
after

quickSort
quickSort

partition:
pPos = 8:

partition:
pPos = 7:

partition:
pPos = 3:

partition:
pPos = 2:

partition:
pPos = O0:

; ./quickSort

0@ -0 quickSort

23 5 40 2 23 9 68 55 4 3 1 65 29 23
23 51 2 23 9 3 4 23 55 68 65 29 40

23 51 2 23 9 3 4
4 512 23 9 3 23

4 512 23 9 3
321423 95

v
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w Upper bound on harmonic series
A Detailed Run of Quicksort (Contd.)

Shell:

before
after

before
after

before
after

before
after

before
after

partition:
pPos = 2:

partition:
pPos = O0:

partition:
pPos = 2:

partition:
pPos = 1:

partition:
pPos = O0:

after sorting by
12345 9 23 23 23 29 40 55 65 68

23
5

a1 O

40

40
29

65
65

qui

95
9 23

O O

68 65 29 40
29 55 65 68

29
40

68
68

ckSort
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w Upper bound on harmonic series
Faulty Partitioning

Editor:

int partitionI(int A[], int N, int p) {
int 1=0, h=N-1;
for (;;) {
if (1 > h) return h;
else if (A[l] <= p) 1++;
else if (A[h] > p) h——;
else {
int t=A[1]; A[1l]=A[h]; A[h]=t;
}

}
}
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Details of a Faulty Run of Quicksort

Shell:
$ make quickSort ; ./quickSort
ee quickSort.c -0 quickSort
before partition: 23 5 40 2 23 9 68 55 4 3 1 65 29 23
after pPos = 8: 23 523 2 23 9 1 3 4 55 68 65 29 40
before partition: 23 5 23 2 23 9 1 3
after pPos = 7: 23 5 23 2 23 91 3
before partition: 23 5 23 2 23 9 1
after pPos = 6: 23 5 23 2 23 9 1
before partition: 23 5 23 2 23 9
after pPos = 5: 23 5 23 2 23 9
before partition: 23 5 23 2 23
after pPos = 4: 23 5 23 2 23
before partition: 23 5 23 2
after pPos = 3: 23 5 23 2
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w Upper bound on harmonic series
Details of a Faulty Run of Quicksort (Contd.)

Editor:

before
after

before
after

before
after

before
after

before
after

partition:
pPos = 2:

partition:
pPos = 1:

partition:
pPos = 2:

partition:
pPos = 1:

partition:
pPos = O0:

after sorting by

23
23

23
23

55
55

55
55

65
65

68 65 29 40
40 29 65 68

40
40

68
68

quickSort
23 523 223 91 3 4 55 40 29 65 68
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