Contents

© Mergesort

0 Simple sorting e Quicksort

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 1/53

Simple sorting

Section outline

@ Selection Sort
' . @ Bubble Sort
@ simple sorting @ Insertion Sort

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 2/53

Simple sorting Selection Sort

Motivation of Selection Sort

@ Select smallest element
@ Interchange with top element
@ Repeat procedure leaving out the top element

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 3/53

Simple sorting Selection Sort

Recursive Selection Sort

Editor:

void selectionSortR(int Z[], int sz) {
int sel, i, t;
if (sz<=0) return;
for (i=sz-1,minI=i,i-—;i=>0;1i—-)
// select the smallest element

if (Z2[1]1<Z[minI]]) minI = i;

// interchange the min element with the top element
t=7Z[minI];

Z[minI]=2Z[0];

z[0]=t;

// now sort the rest of the array
selectionSortR(Z+1, sz-1);

CM and PB (lIT Kharagpur) Algorithms

January 23, 2023

4/53

Simple sorting Selection Sort

lterative Selection Sort

Editor:

void selectionSortI(int Z[], int sz) {
int sel, i, t;
for (j=sz; 3>0; j--) { // from full array, decrease
for (i=sz-1,minI=i,i-—-;i=>sz-7J;i--)
// sz—7 varies from 0 to sz-1 and i from sz-2 to sz—j
// select the smallest element

if (Z2[1]1<Z[minI]]) minI = i;

// interchange the min element with the top element
t=7Z[minI];

Z[minI]=Z[sz-7];

Z[sz-jl=t;

// now sort the rest of the array

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 5/53

Motivation of Bubble Sort

@ Start from the bottom and move upwards

@ If an element is smaller than the one over it, then interchange the
two

@ The smaller element bubbles up
@ Smallest element at top at the end of the pass
@ Repeat procedure leaving out the top element

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 6/53

Simple sorting Bubble Sort

Recursive Bubble Sort

Editor:

void bubbleSortR(int Z[], int sz) {
int 1i;
if (sz<=0) return;
for (i=sz-1;i>0;i--)
// the smallest element bubbles up to the top
if (2[i1<z2[i-11) {
int t;
t=7[1i];
Z[1]1=2[1-11];
Z[i-1]1=t;
}
// now sort the rest of the array
bubbleSortR (Z2+1, sz-1);

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 7/53

Iterative Bubble Sort

Editor:

void bubbleSortI (int Z[], int sz) {
int i, 3;
for (j=sz; 3>0; j—-) // from full array, decrease
for (i=sz-1;i>sz-3j;i--)
// the smallest element bubbles up to the top
if (Z[i]<Z[i-1]) {
int t;
t=2[1i];
70i]=2[i-11;
Z[1-11=t;

}

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

8/53

Insert sorted

Editor:

void insertSorted(int Z[], int ky, int sz) {

// insert ky at the correct place

// original array should have free locations

// sz is number of elements currently in the array

// sz is not the allocated size of the array

int i, pos=searchBinRAF (Z, ky, sz, 0);

if (pos<0) pos=-(pos+10);

// compensation specific to searchBinRAF

// now shift down all elements from pos onwards
for (i=sz;i>pos;i--) // start from the end! (why?)
zZ[1i1=2[i-1];

Z [posl=ky; // now the desired position i1s available

CM and PB (lIT Kharagpur) Algorithms

January 23, 2023

9/53

Simple sorting Insertion Sort

Insertion Sort

Editor:

void insertionSort (int Z[], int sz) {
int 1i;
for (i=1;i<sz;i++)
// elements 0..(i-1) are sorted, element Z[1i]
// 1s to be placed so that elements 0..i are also
sorted
insertSorted (Z, Z[i], 1i);
}

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

10/53

Mergesort

Section outline

@ Complexity of mergesort
@ In-place merging

e Mergesort @ Analysing mergesort with
@ Merging two sorted arrays in-place merging

@ Merge sort

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 11/53

Merging two sorted arrays

First array [2]5]9[23]40 1|3]4]29]55]65] 68| Second array

Merged sequence

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Merging two sorted arrays

First array | 2]|5]9[23]40 3[4]29]55]65]68]Second array

Merged sequence

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Merging two sorted arrays

First array |5]9]23]40] 3|4]29]55]|65]68]Second array
Merged sequence

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Merging two sorted arrays

First array [5]9]23]40] 14]29[55]65]68] Second array
Merged sequence

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Merging two sorted arrays

First array [5]9]23]40] 129]55] 65| 68| Second array
Merged sequence

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Merging two sorted arrays

First array 129]55]65] 68 Second array
Merged sequence

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Merging two sorted arrays

First array [23]40] 129]55]65]68 | Second array
Merged sequence |1 |2 3.4 519

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Merging two sorted arrays

First array 129]55]65]68 | Second array

Merged sequence | 1]2|3[4[5[9]23]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Merging two sorted arrays

First array 155]65] 68| Second array

Merged sequence | 1]2|3[4[5[9]23]29]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Merging two sorted arrays

First array 155]65] 68| Second array

Merged sequence | 1]2|3[4[5[9]23]29]40]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Merging two sorted arrays

First array 65|68 Second array

Merged sequence | 1]2|3[4[5]9]23]29]40[55]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Merging two sorted arrays

First array Second array

Merged sequence | 1]2|3[4[5[9]|23]|29]40[55]65]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Merging two sorted arrays

First array Second array

Merged sequence |1]2]3[4]5|9]23|29]40]55]|65]68]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 12/53

Recursive definition of merging

@ M, N are number of elements in A and B, respectively
@ Array indices start from 0
@ Initial call: merge(A, N, 0, B,M,0, C,0) (1.1)

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 13/53

Recursive definition of merging

@ M, N are number of elements in A and B, respectively
@ Array indices start from 0

@ Initial call: merge(A, N, 0, B,M,0, C,0) (1.1)
merge(A,N,i,B,M.,j, C, k)
(if (i > N A\ j > M) then done (1.2)
else if (i > N) then merge(A,N,i,B,M,j+1,C, k+ 1),
st Clk] = BJj] (1.3)
else if (j > M) then merge(A,N,i+1,B,M,j,C .k + 1),
= st C[k] = A[]] (1.4)
else if (A[/] < BJj]) then merge(A,N,i+1,B,M,j,C, k+ 1),
st Clk] = A[i] (1.5)
otherwise merge(A,N,i,B,M,j+1,C, k + 1),
(st Clk] = BJj] (1.6)
Definition is tail recursive @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 13/53

Recursive function for merging

Editor:

void merge (int A[], int N, int 1,

if

int B[], int M, int j, int C[], int k) {
(i > N && j >= M) return; // by clause (2)

else if (i >= N) { // by clause (3)

}

Clk] = B[3];
merge (A, N, i, B, M, j + 1, C , k + 1);
else if (j >= M) { // by clause (4)

Clk] = A[i];

merge (A, N, i + 1, B, M, j, C , k + 1);
else if (A[i] <= B[j]1) { // by clause (5)
Clk] = A[i];

merge (A, N, i + 1, B, M, j, C , k + 1);
else { // by clause (6)

Clk] = BI[J];

merge (A, N, i, B, M, j + 1, C , k + 1);

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

14/53

Testing the recursive merging

Editor:

#include <stdio.h>

void showIArr (int A[], int n) {
int 1i;
for (i=0; i<n; i++) printf("%sd ", A[i]);
printf ("\n")

}

int main() {
int A[]={2, 5, 9, 23, 40};
int B[1={1, 3, 4, 29, 55, 65, 68};
int C[12];

printf ("after merging "); showIArr (A,5);
printf ("and "); showIArr (B,7);
merge (A, 5, 0, B, 7, 0, C , 0);
showIArr (C,12);
return 0; }
W

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 15/53

Results of test

Shell:
$ make mergeSort ; ./mergeSort
ee mergeSort.c —0 mergeSort

after merging 2 5 9 23 40
and 1 3 4 29 55 65 68
1 23459 23 29 40 55 65 68

@

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 16/53

Iterative function for merging

Editor:

void mergel (int A[
int i=0, 3=0, k=
do {

if (i >= N && j >= M) break; // by clause (2)
else if (i >= N) { // by clause (3)

1, int N, int B[], int M, int C[]) {
0; // by clause (1)

Clkl = BI[31; J++, k++;

} else if (j >= M) { // by clause (4)
Cl[k] = A[i]; it++; kt++;

} else if (A[i] <= B[j]) { // by clause (5)
Clk] = A[i]; i++; k++;

} else { // by clause (6)
Cl[k] = BI[jl; J+t+; k++;

}

} while (1);

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 17/53

Testing the iterative merging

Editor:

void showIArr (int A[], int n) {
int 1i;
for (i=0; i<n; i++) printf("$d ", A[i]);
printf ("\n");

}

int main() {
int A[1={2, 5, 9, 23, 40};
int B[1={1, 3, 4, 29, 55, 65, 68};
int C[12];
printf ("after merging "); showIArr (A,5);
printf ("and "); showIArr(B,7);
printf ("by mergeR "); mergeR(A, 5, 0, B,

showIArr (C,12);
printf ("by mergel "); mergeI(A, 5, B, 7,

O 7
CM and PB (lIT Kharagpur) Algorithms

January 23, 2023

18/53

Results of test

Shell:
$ make mergeSort ; ./mergeSort
cc mergeSort.c -0 mergeSort

after merging 2 5 9 23 40

and 1 3 4 29 55 65 68

by mergeR 1 2 3 4 5 9 23 29 40 55 65 68
by mergelI 1 2 3 4 5 9 23 29 40 55 65 68

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 19/53

Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 20/53

Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 20/53

Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]

@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 20/53

Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]

@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29

@ Sort first part

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 20/53

Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]

@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29

@ Sort first part
12]5|9]23]40]68]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 20/53

Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
@ Sort first part
12]5|9]23]40]68]
@ Sort second part

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 20/53

Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
@ Sort first part
12]5|9]23]40]68]
@ Sort second part

113[4]29]55(|65

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 20/53

Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
@ Sort first part
12]5|9]23]40]68]
@ Sort second part

113[4]29]55(|65

@ After sorting the two parts:

First[2]5[9]23][40]68] [1]3]4]29]55]65]Second

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 20/53

Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
@ Sort first part
12]5|9]23]40]68]
@ Sort second part

113[4]29]55(|65

@ After sorting the two parts:

First[2]5[9]23][40]68] [1]3]4]29]55]65]Second

@ Merge the two sorted sequences

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 20/53

Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
@ Sort first part
12]5|9]23]40]68]
@ Sort second part

113[4]29]55(|65

@ After sorting the two parts:

First[2]5[9]23][40]68] [1]3]4]29]55]65]Second

@ Merge the two sorted sequences
merge (A, nA, B, nB, C)

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 20/53

Merging two sorted arrays

@ Given array
123[5]40|2]9]68]55]4]3]1]65]29]
@ Split given array into two parts
123]5[40[2]|9]68| [55]4]3]1]65]29
@ Sort first part
12]5|9]23]40]68]
@ Sort second part

113[4]29]55(|65

@ After sorting the two parts:

First[2]5[9]23][40]68] [1]3]4]29]55]65]Second

@ Merge the two sorted sequences
merge (A, nA, B, nB, C)

@ After merging the two sorted parts (the required result)
11]2]3]4]5]9]23]29]40][55]65]68]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

20/53

Recursive definition of mergesort

@ N is the number of elements in A
@ Array indices start from 0

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 21/53

Mergesort Merge sort

Recursive definition of mergesort

@ N is the number of elements in A
@ Array indices start from 0
mergeSort(A N, C)

(if (N < 1) then done (2.1)
let M =N/2 (2.2)
do mergeSort(A, M, C) (2.3)

do mergeSort(A+ M, N —-M,C) (2.4)
do merge(A,M,A+ M,N - M,C) (2.5)
do copyBack(A, C, N) (2.6)

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 21/53

Code for mergeSort

Editor:

void mergeSort (int A[], int N, int C[]) {
int M;
if (N<=1) return; // by clause (1)
M = N/2; // by clause (2)
mergeSort (A, M, C); // by clause (3)
mergeSort (A + M, N - M, C); // by clause (4)
mergel (A, M, A + M, N - M, C); // by clause (5)
copyBack (A, C, N); // by clause (6)

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

22/53

Code for mergeSort

Editor:
void mergeSort (int A[], int N, int C[]) {

}

int M;

if (N<=1) return; // by clause (1)

M = N/2; // by clause (2)

mergeSort (A, M, C); // by clause (3)
mergeSort (A + M, N - M, C); // by clause (4)
mergel (A, M, A + M, N - M, C); // by clause (5)
copyBack (A, C, N); // by clause (6)

void copyBack (int A[], int C[], int N) {

int 1i;
for (1=0;i<N;i++) A[i]=C[1i];

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

22/53

Testing mergesort

Editor:

int main() {
int A[]1={23,5,40,2,9,68,55,4,3,1,65,29};
int C[12];
printf ("after sorting by mergeSort ");
mergeSort (A, 12, C);
printf ("\n"); showIArr(A,12);

return 0; }

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

23/53

Results of testing mergesort

Shell:
$ make mergeSort ; ./mergeSort
ee mergeSort.c —0 mergeSort

after sorting by mergeSort
1 23459 23 29 40 55 65 68

@

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 24/53

Complexity of mergesort

T(n)=T(n/2)+ T(n/2)+©(n) =2T(n/2) + ©(nN)
T(0)=©(1)
T(n) =©(nlgn)
@ Given implementation requires extra storage space (equal to size
of input)
@ In-place version not trivial if O(NIg N) is to be preserved
@ Simple in-place version to be studied next

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 25/53

Complexity of mergesort

T(n)=T(n/2)+ T(n/2)+©(n) =2T(n/2) + ©(n)
T(0)=©(1)
T(n) =©(nlgn)

@ Given implementation requires extra storage space (equal to size

of input)

@ In-place version not trivial if O(NIg N) is to be preserved

@ Simple in-place version to be studied next

@ Mergesort was invented by John von Neumann in 1945

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 25/53

In-place merging
@ M is number of elements in the first half of A
@ N is the total number of elements in A
@ Array indices start from 0
@ |Initial call: merge(A, M, N)

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

26/53

In-place merging
@ M is number of elements in the first half of A
@ N is the total number of elements in A

@ Array indices start from 0

@ Initial call: merge(A, M, N) (4.1)
mergelnPI(A, M, N)
if (M<0VvM>NvV N <0)then done (4.2)
= ¢ elseif (A[0] < A[M]) then mergeInPI(A+1,M -1, N—-1) (4.3)
else mergelnPI(cpySft(A, M), M, N — 1) (4.4)

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 26/53

In-place merging
@ M is number of elements in the first half of A
@ N is the total number of elements in A
@ Array indices start from 0
@ |Initial call: merge(A, M, N)

(4.1)
mergelnPI(A, M, N)
if (M<0VM=>NVN <0) then done (4.2)
= ¢ elseif (A[0] < A[M]) then mergeInPI(A+1,M -1, N—-1) (4.3)
else mergelnPI(cpySft(A, M), M,N — 1) (4.4)

Editor:

void mergeInPl (int A[], int M, int N) {

if (M<=0 or M >= N or N <= 0) return;

else if (A[0] <= A[M]) mergelInPl (A+1, M-1, N-1);
else { // cpySft() is inlined

int i, T = A[M];

for (i=M; i; i--) A[i] = A[i-1];

A[Q0] = T; mergeInPl (A+1, M-1, N-1);

CM and PB (lIT Kharagpur) Algorithms

January 23, 2023 26/53

Analysing mergesort with in-place merging

a n=-1
T(n):{ 2T(g)+bn+cn2+d n>1n=2%d>0

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 27/53

Analysing mergesort with in-place merging

a n=1
T(n):{ 2T(n)+bn+cn2+d n>1,n=29d>0

2
Letn=28
[7] bqu><1+c><1f2><1+d><1
[3 I 3 bxgx2+c><’272—2><2+d><2
[1 I 7 I 7 I 7] b><£><4—|—c><22—2><4—|—d><4
. axs

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 27/53

Analysing mergesort with in-place merging

a n=-1
T(n):{ 2T(g>+bn+cn2+d n>1n=2%d>0

] bqu><1+c><1f2><1+d><1

3] bxgx2+c><’272—2><2+d><2
(3 (88 [3) bxfxdtexfpxdtdxs
... axa

@ lgnxbxn+(1+3+... 4 z—)xcxm+(n-1)xd+nxa=
lgnxbxn+2x(1-27"%") xexnm+(n—-1)xd+nxa=
lgnxbxn+2x (=) xexnm+(n—1)xd+nxa

@ Asymptotic bound: T(n) € ©(n?) ®

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 27/53

Section outline

@ Worst and best cases of
complexity of quicksort

© Quicksort @ Average case complexity of
@ Simple version of quicksort quicksort
@ In-place Version of Quick @ Upper bound on harmonic
Sort series

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 28/53

Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9
@ Partition all elements in the array into two sets,

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set

o First set

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set

e First set 123]40]68]55] 65|29 |second set

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set
e First set 123]40]68]55] 65|29 |second set
@ Sort first set

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set
e First set 123]40]68]55] 65|29 |second set
@ Sort first set

9]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set
e First set 123]40]68]55] 65|29 |second set
@ Sort first set

9] [23]40]68]55[65[29]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set
e First set 123]40]68]55] 65|29 |second set
@ Sort first set

9] [23]40]68]55[65]29]

@ Sort second set

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set
e First set 123]40]68]55] 65|29 |second set
@ Sort first set

9] [23]40]68]55[65]29]

@ Sort second set

123|29]40][55]65]68]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

w Simple version of quicksort
Partitioning Leading to Sorting

e [23]5]40]2]9]68[55]4]3]1]65]29

@ Pick up any element p, say 9

@ Partition all elements in the array into two sets,
first set: elements that are < p (< 9),
second set: elements that are > p (> 9)

@ Disregard ordering of elements within each set

e First set 123]40]68]55] 65|29 |second set
@ Sort first set

9] [23]40]68]55] 6529
@ Sort second set

9] [23]29]40]55]65] e8]
@ Entire array is now sorted

11]2]3]4|5]9]23]29]40[55]65]|68] &

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 29/53

Outline of Quicksort

@ Given an array A of N elements
@ Pick up a suitable element p from the array

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 30/53

Outline of Quicksort

@ Given an array A of N elements

@ Pick up a suitable element p from the array

@ Simple choice is to pick up the first element

@ Partition the elements of A based on p

@ Let first part be all elements < p or possibly < p
@ Second part — all elements > p

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 30/53

Outline of Quicksort

@ Given an array A of N elements

@ Pick up a suitable element p from the array

@ Simple choice is to pick up the first element

@ Partition the elements of A based on p

@ Let first part be all elements < p or possibly < p

@ Second part — all elements > p

@ Sort the two parts (does not matter which part is sorted first)

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 30/53

Outline of Quicksort

@ Given an array A of N elements

@ Pick up a suitable element p from the array

@ Simple choice is to pick up the first element

@ Partition the elements of A based on p

@ Let first part be all elements < p or possibly < p

@ Second part — all elements > p

@ Sort the two parts (does not matter which part is sorted first)
@ Now the whole of A is sorted

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 30/53

Outline of Quicksort

@ Given an array A of N elements

@ Pick up a suitable element p from the array

@ Simple choice is to pick up the first element

@ Partition the elements of A based on p

@ Let first part be all elements < p or possibly < p

@ Second part — all elements > p

@ Sort the two parts (does not matter which part is sorted first)
@ Now the whole of A is sorted

@ Quicksort was invented by Tony Hoare in 1960

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 30/53

Simple Partitioning Scheme

@ Elements are originally in an array A

123[5]40]|2]9]68]55]4]3]1]65]29

@ Let pivot element be 9

@ Partitioning is done in another array B:
Smaller Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A

[5]40]2]|9]68[55]4[3]1]65]29

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller (23 |Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A

[40]2[9]68]55|4][3]|1]65]29

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller (23 |Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A

2|9|68|55|4|3|1]|65[29

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller [40[23 Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A

9(68]55(4|3]|1|65[29

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller [40]23]Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A

68]55(4|3|1]|65[29

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller [40]23]Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A

55]1413|1]65]|29

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller [40]23]Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A

413[1]65|29

@ Let pivot element be 9

@ Partitioning is done in another array B:
Smaller [55]68][40]23]Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A
@ Let pivot element be 9

@ Partitioning is done in another array B:
Smaller [5[2]4] [55]68][40]23]Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A
@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller[5[2]4]3] [55]68][40]23]Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A
@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller [5[2]4]3] 1] [55]68][40]23]Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A

@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller [5[2]4]3] 1] [65[55]68|[40]23 |Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A
@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller [5[2]4]3] 1] [29]65]55]68][40]23 |Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A
@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller[5[2]4[3][1] [9] [29]65]55]68][40]23]Larger

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Simple Partitioning Scheme

@ Elements are originally in an array A
@ Let pivot element be 9
@ Partitioning is done in another array B:

Smaller[5]2[4[3]1] [9] [29]65]55]68]|[40]23]Larger

@ Need to be careful while partitioning to avoid getting into an
infinite loop

@ Can be ensured by getting out at least one copy of the pivot

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 31/53

Recursive Definition of Simple Partitioning

@ Assume that all elements are distinct

@ M is the number of elements in A

@ Array indices start from 0

@ Initial call: simPartR(A, N,0,B,—1,N,p) (1.1)

@ Last clause skips over the pivot

@ At termination, pivot should be at B[j + 1], where it is explicitly
assigned

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 32/53

Recursive Definition of Simple Partitioning

@ Assume that all elements are distinct

@ M is the number of elements in A

@ Array indices start from 0

@ Initial call: simPartR(A, N,0,B,—1,N,p) (1.1)
@ Last clause skips over the pivot

@ At termination, pivot should be at B[j + 1], where it is explicitly

assigned
simPartR(A, N, i, B,j, k, p)
(if(i>N)then(j+1)stB[j+1]=p (1.2)

else if (A[i] < p) then simPartR(A,N,i+1,B,j+ 1,k,p)
B st B[j + 1] = A[j] (1.3)
) elseif (A[i] > p) then simPartR(A,N,i+1,B,j,k —1,p)

st Blk — 1] = A[j] (1.4)

otherwise simPartR(A,N,i+1,B,j,k —1,p) (1.5) @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 32/53

Recursive Definition of Simple Partitioning

@ Assume that all elements are distinct

@ M is the number of elements in A

@ Array indices start from 0

@ Initial call: simPartR(A, N,0,B,—1,N,p) (1.1)
@ Last clause skips over the pivot

@ At termination, pivot should be at B[j + 1], where it is explicitly

assigned
simPartR(A, N, i, B,j, k, p)
(if(i>N)then(j+1)stB[j+1]=p (1.2)

else if (A[i] < p) then simPartR(A,N,i+1,B,j+ 1,k,p)
B st B[j + 1] = A[j] (1.3)
) elseif (A[i] > p) then simPartR(A,N,i+1,B,j,k —1,p)

st Blk — 1] = A[j] (1.4)

otherwise simPartR(A,N,i+1,B,j,k —1,p) (1.5) @

Definition is tail recursive

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 32/53

Recursive Code for Simple Partitioning

Editor:

int simPartR(int A[], int N, int i,
int B[], int j, int k, int p) {
if (4 >=N) {
B[Jj+1] = p;
return (j+l); // by clause (2)
} else if (A[i] < p) {
B[j+1] = A[i];
return simPartR(A, N, i+l, B, Jj+1, k, p);
// by clause (3)
} else if (A[i] > p) {
Blk-1] = A[i];
return simPartR (A, N, i+l, B, Jj, k-1, p);
// by clause (4)
} else // by clause (5)
return simPartR (A, N, i+l1l, B, Jj, k, p);

}

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

33/53

Recursive Definition of Simple Quick Sort

@ N is the number of elements in A
@ Array indices start from 0
@ Recursive simple partitioning is used

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 34/53

Recursive Definition of Simple Quick Sort

@ N is the number of elements in A

@ Array indices start from 0

@ Recursive simple partitioning is used
quickSimSort(A, N, B)

if (N < 1) then done (1.1)

let p = simPartR(A, N, 0, B, —1, N, A[0])
= ¢ do copyBack(A, B, N) (1.2)

do quickSimSort(A, p, B) (1.3)

do quickSimSort(A+p+1,N—p—1,B) (1.4)

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 34/53

Code for Simple Quick Sort

Editor:

void quickSimSort (int A[], int N, int B[]) {
int pPos;

if (N<=1) return;

pPos = simPartR (A, N, O,

// printf ("p=%d, pPos=%d, A[N=%d]: ", p, pPos, N);
// showIArr (A,N);

// pPos = simPartI (A, N, B, A[0]);

copyBack (A, B, N);

quickSimSort (A, pPos, B);

quickSimSort (A+pPos+1l, N-pPos-1, B);

}

v

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 35/53

Result of running Simple Quick Sort

Editor:

int main() {
int A[]1={23,5,40,2,9,68,55,4,3,1,65,29};
int B[12];
quickSimSort (A, 12, B);
printf ("after sorting by quickSimSort \n\t");
showIArr (A,12);
return 0; }

Shell:
$ make quickSort ; ./quickSort
ee quickSort.c -0 quickSort

after sorting by quickSimSort
123459 23 29 40 55 65 68

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 36/53

Iterative Code for Simple Partitioning

Editor:
int simPartI(int A[], int N, int B[], int p) {
int i=0, j=-1, k=N; // // by clause (1)
for (;;) {
if (1 >=N) {

B[J+1]=p;
return (j+1 // by clause (2)

)i
} else if (A[i] < p) {
il;

B[Jj+1] = A[i]; // by clause (3)
it+; J++;

} else if (A[i] > p) {
Blk-1] = A[i]l; // by clause (4)
it+; k—-—;

} else i++; // by clause (5)

}
}

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

37/53

w Simple version of quicksort
Code & Results for Simple Quick Sort

Editor:

void quickSimSort (int A[], int N, int B[]) {
int pPos;

if (N<=1) return;

pPos = simPartI (A, N, B, A[O0]);
copyBack (A, B, N);

quickSimSort (A, pPos+l, B);
quickSimSort (A+pPos+1l, N-pPos-1, B);

Shell:
$ make quickSort ; ./quickSort
ce quickSort.c -0 quickSort

after sorting by quickSimSort
123459 23 29 40 55 65 68

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 38/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
123[5]40]|2]9]68]55]4]3][1]65]29]

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
123[5]40]|2]9]68]55]4]3][1]65]29] as 29@h > 9

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
123[5]40]|2]9]68]55]4]3]1]65]29] as 65@h > 9

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
123[5]40]|2]9]68]55]4]3]1]65]29] stuck, 23@! > 1@h

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]40]|2]9]68]55|4]3[23]65]|29] after interchange

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]40]|2]9]68]55|4]3[23]65]|29] as 1@1 < 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]40]|2]9]68]55|4]3[23]65]|29] as 5@ < 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]40]|2]9]68]55|4]3[23]65]|29] as 23@h > 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]40]|2]9]68]55|4]3[23]65]|29] stuck, 40@! > 3@h

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]3]2|9]68[55]4|40[23]65]29] after interchange

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1|5]3]2|9]68[55]4|40[23]65]|29] as 3@! < 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1|5]3]2|9]68][55]4|40[23]65]29] as 2@! < 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1|5]3]2|9]68][55]4|40[23]65]29] as 40@h > 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1|5]3]2|9]68][55]4|40[23]65]29] stuck, 9@! > 4@h

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]3]2|4]68[55]9]40[23]65]29] after interchange

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1|5]3]2|4]68[55]9]40[23]65]29] as 4@ < 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1|5]3]2|4]68[55]9]40[23]65]29] stuck, 68@| > 9@h

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]3]2]4]9[55]|68|40[23]65]29] after interchange

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]3]2]4]9[55]|68|40[23]65]29] as 68@h > 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5[3]2[4]9¢][55]68[40[23]65]29] as 55@h > 9

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5[3]2[4]9¢][55]68[40[23]65]29] stuck, 9@! > 4@h

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
1]5]3]2]4]9[55]|68|40[23]65]29] as A[l]=A[h]

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

w In-place Version of Quick Sort
In-place Partitioning Scheme

@ Let pivot element be 9

@ Elements in array A are they are partitioned using the pivot:
[1]5]3]2][4]9]55]68]40[23][65]29] as All]=A[h], end as | > h

@ Partitioning now terminates

@ Skip over smaller elements on the left: 1++

@ Skip over larger elements on the right: r—-

@ WhenA[l] == A[h] == p, skip from left: 1++

@ Stuck ifA[1]1>=p, A[h]l<=p, A[l]!=A[h]: interchange

@ Position of pivot element is (I-1) or (h) at termination

Invariant Elements to the left of the pivot are no smaller
Invariant Elements to the right of the pivot are larger
Invariant Comparison of elements in between not known @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 39/53

Code for Recursive In-place Partitioning

Editor:

int partitionR(int A[], int N, int 1, int h, int p) {

if (1 > h) return (1-1);

else if (A[l] < p) // skip smaller
return partitionR (A, N, 1+1, h, p);

else if (A[h] > p) // skip larger
return partitionR(A, N, 1, h-1, p);

else if (A[l]l==A[h]) // A[l]==A[h]l==p

// only skip copy of p in the left part
return partitionR (A, N, 1+1, h, p);

else { // stuck: A[l]l>=p, A[hl<=p, A[l]!=AT[h]
int t=A[1l]; A[l]=A[h]; A[h]=t;
// after interchange: A[l]<p, A[h]>=p
// if A[l] was p, then it is moved right
return partitionR (A, N, 1, h, p);

}

v
CM and PB (lIT Kharagpur) Algorithms January 23, 2023 40/53

Code for Iterative In-place Partitioning

Editor:

int partitionI(int A[], int N, int p) {
int 1=0, h=N-1;

for (;;) {
if (1 > h) return h; // instead of (1-1)
else if (A[1l] p) 1++;
else if (A[h] p) h——;
else if (A[1l]==A[h]) L4rar g
else {
int t=A[1l]; A[l]=A[h]; A[h]=t;
}
}

}

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

41/53

w In-place Version of Quick Sort
Code for Quicksort with In-place Partitioning

Editor:

void quickSort (int A[], int N) {
int pPos;

if (N<=1) return;

pPos = partitionR (A, N, 0, N-1, A[OQ]);
quickSort (A, pPos);

quickSort (A+pPos+l, N-pPos-1);

}

Editor:

void quickSort (int A[], int N) {
int pPos;

if (N<=1) return;

pPos = partitionI (A, N, A[O0]);
quickSort (A, pPos);

quickSort (A+pPos+l, N-pPos-1);

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

42/53

w In-place Version of Quick Sort
Testing Quick Sort

Editor:
int main() {
int A[1={23,5,40,2,9,68,55,4,3,1,65,29};
int B[12];
quickSimSort (A, 12, B);
printf ("after sorting by quickSimSort \n\t");
showIArr (A,12);

quickSort (A, 12);
printf ("after sorting by quickSort \n\t");
showIArr (A,12);

return 0; }

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 43/53

w In-place Version of Quick Sort
Results of Running Quick Sort

Shell:

$ make quickSort ; ./quickSort

cc quickSort.c -o quickSort after sorting by quickSimSort
123459 23 29 40 55 65 68

after sorting by quickSort
123459 23 29 40 55 65 68

@

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 44/53

Worst and best cases of complexity of quicksort

Worst case Pivot is placed at one of the two ends
@ T(n)=T(n—1)+06(n)
e T(0)=06(1)
@ T(n)=0(rP)
Best case Pivot is placed in the middle to generates sub-sroblem of
the same size

@ T(n)=T(n/2)+ T(n/2) +0©(n)=2T(n/2) + ©(n)
e T(0)=0(1)
@ T(n)=0©(nlgn)
About e ltis an in-place sorting algorithm
@ It is an unstable sorting algorithm — elements of the

same value may be re-orded

@ Worst case when the pivot element get place at one
of the ends @
Happens when the array is already sorted

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 45/53

Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 46/53

Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

@ T(n)= :ij:Pr[p = k] {cn+ T(k — 1) + T(n— k)} with T(0) as a constant

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 46/53

Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

@ T(n)= :ij:Pr[p = k] {cn+ T(k — 1) + T(n— k)} with T(0) as a constant

© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 46/53

Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

® T(n) =S¥ Prlp= K| {on+ T(k — 1)+ T(n— K)} with T(0) as a constant
k=1
© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1

k=n
@ nT(n)=cr?+23 T(k—1)
k=1

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 46/53

Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

® T(n) =S¥ Prlp= K| {on+ T(k — 1)+ T(n— K)} with T(0) as a constant
k=1
© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1
@ nT(n) =cn? +2k§::nT(k— 1)
k=1

k=n—1
@ (n—1)T(n—1)=c(n—1>+2 3> T(k—1), substituting n— 1 for n
k=1

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 46/53

Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

® T(n) =S¥ Prlp= K| {on+ T(k — 1)+ T(n— K)} with T(0) as a constant
k=1
© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1
@ nT(n) =cn? +2k§::nT(k— 1)
k=1

k=n—1
@ (n—1)T(n—1)=c(n—1>+2 3> T(k—1), substituting n— 1 for n
k=1

@ nT(n)—(n—1)T(n—1) =c(2n— 1)+ 2T(n— 1), after substraction

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 46/53

Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

® T(n) =S¥ Prlp= K| {on+ T(k — 1)+ T(n— K)} with T(0) as a constant
k=1
© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1
@ nT(n) =cn? +2k§::nT(k— 1)
k=1

k=n—1
@ (n—1)T(n—1)=c(n—1>+2 3> T(k—1), substituting n— 1 for n
k=1

@ nT(n)—(n—1)T(n—1) =c(2n— 1)+ 2T(n— 1), after substraction
@ nT(n)=(Mn+1)T(n—1)+c(2n—1)

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 46/53

Average case complexity of quicksort

Pivot may be anywhere with a uniform distribution

T(n) = S~ Prlp = Kl {cn+ T(k — 1) + T(n — k)} with T(0) as a constant
k=1
T(n)=cn+ 1S {T(k = 1)+ T(n—K)} = on+ 2'S% T(k — 1)
= k=1
nT(n) = cm® + 2k§::n T(k—1)
k=1

k=n—1
(n—N)T(n—1)=c(n—1)24+2 3 T(k—1), substituting n— 1 for n
k=1

nT(n)—(n—1)T(n—1) =c(2n—1) +2T(n — 1), after substraction
nT(n)=(n+1)T(n—1)+c(2n—1)

T(n) < T(n—1) N 2c < T(n—1)+g

n+1 n n+1 n n

@

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 46/53

Average case complexity of quicksort

Pivot may be anywhere with a uniform distribution

T(n) = S~ Prlp = Kl {cn+ T(k — 1) + T(n — k)} with T(0) as a constant
k=1
T(n)=cn+ 1S {T(k = 1)+ T(n—K)} = on+ 2'S% T(k — 1)
= k=1
nT(n) = cm® + 2k§::n T(k—1)
k=1

k=n—1
(n—N)T(n—1)=c(n—1)24+2 3 T(k—1), substituting n— 1 for n
k=1

nT(n)—(n—1)T(n—1) =c(2n—1) +2T(n — 1), after substraction
nT(n)=(n+1)T(n—1)+c(2n—1)

T(n) < T(n—1) N 2c T(n—1)

n+17— n n+1 n n

Let S(n) = () , then S(0) = @_T(O) and

@

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 46/53

Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

® T(n) =S¥ Prlp= K| {on+ T(k — 1)+ T(n— K)} with T(0) as a constant
k=1
© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1
@ nT(n) =cn? +2k§::nT(k— 1)
k=1

k=n—1
(n—N)T(n—1)=c(n—1)24+2 3 T(k—1), substituting n— 1 for n
k=1

nT(n)—(n—1)T(n—1) =c(2n—1) +2T(n — 1), after substraction
nT(n)=(n+1)T(n—1)+c(2n—1)

T(n) < T(n—1) N 2c T(n—1)

n+17— n n+1 n n

Let S(n) = () , then S(0) = @_T(O) and

@ 5(n) < S(n 71)+— < S(n— .2)+2—C1+E < T(0)+ ($++2—:) — T(0)+2cH,

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 46/53

Average case complexity of quicksort

@ Pivot may be anywhere with a uniform distribution

® T(n) =S¥ Prlp= K| {on+ T(k — 1)+ T(n— K)} with T(0) as a constant
k=1
© T(m=cn+ 1S {T(k—1)+ T(n—K)} = on+ 2'5% T(k - 1)
k=1 k=1

k=n
@ nT(n)=cr?+23 T(k—1)
k=1

@ (n—1N)T(n—1)=c(n—1)2 +2k:zn:_1 T(k — 1), substituting n — 1 for n
k=1
@ nT(n)—(n—1)T(n—1) =c(2n— 1)+ 2T(n— 1), after substraction
@ nT(n)=(n+1)T(n—1)+c(2n—1)
° T(n) < T(n—1) N 2c T(n—1)
n+1 7~ n n+1 n n
@ Let S(n) = n() then S(0) = m_T(O) and
@ 5(n) < S(n 71)+— < S(n— 2)+2—C1+§ T(0)+ (210+...+2—:) = T(0)+2cH,

@ Thus, T(n) < (n+1)(T(0)+2cHn) < (n+1)T(0) +2c(n+1)Ig(n+ 1) € O(nlgn)

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 46/53

w Upper bound on harmonic series
Upper bound on harmonic series

@ Consider H, where n = 2K — 1
@ Now,

1 '2"3"4"5"6"7 ot Tt Ty
—— 2
<1 1 1 1 1 1 1 1 1 1
ST Aoty tytaitatitotamt ot ET T wT
~N YM—\— —- 2 2 2
1 2 4
ok—1
=1 +.1 +1 +...+ 1
—~ =~ =~ ~~
20 21 22 ok—1
=k
@ Total numberofterms n=1+2+... 4+ 2k=1 =2k _4
k—1,n+1 1 _ 1
@ Also, 2 _7andF_ o
2
@ Thus, k = Ig(n+ 1) and Hn < k = Ig(n+ 1) @

CM and PB (lIT Kharagpur) Algorithms January 23, 2023 47/53

Quicksort with In-place Partitioning — Showing

Details

Editor:

void quickSort (int A[], int N) {
int pPos; int p;

if (N<=1) return;

printf ("before partition: "); showIArr (A,N);
pPos = partitionI (A, N, p=A[0]);

printf (" after pPos =%3d: ", pPos);

showIArr (A,N); printf ("\n");

quickSort (A, pPos);

quickSort (A+pPos+l, N-pPos-1);

}

v

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

@

48/53

w Upper bound on harmonic series
A Detailed Run of Quicksort

Shell:

S make
e

before
after

before
after

before
after

before
after

before
after

quickSort
quickSort

partition:
pPos = 8:

partition:
pPos = 7:

partition:
pPos = 3:

partition:
pPos = 2:

partition:
pPos = O0:

; ./quickSort

0@ -0 quickSort

23 5 40 2 23 9 68 55 4 3 1 65 29 23
23 51 2 23 9 3 4 23 55 68 65 29 40

23 51 2 23 9 3 4
4 512 23 9 3 23

4 512 23 9 3
321423 95

v

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

49/53

w Upper bound on harmonic series
A Detailed Run of Quicksort (Contd.)

Shell:

before
after

before
after

before
after

before
after

before
after

partition:
pPos = 2:

partition:
pPos = O0:

partition:
pPos = 2:

partition:
pPos = 1:

partition:
pPos = O0:

after sorting by
12345 9 23 23 23 29 40 55 65 68

23
5

a1 O

40

40
29

65
65

qui

95
9 23

O O

68 65 29 40
29 55 65 68

29
40

68
68

ckSort

CM and PB (lIT Kharagpur)

Algorithms January 23, 2023

50/53

w Upper bound on harmonic series
Faulty Partitioning

Editor:

int partitionI(int A[], int N, int p) {
int 1=0, h=N-1;
for (;;) {
if (1 > h) return h;
else if (A[l] <= p) 1++;
else if (A[h] > p) h——;
else {
int t=A[1]; A[1l]=A[h]; A[h]=t;
}

}
}

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

51/53

Details of a Faulty Run of Quicksort

Shell:
$ make quickSort ; ./quickSort
ee quickSort.c -0 quickSort
before partition: 23 5 40 2 23 9 68 55 4 3 1 65 29 23
after pPos = 8: 23 523 2 23 9 1 3 4 55 68 65 29 40
before partition: 23 5 23 2 23 9 1 3
after pPos = 7: 23 5 23 2 23 91 3
before partition: 23 5 23 2 23 9 1
after pPos = 6: 23 5 23 2 23 9 1
before partition: 23 5 23 2 23 9
after pPos = 5: 23 5 23 2 23 9
before partition: 23 5 23 2 23
after pPos = 4: 23 5 23 2 23
before partition: 23 5 23 2
after pPos = 3: 23 5 23 2
Algorithms January 23, 2023 52/53

w Upper bound on harmonic series
Details of a Faulty Run of Quicksort (Contd.)

Editor:

before
after

before
after

before
after

before
after

before
after

partition:
pPos = 2:

partition:
pPos = 1:

partition:
pPos = 2:

partition:
pPos = 1:

partition:
pPos = O0:

after sorting by

23
23

23
23

55
55

55
55

65
65

68 65 29 40
40 29 65 68

40
40

68
68

quickSort
23 523 223 91 3 4 55 40 29 65 68

CM and PB (lIT Kharagpur) Algorithms January 23, 2023

53/53

	Simple sorting
	Selection Sort
	Bubble Sort
	Insertion Sort

	Mergesort
	Merging two sorted arrays
	Merge sort
	Complexity of mergesort
	In-place merging
	Analysing mergesort with in-place merging

	Quicksort
	Simple version of quicksort
	In-place Version of Quick Sort
	Worst and best cases of complexity of quicksort
	Average case complexity of quicksort
	Upper bound on harmonic series

	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:

