Contents

- Intuitive handling of recurrences
- 2 Linear recurrences with constant coefficients
- 3 Linear non-homogeneous recurrences

- Deriving solution of LNHR when $g(n) = q(n)\sigma^n$
- 5 D
 - Divide and conquer recurrences
- 6
- **Practice problems**

Section outline

Intuitive handling of recurrences

Definition of linear

recurrences

- Simple linear recurrences
- Departure form linear recurrences

Definition of linear recurrences

Definition (Linear recurrence of order *k* **with constant coefficients)**

$$T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k} + g(n)$$
 (1.1)

where *k* is fixed, $a_1, a_2, ..., a_k \neq 0$ are constants and g(n) is a real or complex function of *n*

3/67

э

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Definition of linear recurrences

Definition (Linear recurrence of order *k* **with constant coefficients)**

$$T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k} + g(n)$$
 (1.1)

where *k* is fixed, $a_1, a_2, ..., a_k \neq 0$ are constants and g(n) is a real or complex function of *n*

Definition (Homogenous linear recurrence of order *k* with constant coefficients)

A linear recurrence with constant coefficients is homogenous when g(n) = 0 and has the form

$$T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k}$$

3/67

э

< ロ > < 回 > < 回 > < 回 > < 回 > <

Example (Recurrence for doing one at a time)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + 1$ for $N \ge 2$

100

Example (Recurrence for doing one at a time)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + 1$ for $N \ge 2$

Linear but not homogenous of order 1

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021 4/67

3 N A 3 N

Example (Recurrence for doing one at a time)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + 1$ for $N \ge 2$

- Linear but not homogenous of order 1
- Apply the method of iteration

Example (Recurrence for doing one at a time)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + 1$ for $N \ge 2$

- Linear but not homogenous of order 1
- Apply the method of iteration
- T(1) = 1

ъ

Example (Recurrence for doing one at a time)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + 1$ for $N \ge 2$

- Linear but not homogenous of order 1
- Apply the method of iteration

•
$$T(1) = 1$$

•
$$T(2) = T(1) + 1 = 2$$

Example (Recurrence for doing one at a time)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + 1$ for $N \ge 2$

- Linear but not homogenous of order 1
- Apply the method of iteration

•
$$T(1) = 1$$

•
$$T(2) = T(1) + 1 = 2$$

•
$$T(3) = T(2) + 1 = 3$$

Chittaranjan Mandal (IIT Kharagpur)

Example (Recurrence for doing one at a time)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + 1$ for $N \ge 2$

- Linear but not homogenous of order 1
- Apply the method of iteration

•
$$T(1) = 1$$

•
$$T(2) = T(1) + 1 = 2$$

•
$$T(3) = T(2) + 1 = 3$$

•
$$T(N) = (N-1) + 1 = N \in \mathcal{O}(N)$$

Example (Recurrence for doing one at a time)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + 1$ for $N \ge 2$

- Linear but not homogenous of order 1
- Apply the method of iteration

•
$$T(2) = T(1) + 1 = 2$$

•
$$T(3) = T(2) + 1 = 3$$

• $T(N) = (N-1) + 1 = N \in \mathcal{O}(N)$

 Show that this recurrence captures the running time complexity of determining the maximum element, searching in an unsorted array

4/67

Example (Recurrence for doing one at a time with full sifting)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= T(N-1) + N & \text{for } N \geq 2 \end{aligned}$$

Example (Recurrence for doing one at a time with full sifting)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + N$ for $N \ge 2$

Linear but not homogenous of order 1

Example (Recurrence for doing one at a time with full sifting)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + N$ for $N \ge 2$

- Linear but not homogenous of order 1
- Apply the method of iteration

Example (Recurrence for doing one at a time with full sifting)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + N$ for $N \ge 2$

- Linear but not homogenous of order 1
- Apply the method of iteration

•
$$T(1) = 1$$

Example (Recurrence for doing one at a time with full sifting)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + N$ for $N \ge 2$

- Linear but not homogenous of order 1
- Apply the method of iteration

•
$$T(1) = 1$$

•
$$T(2) = T(1) + 2 = 1 + 2 = 3$$

Example (Recurrence for doing one at a time with full sifting)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N-1) + N$ for $N \ge 2$

- Linear but not homogenous of order 1
- Apply the method of iteration

•
$$T(1) = 1$$

•
$$T(2) = T(1) + 2 = 1 + 2 = 3$$

• T(3) = T(2) + 3 = 1 + 2 + 3 = 6

Example (Recurrence for doing one at a time with full sifting)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= T(N-1) + N & \text{for } N \geq 2 \end{aligned}$$

- Linear but not homogenous of order 1
- Apply the method of iteration

•
$$T(1) = 1$$

•
$$T(2) = T(1) + 2 = 1 + 2 = 3$$

• T(3) = T(2) + 3 = 1 + 2 + 3 = 6

•
$$T(N) = T(N-1) + 1 = 1 + 2 + 3 + \ldots + N = \frac{N(N+1)}{2} \in \mathcal{O}(N^2)$$

Example (Recurrence for doing one at a time with full sifting)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= T(N-1) + N & \text{for } N \geq 2 \end{aligned}$$

- Linear but not homogenous of order 1
- Apply the method of iteration
- *T*(1) = 1
- T(2) = T(1) + 2 = 1 + 2 = 3
- T(3) = T(2) + 3 = 1 + 2 + 3 = 6
- $T(N) = T(N-1) + 1 = 1 + 2 + 3 + \ldots + N = \frac{N(N+1)}{2} \in \mathcal{O}(N^2)$
- Show that this recurrence captures the running time complexity of bubble/insertion/selection sort

Example (Recurrence for a Herculean task)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N-1) + 1$ for $N \ge 2$

۲

Example (Recurrence for a Herculean task)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N-1) + 1$ for $N \ge 2$

Example (Recurrence for a Herculean task)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N-1) + 1$ for $N \ge 2$

Linear but not homogenous of order 1
T(1) = 1

Example (Recurrence for a Herculean task)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N-1) + 1$ for $N \ge 2$

- Linear but not homogenous of order 1
- *T*(1) = 1

•
$$T(2) = 2T(1) + 1 = 2 + 1 = 3$$

Example (Recurrence for a Herculean task)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N-1) + 1$ for $N \ge 2$

• Linear but not homogenous of order 1

•
$$T(2) = 2T(1) + 1 = 2 + 1 = 3$$

•
$$T(3) = 2T(2) + 1 = 6 + 1 = 7$$

Example (Recurrence for a Herculean task)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N-1) + 1$ for $N \ge 2$

• Linear but not homogenous of order 1

•
$$T(1) = -$$

•
$$T(2) = 2T(1) + 1 = 2 + 1 = 3$$

•
$$T(3) = 2T(2) + 1 = 6 + 1 = 7$$

•
$$T(4) = 2T(3) + 1 = 14 + 1 = 15$$

Simple linear recurrences

Sample recurrences and their solutions (contd.)

Example (Recurrence for a Herculean task)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N-1) + 1$ for $N \ge 2$

• Linear but not homogenous of order 1

•
$$T(1) = 1$$

•
$$T(2) = 2T(1) + 1 = 2 + 1 = 3$$

•
$$T(3) = 2T(2) + 1 = 6 + 1 = 7$$

•
$$T(4) = 2T(3) + 1 = 14 + 1 = 15$$

•
$$T(N) = 2^N - 1 \Rightarrow T(N) \in \mathcal{O}(2^N)$$

Example (Recurrence for a Herculean task)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= 2T(N-1) + 1 & \text{for } N \geq 2 \end{aligned}$$

• Linear but not homogenous of order 1

•
$$T(1) = 1$$

•
$$T(2) = 2T(1) + 1 = 2 + 1 = 3$$

•
$$T(3) = 2T(2) + 1 = 6 + 1 = 7$$

- T(4) = 2T(3) + 1 = 14 + 1 = 15
- $T(N) = 2^N 1 \Rightarrow T(N) \in \mathcal{O}(2^N)$
- Show that this recurrence captures the running time complexity of the towers of Hanoi problem

Chittaranjan Mandal (IIT Kharagpur)

Example (Recurrence for bank interest)

$$A_{0} = P$$

$$A_{n} = A_{n-1} \underbrace{\left(1 + \frac{r}{100}\right)}_{\text{constant}}$$

프 () () ()

Example (Recurrence for bank interest)

$$A_{0} = P$$
$$A_{n} = A_{n-1} \underbrace{\left(1 + \frac{r}{100}\right)}_{\text{constant}}$$

linear homogeneous of order one

∃ → ∢

Example (Recurrence for bank interest)

$$A_{0} = P$$

$$A_{n} = A_{n-1} \underbrace{\left(1 + \frac{r}{100}\right)}_{\text{constant}}$$

• linear homogeneous of order one • $A_n = (1 + \frac{r}{100})^n$

7/67

→ ∃ → < ∃ →</p>

August 28, 2021

Example (Recurrence for bank interest)

$$A_{0} = P$$

$$A_{n} = A_{n-1} \underbrace{\left(1 + \frac{r}{100}\right)}_{\text{constant}}$$

linear homogeneous of order one

•
$$A_n = \left(1 + \frac{r}{100}\right)^n$$

Exponential growth – not sustainable

Example (Recurrence for bank interest)

$$A_{0} = P$$

$$A_{n} = A_{n-1} \underbrace{\left(1 + \frac{r}{100}\right)}_{\text{constant}}$$

- linear homogeneous of order one
- $A_n = \left(1 + \frac{r}{100}\right)^n$
- Exponential growth not sustainable
- All banks curtail fixed deposits to a certain period of time

Example (Recurrence for eliminating half at a time)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= T(N/2) + 1 & \text{for } N \geq 2 \end{aligned}$$

3 N A 3 N

Example (Recurrence for eliminating half at a time)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N/2) + 1$ for $N \ge 2$

Apply the method of iteration

3 N A 3 N

Example (Recurrence for eliminating half at a time)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N/2) + 1$ for $N \ge 2$

Apply the method of iteration
T(1) = 1

ъ

3 N A 3 N
Example (Recurrence for eliminating half at a time)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N/2) + 1$ for $N \ge 2$

Apply the method of iteration

•
$$T(2) = T(1) + 1 = 2$$

3 N A 3 N

Example (Recurrence for eliminating half at a time)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= T(N/2) + 1 & \text{for } N \geq 2 \end{aligned}$$

- Apply the method of iteration
- *T*(1) = 1
- T(2) = T(1) + 1 = 2
- T(4) = T(2) + 1 = 3

ъ

A 3 5 A 3 5 A

Example (Recurrence for eliminating half at a time)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= T(N/2) + 1 & \text{for } N \geq 2 \end{aligned}$$

- Apply the method of iteration
- *T*(1) = 1
- T(2) = T(1) + 1 = 2
- T(4) = T(2) + 1 = 3
- $T(2^N) = N + 1 \Rightarrow T(N) = \lg N + 1 \in \mathcal{O}(\lg N)$

ъ

8/67

Example (Recurrence for eliminating half at a time)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= T(N/2) + 1 & \text{for } N \geq 2 \end{aligned}$$

- Apply the method of iteration
- *T*(1) = 1
- T(2) = T(1) + 1 = 2
- T(4) = T(2) + 1 = 3
- $T(2^N) = N + 1 \Rightarrow T(N) = \lg N + 1 \in \mathcal{O}(\lg N)$
- Show that this recurrence captures the running time complexity of binary search

< ロ > < 同 > < 回 > < 回 >

Example (Recurrence for eliminating half with full sifting)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= T(N/2) + N & \text{for } N \geq 2 \end{aligned}$$

э

Example (Recurrence for eliminating half with full sifting)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N/2) + N$ for $N \ge 2$

Apply the method of iteration

э

BAR 4 BA

Example (Recurrence for eliminating half with full sifting)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N/2) + N$ for $N \ge 2$

Apply the method of iteration
T(1) = 1

э

Image: A math

Example (Recurrence for eliminating half with full sifting)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= T(N/2) + N & \text{for } N \geq 2 \end{aligned}$$

Apply the method of iteration

•
$$T(2) = T(1) + 2 = 1 + 2 = 3$$

э

Example (Recurrence for eliminating half with full sifting)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= T(N/2) + N & \text{for } N \geq 2 \end{aligned}$$

Apply the method of iteration

•
$$T(1) = -$$

•
$$T(2) = T(1) + 2 = 1 + 2 = 3$$

•
$$T(4) = T(2) + 4 = 3 + 4 = 7$$

э

Example (Recurrence for eliminating half with full sifting)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = T(N/2) + N$ for $N \ge 2$

Apply the method of iteration

•
$$T(1) = -$$

•
$$T(2) = T(1) + 2 = 1 + 2 = 3$$

•
$$T(4) = T(2) + 4 = 3 + 4 = 7$$

•
$$T(8) = T(4) + 8 = 7 + 8 = 15$$

э

Image: A math

Example (Recurrence for eliminating half with full sifting)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= T(N/2) + N & \text{for } N \geq 2 \end{aligned}$$

Apply the method of iteration

•
$$T(1) = 1$$

•
$$T(2) = T(1) + 2 = 1 + 2 = 3$$

•
$$T(4) = T(2) + 4 = 3 + 4 = 7$$

•
$$T(8) = T(4) + 8 = 7 + 8 = 15$$

•
$$T(2^N) = 2^{N+1} - 1 \Rightarrow T(N) = 2N - 1 \in \mathcal{O}(N)$$

Chittaranian Mandal (IIT Kharagpur)

э

9/67

Example (Recurrence for eliminating half with full sifting)

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= T(N/2) + N & \text{for } N \geq 2 \end{aligned}$$

Apply the method of iteration

•
$$T(2) = T(1) + 2 = 1 + 2 = 3$$

•
$$T(4) = T(2) + 4 = 3 + 4 = 7$$

•
$$T(8) = T(4) + 8 = 7 + 8 = 15$$

•
$$T(2^N) = 2^{N+1} - 1 \Rightarrow T(N) = 2N - 1 \in \mathcal{O}(N)$$

What procedure satisfies this recurrence?

э

9/67

Image: A math

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N/2) + N$ for $N \ge 2$

Example (Recurrence for divide and conquer with full sifting)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N/2) + N$ for $N \ge 2$

Apply the method of iteration

Example (Recurrence for divide and conquer with full sifting)

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N/2) + N$ for $N \ge 2$

Apply the method of iteration
T(1) = 1

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N/2) + N$ for $N \ge 2$

- Apply the method of iteration
- T(1) = 1
- T(2) = 2T(1) + 2 = 2 + 2 = 4

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N/2) + N$ for $N \ge 2$

- Apply the method of iteration
- T(1) = 1
- T(2) = 2T(1) + 2 = 2 + 2 = 4
- T(4) = 2T(2) + 4 = 8 + 4 = 12

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N/2) + N$ for $N \ge 2$

- Apply the method of iteration
- T(1) = 1
- T(2) = 2T(1) + 2 = 2 + 2 = 4
- T(4) = 2T(2) + 4 = 8 + 4 = 12
- T(8) = 2T(4) + 8 = 24 + 8 = 32

$$T(N) = 1$$
 for $N = 1$
 $T(N) = 2T(N/2) + N$ for $N \ge 2$

- Apply the method of iteration
- T(1) = 1
- T(2) = 2T(1) + 2 = 2 + 2 = 4
- T(4) = 2T(2) + 4 = 8 + 4 = 12
- T(8) = 2T(4) + 8 = 24 + 8 = 32
- $T(2^N) = N2^N \Rightarrow T(N) = N(1 + \lg N) \in \mathcal{O}(N \lg N)$

$$\begin{aligned} T(N) &= 1 & \text{for } N = 1 \\ T(N) &= 2T(N/2) + N & \text{for } N \geq 2 \end{aligned}$$

- Apply the method of iteration
- T(1) = 1
- T(2) = 2T(1) + 2 = 2 + 2 = 4
- T(4) = 2T(2) + 4 = 8 + 4 = 12
- T(8) = 2T(4) + 8 = 24 + 8 = 32
- $T(2^N) = N2^N \Rightarrow T(N) = N(1 + \lg N) \in \mathcal{O}(N \lg N)$
- Show that this recurrence captures the running time complexity of mergesort and quicksort

Section outline

2

Linear recurrences with constant coefficients

- Classification of some recurrences
- Solving linear homogenous recurrences (LHR)
- Combining satisfying

sequences of LHRs

- Master theorem (MT) for LHRs
- Some applications of MT for LHRs
- LHR master theorem proof
- More applications of MT for LHRs

Some recurrences for classification

Number of palindromes on the English alphabet:

 $P_n = 26P_{n-2}, n \ge 2, P_0 = 1, P_1 = 26$

Some recurrences for classification

Number of palindromes on the English alphabet:
 P_n = 26P_{n-2}, n ≥ 2, P₀ = 1, P₁ = 26 – linear homogeneous recurrence of order two

• Fibonacci sequence:
$$F_n = F_{n-1} + F_{n-2}$$
, $F_0 = F_1 = 1$

Some recurrences for classification

- Number of palindromes on the English alphabet:
 P_n = 26P_{n-2}, n ≥ 2, P₀ = 1, P₁ = 26 linear homogeneous recurrence of order two
- Fibonacci sequence: F_n = F_{n-1} + F_{n-2}, F₀ = F₁ = 1 linear homogeneous recurrence of order two

• Factorials:
$$f_n = nf_{n-1}$$

12/67

Some recurrences for classification

- Number of palindromes on the English alphabet:
 P_n = 26P_{n-2}, n ≥ 2, P₀ = 1, P₁ = 26 linear homogeneous recurrence of order two
- Fibonacci sequence: $F_n = F_{n-1} + F_{n-2}$, $F_0 = F_1 = 1$ linear homogeneous recurrence of order two
- Factorials: f_n = nf_{n-1} non-linear homogeneous recurrence of order one

Classification of some recurrences (contd.)

Some recurrences for classification (contd.)

- Derangements: $D_n = (n-1)D_{n-1} + (n-1)D_{n-2}$; $D_1 = 0$, $D_2 = 1$ or $D_0 = 1$, $D_1 = 0$ - homogeneous recurrence of order two with non-constant coefficients
- Catalan numbers: $C_n = C_0 C_{n-1} + C_1 C_{n-2} + \ldots + C_{n-2} C_1 + C_{n-1} C_0$

13/67

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

August 28, 2021

Classification of some recurrences (contd.)

Some recurrences for classification (contd.)

- Derangements: $D_n = (n-1)D_{n-1} + (n-1)D_{n-2}$; $D_1 = 0$, $D_2 = 1$ or $D_0 = 1$, $D_1 = 0$ - homogeneous recurrence of order two with non-constant coefficients
- Catalan numbers: $C_n = C_0 C_{n-1} + C_1 C_{n-2} + \ldots + C_{n-2} C_1 + C_{n-1} C_0$ non-linear recurrence

• DC:
$$T_n = T_{\lfloor \frac{n}{2} \rfloor} + T_{\lceil \frac{n}{2} \rceil} + cn + d$$

August 28, 2021

Classification of some recurrences (contd.)

Some recurrences for classification (contd.)

- Derangements: $D_n = (n-1)D_{n-1} + (n-1)D_{n-2}$; $D_1 = 0$, $D_2 = 1$ or $D_0 = 1$, $D_1 = 0$ - homogeneous recurrence of order two with non-constant coefficients
- Catalan numbers: $C_n = C_0 C_{n-1} + C_1 C_{n-2} + \ldots + C_{n-2} C_1 + C_{n-1} C_0$ non-linear recurrence
- DC: T_n = T_{Lⁿ₂} + T_[ⁿ₂] + cn + d − linear recurrence, but not of constant order

Solving linear homogenous recurrences (LHR)

• Form:
$$T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_{k-1} T_{n-k+1} + a_k T_{n-k}, a_k \neq 0$$

• $\begin{bmatrix} T_n \\ T_{n-1} \\ \vdots \\ T_{n-k+2} \\ T_{n-k+1} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \ldots & 0 & a_{k-1} & a_k \\ 1 & 0 & \ldots & 0 & 0 & 0 \\ \vdots & & & & \\ 0 & 0 & \ldots & 1 & 0 & 0 \\ 0 & 0 & \ldots & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} T_{n-1} \\ T_{n-2} \\ \vdots \\ T_{n-k+1} \\ T_{n-k} \end{bmatrix}$

୬ ଏ ୯ 14/67

August 28, 2021

Solving linear homogenous recurrences (LHR)

• Form:
$$T_n = a_1 T_{n-1} + a_2 T_{n-2} + \dots + a_{k-1} T_{n-k+1} + a_k T_{n-k}, a_k \neq 0$$

• $\begin{bmatrix} T_n \\ T_{n-1} \\ \vdots \\ T_{n-k+2} \\ T_{n-k+1} \end{bmatrix} = \begin{bmatrix} a_1 \ a_2 \ \dots \ 0 \ a_{k-1} \ a_k \\ 1 \ 0 \ \dots \ 0 \ 0 \ 0 \end{bmatrix} \begin{bmatrix} T_{n-1} \\ T_{n-2} \\ \vdots \\ T_{n-k+1} \\ T_{n-k} \end{bmatrix}$
• $\begin{bmatrix} T_n \\ T_{n-1} \\ \vdots \\ T_{n-k+2} \\ T_{n-k+1} \end{bmatrix} = A \begin{bmatrix} T_{n-1} \\ T_{n-2} \\ \vdots \\ T_{n-k+1} \\ T_{n-k} \end{bmatrix}$

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

Solving linear homogenous recurrences (LHR)

• Form:
$$T_n = a_1 T_{n-1} + a_2 T_{n-2} + \dots + a_{k-1} T_{n-k+1} + a_k T_{n-k}, a_k \neq 0$$

• $\begin{bmatrix} T_n \\ T_{n-1} \\ \vdots \\ T_{n-k+2} \\ T_{n-k+1} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & 0 & a_{k-1} & a_k \\ 1 & 0 & \dots & 0 & 0 & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} T_{n-1} \\ T_{n-2} \\ \vdots \\ T_{n-k+1} \\ T_{n-k} \end{bmatrix}$
• $\begin{bmatrix} T_n \\ T_{n-1} \\ \vdots \\ T_{n-k+1} \\ T_{n-k} \end{bmatrix} = A \begin{bmatrix} T_{n-1} \\ T_{n-2} \\ \vdots \\ T_{n-k+1} \\ T_{n-k} \end{bmatrix} \Rightarrow \begin{bmatrix} T_{n+k-1} \\ T_{n+k-2} \\ \vdots \\ T_{n+1} \\ T_n \end{bmatrix} = A^n \begin{bmatrix} T_{k-1} \\ T_{k-2} \\ \vdots \\ T_{1} \\ T_{0} \end{bmatrix}$
• Note that T_0, T_1, \dots, T_{k-1} are (constant) initial values
• Also, matrix A is invertible: $|A| = (-1)^{k-1} a_k$ (as $a_k \neq 0$)
• So, A has rank k and has one or more basis of k linearly independent were the product of th

• Evaluating Aⁿ is computationally cumbersome

- Evaluating Aⁿ is computationally cumbersome
- Suppose A can be expressed as A = PDP⁻¹ where D is a diagonal matrix (only diagonal elements non-zero)

15/67

- E • • E •

- Evaluating Aⁿ is computationally cumbersome
- Suppose A can be expressed as A = PDP⁻¹ where D is a diagonal matrix (only diagonal elements non-zero)

• Then
$$A^n = (PDP^{-1}) (PDP^{-1}) \dots (PDP^{-1}) = PD^nP^{-1}$$

n times

4 3 5 4 3 5 5

- Evaluating Aⁿ is computationally cumbersome
- Suppose A can be expressed as A = PDP⁻¹ where D is a diagonal matrix (only diagonal elements non-zero)

• Then
$$A^n = \underbrace{(PDP^{-1})(PDP^{-1})\dots(PDP^{-1})}_{n \text{ times}} = PD^nP^{-1}$$

• $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_k \end{bmatrix} \Rightarrow D^n = \begin{bmatrix} \lambda_1^n & 0 & \dots & 0 \\ 0 & \lambda_2^n & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_k^n \end{bmatrix}$ (nice property)

Chittaranjan Mandal (IIT Kharagpur)

- E • • E •

- Evaluating Aⁿ is computationally cumbersome
- Suppose A can be expressed as A = PDP⁻¹ where D is a diagonal matrix (only diagonal elements non-zero)

• Then
$$A^n = \underbrace{(PDP^{-1})(PDP^{-1})\dots(PDP^{-1})}_{n \text{ times}} = PD^nP^{-1}$$

• $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_k \end{bmatrix} \Rightarrow D^n = \begin{bmatrix} \lambda_1^n & 0 & \dots & 0 \\ 0 & \lambda_2^n & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_k^n \end{bmatrix}$ (nice property)

How to find D?
• Let e_1, e_2, \ldots, e_k be linearly independent eigen vectors of A (of rank k)

16/67

- Let e₁, e₂,..., e_k be linearly independent eigen vectors of A (of rank k)
- Then $Ae_k = \lambda_k e_k$, where λ_k is the corresponding eigen value

- Let e_1, e_2, \ldots, e_k be linearly independent eigen vectors of A (of rank k)
- Then $Ae_k = \lambda_k e_k$, where λ_k is the corresponding eigen value
- Define P = [e₁ e₂ ... e_k] (note that |P| ≠ 0 as the vectors are linearly independent)

- Let e₁, e₂,..., e_k be linearly independent eigen vectors of A (of rank k)
- Then $Ae_k = \lambda_k e_k$, where λ_k is the corresponding eigen value
- Define P = [e₁ e₂ ... e_k] (note that |P| ≠ 0 as the vectors are linearly independent)

• Then
$$AP = \begin{bmatrix} \lambda_1 e_1 & \lambda_2 e_2 & \dots & \lambda_k e_k \end{bmatrix} = \begin{bmatrix} \lambda_1 e_{11} & \lambda_2 e_{21} & \dots & \lambda_k e_{k1} \\ \lambda_1 e_{12} & \lambda_2 e_{22} & \dots & \lambda_k e_{k2} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_1 e_{1k} & \lambda_2 e_{2k} & \dots & \lambda_k e_{kk} \end{bmatrix}$$

16/67

・ロ・・(型・・目・・(目・)

Solving linear homogenous recurrences (contd.)

- Let e₁, e₂,..., e_k be linearly independent eigen vectors of A (of rank k)
- Then $Ae_k = \lambda_k e_k$, where λ_k is the corresponding eigen value
- Define P = [e₁ e₂ ... e_k] (note that |P| ≠ 0 as the vectors are linearly independent)

• Then
$$AP = \begin{bmatrix} \lambda_1 e_1 & \lambda_2 e_2 & \dots & \lambda_k e_k \end{bmatrix} = \begin{bmatrix} \lambda_1 e_{11} & \lambda_2 e_{21} & \dots & \lambda_k e_{k1} \\ \lambda_1 e_{12} & \lambda_2 e_{22} & \dots & \lambda_k e_{k2} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_1 e_{1k} & \lambda_2 e_{2k} & \dots & \lambda_k e_{kk} \end{bmatrix}$$

• Now $AP = \underbrace{\begin{bmatrix} e_{11} & e_{21} & \dots & e_{k1} \\ e_{12} & e_{22} & \dots & e_{k2} \\ \vdots & \vdots & \vdots & \vdots \\ e_{1k} & e_{2k} & \dots & e_{kk} \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_k \end{bmatrix}}_{D} = PD$

- -

- -

Solving linear homogenous recurrences (contd.)

- Let e_1, e_2, \ldots, e_k be linearly independent eigen vectors of A (of rank k)
- Then $Ae_k = \lambda_k e_k$, where λ_k is the corresponding eigen value
- Define P = [e₁ e₂ ... e_k] (note that |P| ≠ 0 as the vectors are linearly independent)

• Then
$$AP = \begin{bmatrix} \lambda_1 e_1 & \lambda_2 e_2 & \dots & \lambda_k e_k \end{bmatrix} = \begin{bmatrix} \lambda_1 e_{11} & \lambda_2 e_{21} & \dots & \lambda_k e_{k1} \\ \lambda_1 e_{12} & \lambda_2 e_{22} & \dots & \lambda_k e_{k2} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_1 e_{1k} & \lambda_2 e_{2k} & \dots & \lambda_k e_{kk} \end{bmatrix}$$

• Now $AP = \begin{bmatrix} e_{11} & e_{21} & \dots & e_{k1} \\ e_{12} & e_{22} & \dots & e_{k2} \\ \vdots & \vdots & \vdots & \vdots \\ e_{1k} & e_{2k} & \dots & e_{kk} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_k \end{bmatrix} = PD$
• Thus A has been expressed as $A = PDP^{-1}$, but need to determine D

• Compute the eigenvalues of the matrix A by solving $|A - \lambda I| = 0$

• Compute the eigenvalues of the matrix A by solving $|A - \lambda I| = 0$

•
$$\underbrace{\begin{vmatrix} a_1 - \lambda & a_2 & \dots & 0 & a_{k-1} & a_k \\ 1 & -\lambda & \dots & 0 & 0 & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & \dots & 0 & 1 & -\lambda \end{vmatrix}}_{|A - \lambda I|} = 0$$

• Compute the eigenvalues of the matrix A by solving $|A - \lambda I| = 0$

•
$$\begin{vmatrix} a_{1} - \lambda & a_{2} & \dots & 0 & a_{k-1} & a_{k} \\ 1 & -\lambda & \dots & 0 & 0 & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & \dots & 0 & 1 & -\lambda \end{vmatrix} = 0$$

•
$$(a_{1} - \lambda)(-\lambda)^{k-1} - a_{2}(-\lambda)^{k-2} + a_{3}(-\lambda)^{k-3} - \dots + (-1)^{k-1}a_{k} = 0$$

Chittaranjan Mandal (IIT Kharagpur)

< □ > < @ > < E > < E > E August 28, 2021

• Compute the eigenvalues of the matrix A by solving $|A - \lambda I| = 0$

•
$$\begin{bmatrix} a_1 - \lambda & a_2 & \dots & 0 & a_{k-1} & a_k \\ 1 & -\lambda & \dots & 0 & 0 & 0 \\ \vdots & & & & & \\ 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & \dots & 0 & 1 & -\lambda \end{bmatrix} = 0$$

• $(a_1 - \lambda)(-\lambda)^{k-1} - a_2(-\lambda)^{k-2} + a_3(-\lambda)^{k-3} - \dots + (-1)^{k-1}a_k = 0$ • $(-\lambda)^k + a_1(-\lambda)^{k-1} - a_2(-\lambda)^{k-2} + \dots + (-1)^{k-1}a_k = 0$

• Compute the eigenvalues of the matrix A by solving $|A - \lambda I| = 0$

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

17/67

• Compute the eigenvalues of the matrix A by solving $|A - \lambda I| = 0$

$$\begin{vmatrix} a_{1} - \lambda & a_{2} & \dots & 0 & a_{k-1} & a_{k} \\ 1 & -\lambda & \dots & 0 & 0 & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & \dots & 0 & 1 & -\lambda \end{vmatrix} = 0$$

$$(a_{1} - \lambda)(-\lambda)^{k-1} - a_{2}(-\lambda)^{k-2} + a_{3}(-\lambda)^{k-3} - \dots + (-1)^{k-1}a_{k} = 0$$

$$(-\lambda)^{k} + a_{1}(-\lambda)^{k-1} - a_{2}(-\lambda)^{k-2} + \dots + (-1)^{k-1}a_{k} = 0$$

$$\underbrace{\lambda^{k} - a_{1}\lambda^{k-1} - a_{2}\lambda^{k-2} - \dots - a_{k}}_{\text{characteristic polynomial } \chi_{A}(\lambda)} = 0$$

$$\text{Roots of } \chi_{A}(\lambda) \text{ are the eigen values of } A$$

Image: A math

3

・ ロ ト ・ (示 ト ・ 三 ト ・ 三 ト ・ 三 ト ・ 三
August 28, 2021

Chittaranjan Mandal (IIT Kharagpur)

- It's important to compute the roots of the characteristic equation!
- Note that λⁿ satisfies the recurrence
- We shall use this observation to derive the solution without computing the eigen vectors
- If sequences *p*(*n*) and *q*(*n*) are both satisfy the LHR
 T_n = *a*₁*T_{n-1}* + *a*₂*T_{n-2}* + ... + *a_kT_{n-k}*, then *r*(*n*) = *bp*(*n*) + *cq*(*n*) is also satisfies the LHR for all *b*, *c* ∈ ℝ

- It's important to compute the roots of the characteristic equation!
- Note that λⁿ satisfies the recurrence
- We shall use this observation to derive the solution without computing the eigen vectors
- If sequences *p*(*n*) and *q*(*n*) are both satisfy the LHR
 T_n = *a*₁*T_{n-1}* + *a*₂*T_{n-2}* + ... + *a_kT_{n-k}*, then *r*(*n*) = *bp*(*n*) + *cq*(*n*) is also satisfies the LHR for all *b*, *c* ∈ ℝ

•
$$r(n) = bp(n) + cq(n)$$
 - prove by substitution
= $b(a_1p(n-1) + a_2p(n-2) + ... + a_kp(n-k)) + c(a_1q(n-1) + a_2q(n-2) + ... + a_kq(n-k))$

- It's important to compute the roots of the characteristic equation!
- Note that λⁿ satisfies the recurrence
- We shall use this observation to derive the solution without computing the eigen vectors
- If sequences *p*(*n*) and *q*(*n*) are both satisfy the LHR
 T_n = *a*₁*T_{n-1}* + *a*₂*T_{n-2}* + ... + *a_kT_{n-k}*, then *r*(*n*) = *bp*(*n*) + *cq*(*n*) is also satisfies the LHR for all *b*, *c* ∈ ℝ

•
$$r(n) = bp(n) + cq(n) - prove by substitution$$

= $b(a_1p(n-1) + a_2p(n-2) + ... + a_kp(n-k)) + c(a_1q(n-1) + a_2q(n-2) + ... + a_kq(n-k))$
= $a_1(bp(n-1) + cq(n-1)) + a_2(bp(n-2) + cq(n-2)) + ... + a_0(bp(n-k) + cq(n-k))$

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

- It's important to compute the roots of the characteristic equation!
- Note that λ^n satisfies the recurrence
- We shall use this observation to derive the solution without computing the eigen vectors
- If sequences *p*(*n*) and *q*(*n*) are both satisfy the LHR
 T_n = *a*₁*T_{n-1}* + *a*₂*T_{n-2}* + ... + *a_kT_{n-k}*, then *r*(*n*) = *bp*(*n*) + *cq*(*n*) is also satisfies the LHR for all *b*, *c* ∈ ℝ

•
$$r(n) = bp(n) + cq(n) - prove by substitution$$

= $b(a_1p(n-1) + a_2p(n-2) + ... + a_kp(n-k)) + c(a_1q(n-1) + a_2q(n-2) + ... + a_kq(n-k))$
= $a_1(bp(n-1) + cq(n-1)) + a_2(bp(n-2) + cq(n-2)) + ... + a_0(bp(n-k) + cq(n-k))$
= $a_1r(n-1) + a_2r(n-2) + ... + a_kr(n-k)$

B 1 4 B 1

- It's important to compute the roots of the characteristic equation!
- Note that λⁿ satisfies the recurrence
- We shall use this observation to derive the solution without computing the eigen vectors
- If sequences *p*(*n*) and *q*(*n*) are both satisfy the LHR
 T_n = *a*₁*T_{n-1}* + *a*₂*T_{n-2}* + ... + *a_kT_{n-k}*, then *r*(*n*) = *bp*(*n*) + *cq*(*n*) is also satisfies the LHR for all *b*, *c* ∈ ℝ

•
$$r(n) = bp(n) + cq(n) - prove by substitution$$

= $b(a_1p(n-1) + a_2p(n-2) + ... + a_kp(n-k)) + c(a_1q(n-1) + a_2q(n-2) + ... + a_kq(n-k))$
= $a_1(bp(n-1) + cq(n-1)) + a_2(bp(n-2) + cq(n-2)) + ... + a_0(bp(n-k) + cq(n-k))$
= $a_1r(n-1) + a_2r(n-2) + ... + a_kr(n-k)$

• From now ρ will denote the roots instead of λ

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

Example (A recurrence of order 2)

Consider
$$F_n = F_{n-1} + F_{n-2}$$

• Does $T_n = \left(\frac{1+\sqrt{5}}{2}\right)^n$ satisfy this recurrence?

Image: A math

э

Example (A recurrence of order 2) Consider $F_n = F_{n-1} + F_{n-2}$ • Does $T_n = \left(\frac{1+\sqrt{5}}{2}\right)^n$ satisfy this recurrence? LHS= $\left(\frac{1+\sqrt{5}}{2}\right)^n$, RHS= $\left(\frac{1+\sqrt{5}}{2}\right)^{n-1} + \left(\frac{1+\sqrt{5}}{2}\right)^{n-2}$

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

< ロ > < 同 > < 回 > < 回 >

э

Example (A recurrence of order 2)
Consider
$$F_n = F_{n-1} + F_{n-2}$$

• Does $T_n = \left(\frac{1+\sqrt{5}}{2}\right)^n$ satisfy this recurrence?
 $LHS = \left(\frac{1+\sqrt{5}}{2}\right)^n$, $RHS = \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} + \left(\frac{1+\sqrt{5}}{2}\right)^{n-2}$
 $= \left(\frac{1+\sqrt{5}}{2}\right)^{n-2} \left[\frac{1+\sqrt{5}}{2}+1\right] =$

August 28, 2021

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

Example (A recurrence of order 2 (contd.))

Consider $F_n = F_{n-1} + F_{n-2}$ • Does $F_n = \left(\frac{1-\sqrt{5}}{2}\right)^n$ satisfy this recurrence?

Example (A recurrence of order 2 (contd.))

Consider
$$F_n = F_{n-1} + F_{n-2}$$

• Does $F_n = \left(\frac{1-\sqrt{5}}{2}\right)^n$ satisfy this recurrence?
LHS= $\left(\frac{1-\sqrt{5}}{2}\right)^n$, RHS= $\left(\frac{1-\sqrt{5}}{2}\right)^{n-1} + \left(\frac{1-\sqrt{5}}{2}\right)^{n-2}$

Chittaranjan Mandal (IIT Kharagpur)

Example (A recurrence of order 2 (contd.))

Consider
$$F_n = F_{n-1} + F_{n-2}$$

• Does $F_n = \left(\frac{1-\sqrt{5}}{2}\right)^n$ satisfy this recurrence?
LHS= $\left(\frac{1-\sqrt{5}}{2}\right)^n$, RHS= $\left(\frac{1-\sqrt{5}}{2}\right)^{n-1} + \left(\frac{1-\sqrt{5}}{2}\right)^{n-2}$
 $= \left(\frac{1-\sqrt{5}}{2}\right)^{n-2} \left[\frac{1-\sqrt{5}}{2} + 1\right] =$

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

August 28, 2021

Example (A recurrence of order 2 (contd.))

Consider
$$F_n = F_{n-1} + F_{n-2}$$

• Does $F_n = \left(\frac{1-\sqrt{5}}{2}\right)^n$ satisfy this recurrence?
LHS = $\left(\frac{1-\sqrt{5}}{2}\right)^n$, RHS = $\left(\frac{1-\sqrt{5}}{2}\right)^{n-1} + \left(\frac{1-\sqrt{5}}{2}\right)^{n-2}$
 $= \left(\frac{1-\sqrt{5}}{2}\right)^{n-2} \left[\frac{1-\sqrt{5}}{2} + 1\right] =$
 $= \left(\frac{1-\sqrt{5}}{2}\right)^{n-2} \frac{1-2\sqrt{5}+5}{4} = \left(\frac{1-\sqrt{5}}{2}\right)^n$
• $F_n = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$ will be a solution to the LHR

Chittaranjan Mandal (IIT Kharagpur)

Example (A recurrence of order 2 (contd.))

• Determine c_1 and c_2 so that $F_0 = 0$, $F_1 = 1$

•
$$c_1 + c_2 = 0$$
, so $c_1 = -c_2$ [for $n = 0$]
• $c_1\left(\frac{1+\sqrt{5}}{2}\right) + c_2\left(\frac{1-\sqrt{5}}{2}\right) = c_1\sqrt{5} = 1$ [for $n = 1$]
• $c_1 = \frac{1}{\sqrt{5}}$ and $c_2 = -\frac{1}{\sqrt{5}}$

Example (A recurrence of order 2 (contd.))

• Determine c_1 and c_2 so that $F_0 = 0$, $F_1 = 1$

•
$$c_1 + c_2 = 0$$
, so $c_1 = -c_2$ [for $n = 0$]
• $c_1\left(\frac{1+\sqrt{5}}{2}\right) + c_2\left(\frac{1-\sqrt{5}}{2}\right) = c_1\sqrt{5} = 1$ [for $n = 1$]
• $c_1 = \frac{1}{\sqrt{5}}$ and $c_2 = -\frac{1}{\sqrt{5}}$
• What if $E_0 = 0$ and $E_2 = 1$ had been provided instead?

Example (Another recurrence of order 2)

Consider $T_n = 2aT_{n-1} - a^2T_{n-2}$

• Does $T_n = a^n$ satisfy this recurrence?

-∃ → - ∢ ∃ →

Example (Another recurrence of order 2)

Consider $T_n = 2aT_{n-1} - a^2T_{n-2}$

• Does $T_n = a^n$ satisfy this recurrence?

• LHS=
$$a^n$$
, RHS= $2aa^{n-1} - a^2a^{n-2} = a^n$

23/67

Chittaranjan Mandal (IIT Kharagpur)

Example (Another recurrence of order 2)

Consider $T_n = 2aT_{n-1} - a^2T_{n-2}$

- Does $T_n = a^n$ satisfy this recurrence?
- LHS= a^n , RHS= $2aa^{n-1} a^2a^{n-2} = a^n$
- Does $T_n = na^n$ satisfy this recurrence?

23/67

・ロト ・同ト ・ヨト ・ヨト

Example (Another recurrence of order 2)

Consider
$$T_n = 2aT_{n-1} - a^2T_{n-2}$$

- Does $T_n = a^n$ satisfy this recurrence?
- LHS= a^n , RHS= $2aa^{n-1} a^2a^{n-2} = a^n$
- Does $T_n = na^n$ satisfy this recurrence?
- LHS= na^n , RHS= $2ana^{n-1} a^2na^{n-2} = na^n$
- $T_n = c_1 a^n + c_2 n a^n$ will be the solution
- c₁ and c₂ can be determined from the initial conditions

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Master theorem (MT) for LHRs

Theorem (Master theorem (MT) for LHRs)

• Consider the LHR with constant coefficients $a_0, a_1, \ldots, a_{k-1}$

$$T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k}$$
 (4.1)

Master theorem (MT) for LHRs

Theorem (Master theorem (MT) for LHRs)

• Consider the LHR with constant coefficients $a_0, a_1, \ldots, a_{k-1}$

$$T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k}$$
 (4.1)

Its characteristic polynomial has k roots (some may have multiplicity):

$$\chi_{\mathcal{A}}(x) = x^{k} - a_{1}x^{k-1} - a_{2}x^{k-2} - \ldots - a_{k}$$
(4.2)
Master theorem (MT) for LHRs

Theorem (Master theorem (MT) for LHRs)

• Consider the LHR with constant coefficients $a_0, a_1, \ldots, a_{k-1}$

$$T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k}$$
 (4.1)

Its characteristic polynomial has k roots (some may have multiplicity):

$$\chi_{\mathcal{A}}(x) = x^{k} - a_{1}x^{k-1} - a_{2}x^{k-2} - \dots - a_{k}$$
(4.2)

Let the roots be ρ₁ with multiplicity m₁, ρ₂ with multiplicity m₂, ..., ρ_t with multiplicity m_t, so that m₁ + m₂ + ... + m_t = k

24/67

Master theorem (MT) for LHRs

Theorem (Master theorem (MT) for LHRs)

• Consider the LHR with constant coefficients $a_0, a_1, \ldots, a_{k-1}$

$$T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k}$$
 (4.1)

Its characteristic polynomial has k roots (some may have multiplicity):

$$\chi_{\mathcal{A}}(x) = x^{k} - a_{1}x^{k-1} - a_{2}x^{k-2} - \ldots - a_{k}$$
(4.2)

Let the roots be ρ₁ with multiplicity m₁, ρ₂ with multiplicity m₂, ..., ρ_t with multiplicity m_t, so that m₁ + m₂ + ... + m_t = k

• Recurrence 4.1 is satisfied by $T_n = \sum_{i=1}^t \sum_{j=0}^{m_i-1} c_{ij} n^j \rho_i^n$ (c_{ij} being constants)

• Elaborated as:
$$T_n = \begin{pmatrix} c_{1,0} + c_{1,1}n + \dots + c_{1,m_1-1}n^{m_1-1} \\ c_{2,0} + c_{2,1}n + \dots + c_{2,m_1-1}n^{m_2-1} \end{pmatrix} \rho_2^n + \dots + \begin{pmatrix} c_{t,0} + c_{t,1}n + \dots + c_{t,m_1-1}n^{m_t-1} \end{pmatrix} \rho_t^n,$$

Chittaranjan Mandal (IIT Kharagpur)

24/67

Example

•
$$T_n = aT_{n-1}$$

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

August 28, 2021

< A >

25/67

Example

•
$$T_n = aT_{n-1}, \chi_A(x) = x - a = 0, c = T_0, T_n = T_0 a^n$$

Chittaranjan Mandal (IIT Kharagpur)

- ₹ 🖬 🕨 August 28, 2021

э

< A >

Example

•
$$T_n = aT_{n-1}, \chi_A(x) = x - a = 0, c = T_0, T_n = T_0 a^n$$

• $P_n = 26P_{n-2}, \chi_A(x) = x^2 - 26 = 0, \{\rho\} : \pm \sqrt{26},$
 $P_n = c_1(\sqrt{26})^n + c_2(-\sqrt{26})^n$

25/67

э

< A >

August 28, 2021

Example

•
$$T_n = aT_{n-1}, \chi_A(x) = x - a = 0, c = T_0, T_n = T_0 a^n$$

• $P_n = 26P_{n-2}, \chi_A(x) = x^2 - 26 = 0, \{\rho\} : \pm \sqrt{26}, P_n = c_1(\sqrt{26})^n + c_2(-\sqrt{26})^n$
Using $P_0 = 1$ and $P_1 = 26, c_1 = \frac{1 + \sqrt{26}}{2}, c_2 = \frac{1 - \sqrt{26}}{2}$

25/67

э

Chittaranjan Mandal (IIT Kharagpur)

 →
 →
 →
 →

 August 28, 2021
 →
 →

< A

Example

•
$$T_n = aT_{n-1}, \chi_A(x) = x - a = 0, c = T_0, T_n = T_0 a^n$$

• $P_n = 26P_{n-2}, \chi_A(x) = x^2 - 26 = 0, \{\rho\} : \pm \sqrt{26}, P_n = c_1(\sqrt{26})^n + c_2(-\sqrt{26})^n$
Using $P_0 = 1$ and $P_1 = 26, c_1 = \frac{1 + \sqrt{26}}{2}, c_2 = \frac{1 - \sqrt{26}}{2}$
 $P_n = \left(\frac{1 + \sqrt{26}}{2}\right)(\sqrt{26})^n + \left(\frac{1 - \sqrt{26}}{2}\right)(-\sqrt{26})^n$

25/67

Example

•
$$F_n = F_{n-1} + F_{n-2}, \ \chi(x) = x^2 - x - 1 = 0$$

26/67

э

Chittaranjan Mandal (IIT Kharagpur)

< A >

Example

•
$$F_n = F_{n-1} + F_{n-2}, \ \chi(x) = x^2 - x - 1 = 0, \ \rho_1 = \frac{1 + \sqrt{5}}{2},$$

 $\rho_2 = \frac{1 - \sqrt{5}}{2}, \ F_n = c_1 \rho_1^n + c_2 \rho_2^n$

26/67

э

Chittaranjan Mandal (IIT Kharagpur)

★ ∃ > < ∃ > August 28, 2021

< A >

Example

•
$$F_n = F_{n-1} + F_{n-2}, \ \chi(x) = x^2 - x - 1 = 0, \ \rho_1 = \frac{1 + \sqrt{5}}{2},$$

 $\rho_2 = \frac{1 - \sqrt{5}}{2}, \ F_n = c_1 \rho_1^n + c_2 \rho_2^n$
Using $F_0 = 0$ and $F_1 = 1, \ c_1 = \frac{1}{\sqrt{5}}, \ c_2 = -\frac{1}{\sqrt{5}}$

26/67

э

< A >

★ ∃ > < ∃ >

August 28, 2021

Example

•
$$F_n = F_{n-1} + F_{n-2}, \ \chi(x) = x^2 - x - 1 = 0, \ \rho_1 = \frac{1 + \sqrt{5}}{2},$$

 $\rho_2 = \frac{1 - \sqrt{5}}{2}, \ F_n = c_1 \rho_1^n + c_2 \rho_2^n$
Using $F_0 = 0$ and $F_1 = 1, \ c_1 = \frac{1}{\sqrt{5}}, \ c_2 = -\frac{1}{\sqrt{5}}$
 $F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$

Chittaranjan Mandal (IIT Kharagpur)

< A

• As $\chi_A(x) = x^k - a_1 x^{k-1} - a_2 x^{k-2} - \ldots - a_k = 0$ has as a root ρ with multiplicity *m*, we may express $\chi_A(x)$ as

$$\chi_A(x) = (x - \rho)^m \mu(x), \ \mu(x) \neq 0$$
 (6.1)

χ_A(x) (in eq 6.1) may be differentiated repeatedly
 χ'_A(x) = m(x - ρ)^{m-1}μ(x) + (x - ρ)^mμ'(x)

• As $\chi_A(x) = x^k - a_1 x^{k-1} - a_2 x^{k-2} - \ldots - a_k = 0$ has as a root ρ with multiplicity *m*, we may express $\chi_A(x)$ as

$$\chi_A(x) = (x - \rho)^m \mu(x), \ \mu(x) \neq 0$$
 (6.1)

• $\chi_A(x)$ (in eq 6.1) may be differentiated repeatedly

•
$$\chi'_{\mathcal{A}}(x) = m(x-\rho)^{m-1}\mu(x) + (x-\rho)^m\mu'(x), \,\chi'_{\mathcal{A}}(\rho) = 0$$

3

< ロ > < 同 > < 回 > < 回 > < - > <

August 28, 2021

• As $\chi_A(x) = x^k - a_1 x^{k-1} - a_2 x^{k-2} - \ldots - a_k = 0$ has as a root ρ with multiplicity *m*, we may express $\chi_A(x)$ as

$$\chi_A(x) = (x - \rho)^m \mu(x), \ \mu(x) \neq 0$$
 (6.1)

- $\chi_A(x)$ (in eq 6.1) may be differentiated repeatedly
- $\chi'_A(x) = m(x-\rho)^{m-1}\mu(x) + (x-\rho)^m\mu'(x), \,\chi'_A(\rho) = 0$
- Likewise, $\chi''_{A}(\rho) = ... = \chi^{(m-1)}_{A}(\rho) = 0$
- Now, for $n \ge k$ we have by multiplying $\chi_A(x)$ [eq 4.2] by x^{n-k} :

$$x^{n-k}\chi_A(x) = x^n - a_1 x^{n-1} - a_2 x^{n-2} - \dots - a_k x^{n-k}$$
(6.2)

27/67

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• As $\chi_A(x) = x^k - a_1 x^{k-1} - a_2 x^{k-2} - \ldots - a_k = 0$ has as a root ρ with multiplicity *m*, we may express $\chi_A(x)$ as

$$\chi_A(x) = (x - \rho)^m \mu(x), \ \mu(x) \neq 0$$
 (6.1)

- $\chi_A(x)$ (in eq 6.1) may be differentiated repeatedly
- $\chi'_A(x) = m(x-\rho)^{m-1}\mu(x) + (x-\rho)^m\mu'(x), \,\chi'_A(\rho) = 0$
- Likewise, $\chi''_{A}(\rho) = ... = \chi^{(m-1)}_{A}(\rho) = 0$
- Now, for $n \ge k$ we have by multiplying $\chi_A(x)$ [eq 4.2] by x^{n-k} :

$$x^{n-k}\chi_A(x) = x^n - a_1 x^{n-1} - a_2 x^{n-2} - \ldots - a_k x^{n-k}$$
(6.2)

• On differentiating eq 6.2 wrt x and then multiplying with x, we get: $(n-k)x^{n-k}\chi_A(x) + x^{n-k+1}\chi'_A(x) =$ $nx^n - a_1(n-1)x^{n-1} - a_2(n-2)x^{n-1} - \dots - a_k(n-k)x^{n-k}$

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

27/67

- Differentiating again wrt x and then multiplying with x, we get: $(n-k)^2 x^{n-k} \chi_A(x) + [(n-k)+(n-k+1)] x^{n-k} \chi'_A(x) + x^{n-k+1} \chi''_A(x) = (n-k)^2 x^{n-k} \chi_A(x) + (2n-2k+1) x^{n-k} \chi'_A(x) + x^{n-k+1} \chi''_A(x) = n^2 x^n - a_1(n-1)^2 x^{n-1} - a_2(n-2)^2 x^{n-2} - \dots - a_k(n-k)^2 x^{n-k}$
- Repeating this process of differentiating wrt x and then multiplying by x, s times we get:

$$\begin{aligned} &f_0(x)\chi_A(x) + f_1(x)\chi_A'(x) + \ldots + f_s(x)\chi_A^{(s)}(x) = \\ &n^s x^n - a_1(n-1)^s x^{n-1} - a_2(n-2)^s x^{n-2} - \ldots - a_k(n-k)^s x^{n-k}, \\ &\text{where } f_0, \ldots, f_s, \text{ are all polynomials in } x \end{aligned}$$

• Now, substituting $x = \rho$ and knowing that $\chi_A(\rho) = \chi'_A(\rho) = \ldots = \chi_A^{(s)}(\rho) = 0$, we get $n^s \rho^n - a_1(n-1)^s \rho^{n-1} - a_2(n-2)^s \rho^{n-2} - \ldots - a_k(n-k)^s \rho^{n-k} = 0$

• This establishes that $T_n = \frac{n^s \rho^n}{r}$, s = 0, ..., m-1, *m* being the multiplicity of ρ , satisfies eq 4.1 [LHR]

29/67

(*) * (*) *)

- This establishes that $T_n = \frac{n^s \rho^n}{n}$, s = 0, ..., m-1, *m* being the multiplicity of ρ , satisfies eq 4.1 [LHR]
- Let there *t* distinct roots with multiplicities m_1, m_2, \ldots, m_t
- So does any linear combination of $n^{s_1}\rho_1^n$, $s_1 = 0, \ldots, m_1 1$,

 $n^{s_2}\rho_2^n$, $s_2 = 0, \ldots, m_2 - 1, \ldots, n^{s_t}\rho_t^n$, $s_t = 0, \ldots, m_t - 1$

 Values of the coeefficients may be derived from the initial conditions

• The initial conditions $T_0, T_1, \ldots, T_{k-1}$ may be equated with the solutions

obtained as:
$$w_n = \sum_{i=1}^{l} \sum_{j=0}^{m_i-1} c_{ij} n^j \rho_i^n$$
,

30/67

프 () () ()

- The initial conditions $T_0, T_1, \ldots, T_{k-1}$ may be equated with the solutions obtained as: $w_n = \sum_{i=1}^t \sum_{j=0}^{m_i-1} c_{ij} n^j \rho_i^n$,
- Leads to a system of linear equations for the *t* distinct roots with multiplicities *m*₁, *m*₂, ..., *m*_t:

.

- The initial conditions $T_0, T_1, \ldots, T_{k-1}$ may be equated with the solutions obtained as: $w_n = \sum_{i=1}^t \sum_{j=0}^{m_i-1} c_{ij} n^j \rho_i^n$,
- Leads to a system of linear equations for the *t* distinct roots with multiplicities *m*₁, *m*₂, ..., *m*_t:

- For the coefficient matrix for this system of linear equations
- Number of rows: k
- Number of columns on the LHS:

 $m_1+m_2+\ldots+m_t=k$

• The coefficient matrix is invertible, so the constants can be uniquely determined

30/67

4 B 6 4 B 6

Example

Consider $T_n = 2T_{n-1} + T_{n-2} - 2T_{n-3}$ with $T_0 = 0, T_1 = 1, T_2 = 2$

- Characteristic equation: $\chi(x) = x^3 2x^2 x + 2 = 0$,
- $\chi(x) = (x 1)(x + 1)(x 2) = 0$; form of general solution is:

31/67

3

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Example

Consider $T_n = 2T_{n-1} + T_{n-2} - 2T_{n-3}$ with $T_0 = 0, T_1 = 1, T_2 = 2$

- Characteristic equation: $\chi(x) = x^3 2x^2 x + 2 = 0$,
- $\chi(x) = (x 1)(x + 1)(x 2) = 0$; form of general solution is:
- $T_n = c_2 2^n + c_1 (-1)^n + c_0$; applying initial conditions we get:

31/67

3

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Example

Consider $T_n = 2T_{n-1} + T_{n-2} - 2T_{n-3}$ with $T_0 = 0, T_1 = 1, T_2 = 2$

- Characteristic equation: $\chi(x) = x^3 2x^2 x + 2 = 0$,
- $\chi(x) = (x 1)(x + 1)(x 2) = 0$; form of general solution is:
- $T_n = c_2 2^n + c_1 (-1)^n + c_0$; applying initial conditions we get:
- $c_2 + c_1 + c_0 = 0$, $2c_2 c_1 + c_0 = 1$, $4c_2 + c_1 + c_0 = 2$

•
$$c_2 = \frac{2}{3}, c_1 = -\frac{1}{6}, c_0 = -\frac{1}{2}$$
, so T_n is:

31/67

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 28, 2021

Example

Consider $T_n = 2T_{n-1} + T_{n-2} - 2T_{n-3}$ with $T_0 = 0, T_1 = 1, T_2 = 2$

• Characteristic equation: $\chi(x) = x^3 - 2x^2 - x + 2 = 0$,

•
$$\chi(x) = (x - 1)(x + 1)(x - 2) = 0$$
; form of general solution is:

• $T_n = c_2 2^n + c_1 (-1)^n + c_0$; applying initial conditions we get:

•
$$c_2 + c_1 + c_0 = 0$$
, $2c_2 - c_1 + c_0 = 1$, $4c_2 + c_1 + c_0 = 2$

•
$$c_2 = \frac{2}{3}, c_1 = -\frac{1}{6}, c_0 = -\frac{1}{2}$$
, so T_n is:
• $T_n = \frac{2}{3}2^n - \frac{1}{6}(-1)^n - \frac{1}{2} = \frac{2^{n+1}}{3} + \frac{(-1)^{n+1}}{6} - \frac{1}{2}, \forall n \in \mathbb{N}_0$

Chittaranjan Mandal (IIT Kharagpur)

Example

Consider $T_n = T_{n-1} + 4T_{n-3}$ with $T_0 = 0, T_1 = 1, T_2 = 2$

• Characteristic equation: $\chi(x) = x^3 - x^2 - 4 = 0$, • $\chi(x) = (x - 3)(x^2 + x + 2) = 0$, { ρ } :

$$\rho_0 = 2, \rho_1 = \frac{-1 + i\sqrt{7}}{2}, \rho_2 = \frac{-1 - i\sqrt{7}}{2}$$

ヘロン 人間 とくほ とくほう

Some application of MT for LHRs (contd.)

Example

Consider
$$T_n = T_{n-1} + 4T_{n-3}$$
 with $T_0 = 0, T_1 = 1, T_2 = 2$

• Characteristic equation:
$$\chi(x) = x^3 - x^2 - 4 = 0$$
,
• $\chi(x) = (x - 3)(x^2 + x + 2) = 0$, $\{\rho\}$:
 $\rho_0 = 2$, $\rho_1 = \frac{-1 + i\sqrt{7}}{2}$, $\rho_2 = \frac{-1 - i\sqrt{7}}{2}$
• $T_n = c_2 \left(\frac{-1 - i\sqrt{7}}{2}\right)^n + c_1 \left(\frac{-1 + i\sqrt{7}}{2}\right)^n + c_0 2^n$

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

・ロット (雪) (山) (山)

32/67

Example

(

Consider
$$T_n = T_{n-1} + 4T_{n-3}$$
 with $T_0 = 0, T_1 = 1, T_2 = 2$
• Characteristic equation: $\chi(x) = x^3 - x^2 - 4 = 0$,
• $\chi(x) = (x-3)(x^2 + x + 2) = 0, \{\rho\}$:
 $\rho_0 = 2, \rho_1 = \frac{-1 + i\sqrt{7}}{2}, \rho_2 = \frac{-1 - i\sqrt{7}}{2}$
• $T_n = c_2 \left(\frac{-1 - i\sqrt{7}}{2}\right)^n + c_1 \left(\frac{-1 + i\sqrt{7}}{2}\right)^n + c_0 2^n$
• $c_2 + c_1 + c_0 = 0, c_2 \frac{-1 - i\sqrt{7}}{2} + c_1 \frac{-1 - i\sqrt{7}}{2} + 2c_0 = 1,$
 $c_2 \frac{-3 + i\sqrt{7}}{2} + c_1 \frac{-3 - i\sqrt{7}}{2} + 4c_0 = 2$, applying initial conditions
• $c_2 = -\frac{1}{16\sqrt{7}} \left(3\sqrt{7} + i\right), c_1 = -\frac{1}{16\sqrt{7}} \left(3\sqrt{7} - i\right), c_0 = \frac{3}{8}$

Chittaranjan Mandal (IIT Kharagpur)

Example

Consider
$$T_n = T_{n-1} + 4T_{n-3}$$
 with $T_0 = 0, T_1 = 1, T_2 = 2$
• Characteristic equation: $\chi(x) = x^3 - x^2 - 4 = 0$,
• $\chi(x) = (x-3)(x^2 + x + 2) = 0, \{\rho\}$:
 $\rho_0 = 2, \rho_1 = \frac{-1 + i\sqrt{7}}{2}, \rho_2 = \frac{-1 - i\sqrt{7}}{2}$
• $T_n = c_2 \left(\frac{-1 - i\sqrt{7}}{2}\right)^n + c_1 \left(\frac{-1 + i\sqrt{7}}{2}\right)^n + c_0 2^n$
• $c_2 + c_1 + c_0 = 0, c_2 \frac{-1 - i\sqrt{7}}{2} + c_1 \frac{-1 - i\sqrt{7}}{2} + 2c_0 = 1,$
 $c_2 \frac{-3 + i\sqrt{7}}{2} + c_1 \frac{-3 - i\sqrt{7}}{2} + 4c_0 = 2$, applying initial conditions
• $c_2 = -\frac{1}{16\sqrt{7}} \left(3\sqrt{7} + i\right), c_1 = -\frac{1}{16\sqrt{7}} \left(3\sqrt{7} - i\right), c_0 = \frac{3}{8}$
• $T_n = c_0 \rho_0^n + c_1 \rho_1^n + c_2 \rho_2^n, \forall n \in \mathbb{N}_0$

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

August 28, 2021

ヘロン 人間 とくほ とくほう

Example (Strings with no consecutive vowels $\{a, e, i, o, u\}$) (NCV))

How many NCV strings (S_n) of *n* characters over the alphabet $\{a, b, \ldots, z\}$?

- Let *V_n* be the number of NCVs of length *n* ending in a vowel
- Let C_n be the number of NCVs of length n ending in a consonant

•
$$S_n = V_n + C_n$$
,

Example (Strings with no consecutive vowels $\{a, e, i, o, u\}$) (NCV))

How many NCV strings (S_n) of *n* characters over the alphabet $\{a, b, \ldots, z\}$?

- Let *V_n* be the number of NCVs of length *n* ending in a vowel
- Let C_n be the number of NCVs of length n ending in a consonant

•
$$S_n = V_n + C_n, V_{n+1} = 5C_n,$$

Example (Strings with no consecutive vowels $\{a, e, i, o, u\}$) (NCV))

How many NCV strings (S_n) of *n* characters over the alphabet $\{a, b, \ldots, z\}$?

- Let *V_n* be the number of NCVs of length *n* ending in a vowel
- Let C_n be the number of NCVs of length n ending in a consonant

•
$$S_n = V_n + C_n$$
, $V_{n+1} = 5C_n$, $C_{n+1} = 21(V_n + C_n)$

Example (Strings with no consecutive vowels $\{a, e, i, o, u\}$) (NCV))

How many NCV strings (S_n) of *n* characters over the alphabet $\{a, b, \ldots, z\}$?

- Let *V_n* be the number of NCVs of length *n* ending in a vowel
- Let C_n be the number of NCVs of length n ending in a consonant
- $S_n = V_n + C_n$, $V_{n+1} = 5C_n$, $C_{n+1} = 21(V_n + C_n)$
- $C_{n+2} = 21(V_{n+1} + C_{n+1}) = 21(5C_n + C_{n+1}) = 21C_{n+1} + 105C_n$

イロン 人間 とくほう イヨン

Example (Strings with no consecutive vowels $\{a, e, i, o, u\}$) (NCV))

How many NCV strings (S_n) of *n* characters over the alphabet $\{a, b, \ldots, z\}$?

- Let *V_n* be the number of NCVs of length *n* ending in a vowel
- Let C_n be the number of NCVs of length n ending in a consonant

•
$$S_n = V_n + C_n, V_{n+1} = 5C_n, C_{n+1} = 21(V_n + C_n)$$

•
$$C_{n+2} = 21(V_{n+1} + C_{n+1}) = 21(5C_n + C_{n+1}) = 21C_{n+1} + 105C_n$$

•
$$C_n = 21C_{n-1} + 105C_{n-2} \rightarrow \chi(x) = x^2 - 21x - 105 = 0$$

• {
$$\rho$$
} = { $\frac{1}{2}$ (21 ± $\sqrt{861}$)}, C_1 = 21, C_0 = 1, C_2 = 546

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

ヘロマ ヘポマ ヘヨマ ヘロマ

33/67

Example (Strings with no consecutive vowels $\{a, e, i, o, u\}$) (NCV))

How many NCV strings (S_n) of *n* characters over the alphabet $\{a, b, \ldots, z\}$?

- Let *V_n* be the number of NCVs of length *n* ending in a vowel
- Let C_n be the number of NCVs of length n ending in a consonant

•
$$S_n = V_n + C_n$$
, $V_{n+1} = 5C_n$, $C_{n+1} = 21(V_n + C_n)$

•
$$C_{n+2} = 21(V_{n+1} + C_{n+1}) = 21(5C_n + C_{n+1}) = 21C_{n+1} + 105C_n$$

•
$$C_n = 21C_{n-1} + 105C_{n-2} \rightarrow \chi(x) = x^2 - 21x - 105 = 0$$

•
$$\{\rho\} = \left\{\frac{1}{2}\left(21 \pm \sqrt{861}\right)\right\}, C_1 = 21, C_0 = 1, C_2 = 546$$

• $V_1 = 5$, $V_0 = 0$, $C_{-1} = 0$ – inconsistency between C_0 and V_0

Chittaranjan Mandal (IIT Kharagpur)

Example (Strings with no consecutive vowels $\{a, e, i, o, u\}$) (NCV))

How many NCV strings (S_n) of *n* characters over the alphabet $\{a, b, \ldots, z\}$?

- Let *V_n* be the number of NCVs of length *n* ending in a vowel
- Let C_n be the number of NCVs of length n ending in a consonant

•
$$S_n = V_n + C_n, V_{n+1} = 5C_n, C_{n+1} = 21(V_n + C_n)$$

•
$$C_{n+2} = 21(V_{n+1} + C_{n+1}) = 21(5C_n + C_{n+1}) = 21C_{n+1} + 105C_n$$

• $C_n = 21C_{n-1} + 105C_{n-2} \rightarrow \chi(x) = x^2 - 21x - 105 = 0$

• {
$$\rho$$
} = { $\frac{1}{2}$ (21 ± $\sqrt{861}$)}, C_1 = 21, C_0 = 1, C_2 = 546

• $V_1 = 5$, $V_0 = 0$, $C_{-1} = 0$ – inconsistency between C_0 and V_0

•
$$C_n = \frac{21 + \sqrt{861}}{2\sqrt{861}} \left(\frac{21 + \sqrt{861}}{2}\right)^n + \frac{-21 + \sqrt{861}}{2\sqrt{861}} \left(\frac{21 - \sqrt{861}}{2}\right)^n$$

Chittaranjan Mandal (IIT Kharagpur)
Example (Strings with no consecutive vowels $\{a, e, i, o, u\}$) (NCV))

How many NCV strings (S_n) of *n* characters over the alphabet $\{a, b, \ldots, z\}$?

- Let *V_n* be the number of NCVs of length *n* ending in a vowel
- Let C_n be the number of NCVs of length n ending in a consonant

•
$$S_n = V_n + C_n, V_{n+1} = 5C_n, C_{n+1} = 21(V_n + C_n)$$

•
$$C_{n+2} = 21(V_{n+1} + C_{n+1}) = 21(5C_n + C_{n+1}) = 21C_{n+1} + 105C_n$$

• $C_n = 21C_{n-1} + 105C_{n-2} \rightarrow \chi(x) = x^2 - 21x - 105 = 0$

• {
$$\rho$$
} = { $\frac{1}{2}$ (21 ± $\sqrt{861}$)}, C_1 = 21, C_0 = 1, C_2 = 546

• $V_1 = 5$, $V_0 = 0$, $C_{-1} = 0$ – inconsistency between C_0 and V_0

•
$$C_n = \frac{21 + \sqrt{861}}{2\sqrt{861}} \left(\frac{21 + \sqrt{861}}{2}\right)^n + \frac{-21 + \sqrt{861}}{2\sqrt{861}} \left(\frac{21 - \sqrt{861}}{2}\right)^n$$

• $S_n = C_n + V_n = C_n + 5C_{n-1}, S_2 = 651, S_1 = 26, S_0 = 100$

Chittaranjan Mandal (IIT Kharagpur)

ヘロマ ヘポマ ヘヨマ ヘロマ

Example (Strings with no consecutive vowels $\{a, e, i, o, u\}$) (NCV))

How many NCV strings (S_n) of *n* characters over the alphabet $\{a, b, \ldots, z\}$?

- Let *V_n* be the number of NCVs of length *n* ending in a vowel
- Let C_n be the number of NCVs of length n ending in a consonant

•
$$S_n = V_n + C_n, V_{n+1} = 5C_n, C_{n+1} = 21(V_n + C_n)$$

•
$$C_{n+2} = 21(V_{n+1} + C_{n+1}) = 21(5C_n + C_{n+1}) = 21C_{n+1} + 105C_n$$

• $C_n = 21C_{n-1} + 105C_{n-2} \rightarrow \chi(x) = x^2 - 21x - 105 = 0$

• {
$$\rho$$
} = { $\frac{1}{2}$ (21 ± $\sqrt{861}$)}, C_1 = 21, C_0 = 1, C_2 = 546

• $V_1 = 5$, $V_0 = 0$, $C_{-1} = 0$ – inconsistency between C_0 and V_0

•
$$C_n = \frac{21 + \sqrt{861}}{2\sqrt{861}} \left(\frac{21 + \sqrt{861}}{2}\right)^n + \frac{-21 + \sqrt{861}}{2\sqrt{861}} \left(\frac{21 - \sqrt{861}}{2}\right)^n$$

• $S_n = C_n + V_n = C_n + 5C_{n-1}, S_2 = 651, S_1 = 26, S_0 = 1$
• $C_n = \frac{378 + 13\sqrt{861}}{2} \left(\frac{21 + \sqrt{861}}{2}\right)^{n-1} + \frac{-378 + 13\sqrt{861}}{2} \left(\frac{21 - \sqrt{861}}{2}\right)^n$

•
$$S_n = \frac{378 + 13\sqrt{861}}{\sqrt{861}} \left(\frac{21 + \sqrt{861}}{2}\right)^{n-1} + \frac{-378 + 13\sqrt{861}}{\sqrt{861}} \left(\frac{21 - \sqrt{861}}{2}\right)^{n-1}$$

Chittaranjan Mandal (IIT Kharagpur)

Example (Number of NCVs for the English alphabet (contd.))

• $T_n = 2T_{n-1} - 4T_{n-2} + 8T_{n-3}, n \ge 3, T_0 = 1, T_1 = 1, T_2 = 1$

34/67

3

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

Example (Number of NCVs for the English alphabet (contd.))

- $T_n = 2T_{n-1} 4T_{n-2} + 8T_{n-3}, n \ge 3, T_0 = 1, T_1 = 1, T_2 = 1$
- $\chi(x) = x^3 2x^2 + 4x 8 = (x 2)(x^2 + 4) = 0,$ $\{\rho\} = \{2, 2i, -2i\} T_n = c_1 2^n + c_2 (2i)^n + c_3 (-2i)^n$

34/67

э

ヘロマ ふぼう くほう くほう

Example (Number of NCVs for the English alphabet (contd.))

•
$$T_n = 2T_{n-1} - 4T_{n-2} + 8T_{n-3}, n \ge 3, T_0 = 1, T_1 = 1, T_2 = 1$$

•
$$\chi(x) = x^3 - 2x^2 + 4x - 8 = (x - 2)(x^2 + 4) = 0,$$

 $\{\rho\} = \{2, 2i, -2i\} T_n = c_1 2^n + c_2 (2i)^n + c_3 (-2i)^n$

• Using the initial conditions we get:

•
$$a_0 = 1 : c_1 2^0 + c_2 (2i)^0 + c_3 (-2i)^0 = c_1 + c_2 + c_3 = 1$$

• $a_1 = 1 : c_1 2^1 + c_2 (2i)^1 + c_3 (-2i)^1 = 2c_1 + 2ic_2 - 2ic_3 = 0$

•
$$a_2 = 1 : c_1 2^2 + c_2 (2i)^2 + c_3 (-2i)^2 = 4c_1 - 4c_2 + 4c_3 = 1$$

34/67

Image: A mage: A ma

Example (Number of NCVs for the English alphabet (contd.))

•
$$T_n = 2T_{n-1} - 4T_{n-2} + 8T_{n-3}, n \ge 3, T_0 = 1, T_1 = 1, T_2 = 1$$

•
$$\chi(x) = x^3 - 2x^2 + 4x - 8 = (x - 2)(x^2 + 4) = 0,$$

 $\{\rho\} = \{2, 2i, -2i\} T_n = c_1 2^n + c_2 (2i)^n + c_3 (-2i)^n$

Using the initial conditions we get:

•
$$a_0 = 1 : c_1 2^0 + c_2 (2i)^0 + c_3 (-2i)^0 = c_1 + c_2 + c_3 = 1$$

• $a_1 = 1 : c_1 2^1 + c_2 (2i)^1 + c_3 (-2i)^1 = 2c_1 + 2ic_2 - 2ic_3 = 0$
• $a_2 = 1 : c_1 2^2 + c_2 (2i)^2 + c_3 (-2i)^2 = 4c_1 - 4c_2 + 4c_3 = 1$
• $c_1 = \frac{5}{8}, c_2 = \frac{3}{16} + i\frac{1}{16}, c_3 = \frac{3}{16} - i\frac{1}{16}$
• $T_n = \frac{5}{8} 2^n + (\frac{3}{16} + i\frac{1}{16}) (2i)^n + (\frac{3}{16} - i\frac{1}{16}) (-2i)^n$

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

34/67

Section outline

- LNHR examples
- Solving LNHRs via LHRs and a particular solution

ヨトィヨト

Example (Strings with vowels in consecutive positions)

How many strings are there of length *n* over the alphabet $\{a, b, ..., z\}$, in which two vowels occur in some consecutive positions?

• The string can start with a consonant, in that case we would only be interested in a string of length n - 1 containing two consecutive vowels to follow, contribution

Example (Strings with vowels in consecutive positions)

How many strings are there of length *n* over the alphabet $\{a, b, ..., z\}$, in which two vowels occur in some consecutive positions?

• The string can start with a consonant, in that case we would only be interested in a string of length n - 1 containing two consecutive vowels to follow, contribution $(26 - 5)T_{n-1} = 21T_{n-1}$

Example (Strings with vowels in consecutive positions)

How many strings are there of length *n* over the alphabet $\{a, b, ..., z\}$, in which two vowels occur in some consecutive positions?

- The string can start with a consonant, in that case we would only be interested in a string of length n 1 containing two consecutive vowels to follow, contribution $(26 5)T_{n-1} = 21T_{n-1}$
- The string can start with vowel followed by a consonant, in that case we would only be interested in a string of length n-2 containing two consecutive vowels to follow, contribution

Example (Strings with vowels in consecutive positions)

How many strings are there of length *n* over the alphabet $\{a, b, ..., z\}$, in which two vowels occur in some consecutive positions?

- The string can start with a consonant, in that case we would only be interested in a string of length n 1 containing two consecutive vowels to follow, contribution $(26 5)T_{n-1} = 21T_{n-1}$
- The string can start with vowel followed by a consonant, in that case we would only be interested in a string of length n 2 containing two consecutive vowels to follow, contribution $5(21 T_{n-2})$

Example (Strings with vowels in consecutive positions)

How many strings are there of length *n* over the alphabet $\{a, b, ..., z\}$, in which two vowels occur in some consecutive positions?

- The string can start with a consonant, in that case we would only be interested in a string of length n 1 containing two consecutive vowels to follow, contribution $(26 5)T_{n-1} = 21T_{n-1}$
- The string can start with vowel followed by a consonant, in that case we would only be interested in a string of length n-2 containing two consecutive vowels to follow, contribution $5(21 T_{n-2})$
- The string can start with two vowels, in that case the following string of length n 2 is unrestricted, contribution

Example (Strings with vowels in consecutive positions)

How many strings are there of length *n* over the alphabet $\{a, b, ..., z\}$, in which two vowels occur in some consecutive positions?

- The string can start with a consonant, in that case we would only be interested in a string of length n 1 containing two consecutive vowels to follow, contribution $(26 5)T_{n-1} = 21T_{n-1}$
- The string can start with vowel followed by a consonant, in that case we would only be interested in a string of length n-2 containing two consecutive vowels to follow, contribution $5(21 T_{n-2})$
- The string can start with two vowels, in that case the following string of length n-2 is unrestricted, contribution $5 \cdot 5 \cdot 26^{n-2}$
- $T_n = 21T_{n-1} + 105T_{n-2} + 25 \cdot 26^{n-2} \text{LNHR of order 2}$

э.

LNHR example (contd.)

Example (Strings with vowels in consecutive positions (contd.))

Converting to LHR

•
$$T_n = 21T_{n-1} + 105T_{n-2} + 25 \cdot 26^{n-2}$$

• $T_{n-1} = 21T_{n-2} + 105T_{n-3} + 25 \cdot 26^{n-3}$
 $\therefore 26T_{n-1} = 21 \cdot 26T_{n-2} + 105 \cdot 26T_{n-3} + 25 \cdot 26^{n-2}$, subtracting,
• $T_n = 47T_{n-1} - 441T_{n-2} - 105T_{n-3}$, $T_0 = 0$, $T_1 = 0$, $T_2 = 25$
• $\chi(x) = x^3 - 47x^2 + 441x + 2730 = 0$ - this is an LHR
• Note that $\chi(26) = 0$, so $\chi(x) = (x - 26)p(x)$
• Dividing $\chi(x)$ by $x - 26$, $p(x) = x^2 - 21x - 105$, so $\chi(x) = (x - 26)(x^2 - 21x - 105)$

A trick solution utilising
$$T_n + S_n = 26^n$$

So,
$$T_n = 26^n - \frac{31 + \sqrt{861}}{2\sqrt{861}} \left(\frac{21 + \sqrt{861}}{2}\right)^n - \frac{-31 + \sqrt{861}}{2\sqrt{861}} \left(\frac{21 - \sqrt{861}}{2}\right)^n$$

Chittaranjan Mandal (IIT Kharagpur)

Solving LNHRs via LHRs and a particular solution

• Let $T_n = U_n$ be a general solution of LNHR eq 1.1

- Let $T_n = U_n$ be a general solution of LNHR eq 1.1
- Let $T_n = V_n$ be a particular solution (PS) LNHR eq 1.1

38/67

- Let $T_n = U_n$ be a general solution of LNHR eq 1.1
- Let $T_n = V_n$ be a particular solution (PS) LNHR eq 1.1
- $U_n = a_1 U_{n-1} + a_2 U_{n-2} + \ldots + a_k U_{n-k} + g(n)$

38/67

- Let $T_n = U_n$ be a general solution of LNHR eq 1.1
- Let $T_n = V_n$ be a particular solution (PS) LNHR eq 1.1
- $U_n = a_1 U_{n-1} + a_2 U_{n-2} + \ldots + a_k U_{n-k} + g(n)$
- $V_n = a_1 V_{n-1} + a_2 V_{n-2} + \ldots + a_k V_{n-k} + g(n)$

August 28, 2021

- Let $T_n = U_n$ be a general solution of LNHR eq 1.1
- Let $T_n = V_n$ be a particular solution (PS) LNHR eq 1.1
- $U_n = a_1 U_{n-1} + a_2 U_{n-2} + \ldots + a_k U_{n-k} + g(n)$
- $V_n = a_1 V_{n-1} + a_2 V_{n-2} + \ldots + a_k V_{n-k} + g(n)$
- Now $W_n = U_n V_n = a_{k-1}(V_{n-1} U_{n-1}) + a_{k-2}(V_{n-2} U_{n-2}) + \ldots + a_0(V_{n-k} U_{n-k})$

3

August 28, 2021

- Let $T_n = U_n$ be a general solution of LNHR eq 1.1
- Let $T_n = V_n$ be a particular solution (PS) LNHR eq 1.1
- $U_n = a_1 U_{n-1} + a_2 U_{n-2} + \ldots + a_k U_{n-k} + g(n)$
- $V_n = a_1 V_{n-1} + a_2 V_{n-2} + \ldots + a_k V_{n-k} + g(n)$
- Now $W_n = U_n V_n = a_{k-1}(V_{n-1} U_{n-1}) + a_{k-2}(V_{n-2} U_{n-2}) + \ldots + a_0(V_{n-k} U_{n-k})$
- So $W_n = a_1 W_{n-1} + a_2 W_{n-2} + \ldots + a_k W_{n-k}$

38/67

(日)

- Let $T_n = U_n$ be a general solution of LNHR eq 1.1
- Let $T_n = V_n$ be a particular solution (PS) LNHR eq 1.1
- $U_n = a_1 U_{n-1} + a_2 U_{n-2} + \ldots + a_k U_{n-k} + g(n)$
- $V_n = a_1 V_{n-1} + a_2 V_{n-2} + \ldots + a_k V_{n-k} + g(n)$
- Now $W_n = U_n V_n = a_{k-1}(V_{n-1} U_{n-1}) + a_{k-2}(V_{n-2} U_{n-2}) + \ldots + a_0(V_{n-k} U_{n-k})$
- So $W_n = a_1 W_{n-1} + a_2 W_{n-2} + \ldots + a_k W_{n-k}$
- Now, W_n is an LHR, its solution can be used to determine U_n as $V_n + W_n$

э.

38/67

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Let $T_n = U_n$ be a general solution of LNHR eq 1.1
- Let $T_n = V_n$ be a particular solution (PS) LNHR eq 1.1
- $U_n = a_1 U_{n-1} + a_2 U_{n-2} + \ldots + a_k U_{n-k} + g(n)$
- $V_n = a_1 V_{n-1} + a_2 V_{n-2} + \ldots + a_k V_{n-k} + g(n)$
- Now $W_n = U_n V_n = a_{k-1}(V_{n-1} U_{n-1}) + a_{k-2}(V_{n-2} U_{n-2}) + \ldots + a_0(V_{n-k} U_{n-k})$
- So $W_n = a_1 W_{n-1} + a_2 W_{n-2} + \ldots + a_k W_{n-k}$
- Now, W_n is an LHR, its solution can be used to determine U_n as $V_n + W_n$

The initial conditions {*T_i* = *t_i*} for *T_n* may be used to obtain initial conditions {*W_i* = *t_i* - *g*(*i*)} for *W_n*

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

э.

• In
$$T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k} + g(n)$$
 (eq 1.1), let

 $g(n) = (b_r n^r + b_{r-1} n^{r-1} + \ldots + b_1 n + b_0) \sigma^n = q(n) \sigma^n$, where b_i and σ are real numbers and degree of q(n) is $r \in \mathbb{N}_0$

39/67

• In
$$T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k} + g(n)$$
 (eq 1.1), let

 $g(n) = (b_r n^r + b_{r-1} n^{r-1} + \ldots + b_1 n + b_0) \sigma^n = q(n) \sigma^n$, where b_i and σ are real numbers and degree of q(n) is $r \in \mathbb{N}_0$

• $(b_r n^r + ... + b_1 n + b_0) \sigma^n$ is a sum of geometric forcing functions

39/67

• In $T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k} + g(n)$ (eq 1.1), let

 $g(n) = (b_r n^r + b_{r-1} n^{r-1} + \ldots + b_1 n + b_0) \sigma^n = q(n) \sigma^n$, where b_i and σ are real numbers and degree of q(n) is $r \in \mathbb{N}_0$

- $(b_r n^r + \ldots + b_1 n + b_0) \sigma^n$ is a sum of geometric forcing functions
- Let $\chi_A(x)$ be the characteristic equation; define

$$u = \begin{cases} 0 & \sigma \text{ is not a root of } \chi_A(x) \\ m & \sigma \text{ is a root of multiplicity } m \text{ of } \chi_A(x) \end{cases}$$

39/67

ヘロト ヘポト ヘヨト ヘヨト

• In $T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k} + g(n)$ (eq 1.1), let

 $g(n) = (b_r n^r + b_{r-1} n^{r-1} + \ldots + b_1 n + b_0) \sigma^n = q(n) \sigma^n$, where b_i and σ are real numbers and degree of q(n) is $r \in \mathbb{N}_0$

- $(b_r n^r + ... + b_1 n + b_0) \sigma^n$ is a sum of geometric forcing functions
- Let χ_A(x) be the characteristic equation; define

$$\mu = \begin{cases} 0 & \sigma \text{ is not a root of } \chi_A(x) \\ m & \sigma \text{ is a root of multiplicity } m \text{ of } \chi_A(x) \end{cases}$$

• Then $V_n = n^{\mu}(d_r n^r + d_{r-1}n^{r-1} + ... + d_1n + d_0)\sigma^n$ may be determined as a particular solution (PS) of LNHR eqn 1.1, d_i are complex (or real) constants which have to be determined

39/67

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

• In $T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k} + g(n)$ (eq 1.1), let

 $g(n) = (b_r n^r + b_{r-1} n^{r-1} + \ldots + b_1 n + b_0) \sigma^n = q(n) \sigma^n$, where b_i and σ are real numbers and degree of q(n) is $r \in \mathbb{N}_0$

- $(b_r n^r + \ldots + b_1 n + b_0) \sigma^n$ is a sum of geometric forcing functions
- Let $\chi_A(x)$ be the characteristic equation; define

$$= \begin{cases} 0 & \sigma \text{ is not a root of } \chi_A(x) \\ m & \sigma \text{ is a root of multiplicity } m \text{ of } \chi_A(x) \end{cases}$$

• Then $V_n = n^{\mu}(d_r n^r + d_{r-1}n^{r-1} + ... + d_1n + d_0)\sigma^n$ may be determined as a particular solution (PS) of LNHR eqn 1.1, d_i are complex (or real) constants which have to be determined

- Substitute V_i for T_i in 1.1 and cancel out the highest power of σ
- In the resulting polynomial equation in n, equate the coefficients of the various powers of n to get a system of linear equations to zero determine the unknown constants d_i

Chittaranjan Mandal (IIT Kharagpur)

 μ

Algorithms

LNHR for strings with consecutive vowels

Example (Solving LNHR via PS for strings with consecutive vowels)

• $T_n = 21T_{n-1} + 105T_{n-2} + 25 \cdot 26^{n-2}, T_0 = 0, T_1 = 0$

•
$$\chi(x) = x^2 - 21x - 105 = 0, \{\rho\} = \left\{\frac{1}{2}\left(21 \pm \sqrt{861}\right)\right\}$$

- $g(n) = 25 \cdot 26^{n-2}$, comparing with $g(n) = (b_r n^r + b_{r-1} n^{r-1} + \ldots + b_1 n + b_0) \sigma^m$, $\sigma = 26$, $\sigma \notin \{\rho\}$, $V_n = d \cdot 26^n$ (other factors gets absorbed in *d*)
- Substituting V_n in T_n , $d \cdot 26^n = 21 \cdot d \cdot 26^{n-1} + 105 \cdot d \cdot 26^{n-2} + 25 \cdot 26^{n-2}$
- Factoring out 26^{n-2} , $d \cdot 26^2 = 21d \cdot 26 + 105d + 25$, so d=1

• With
$$d = 1$$
, so $V_n = 26^n$

•
$$T_n = W_n + 26^n$$
, $W_n = c_1 \left(\frac{21 + \sqrt{861}}{2}\right)^n + c_2 \left(\frac{21 - \sqrt{861}}{2}\right)^n$

LNHR solution for strings with consecutive vowels (contd.)

Example (Solving LNHR via PS for strings with consecutive vowels (contd.))

• Obtaining initial conditions for
$$W_n$$
 as
 $\{W_i = T_i - g(i)\} = \{W_0 = -1, W_1 = -26\}$
• $c_1 + c_2 = -1, c_1\left(\frac{21 + \sqrt{861}}{2}\right) + c_2\left(\frac{21 - \sqrt{861}}{2}\right) = -26$
• $c_1 = -\left(\frac{31 + \sqrt{861}}{2\sqrt{861}}\right), c_2 = \left(\frac{31 - \sqrt{861}}{2\sqrt{861}}\right)$
• $T_n = 26^n - \frac{31 + \sqrt{861}}{2\sqrt{861}}\left(\frac{21 + \sqrt{861}}{2}\right)^n - \frac{-31 + \sqrt{861}}{2\sqrt{861}}\left(\frac{21 - \sqrt{861}}{2}\right)^n$

Chittaranjan Mandal (IIT Kharagpur)

LNHR where σ is a root of $\chi(x)$

Example (g(n) with σ as root of $\chi(x)$)

• $T_n = T_{n-2} + (n^2 + 1), n \ge 2, T_0 = 0, T_1 = 1$

LNHR where σ is a root of $\chi(x)$

Example (g(n) with σ as root of $\chi(x)$)

•
$$T_n = T_{n-2} + (n^2 + 1), n \ge 2, T_0 = 0, T_1 = 1$$

• $\sigma = 1, g(n) = (n^2 + 1)1^n, \chi(x) = x^2 - 1 = 0, \{\rho\} = \{1, -1\}$

LNHR where σ is a root of $\chi(x)$

Example (g(n) with σ as root of $\chi(x)$)

• $T_n = T_{n-2} + (n^2 + 1), n > 2, T_0 = 0, T_1 = 1$ • $\sigma = 1$, $q(n) = (n^2 + 1)1^n$, $\chi(x) = x^2 - 1 = 0$, $\{\rho\} = \{1, -1\}$ • $V_n = n^1 (d_2 n^2 + d_1 n + d_0)$, as σ is a root of $\chi(x)$ • Substituting, V_i for T_i in the recurrence equation • $n(d_2n^2 + d_1n + d_0) =$ $(n-2)(d_2(n-2)^2+d_1(n-2)+d_0)+(n^2+1)$ $\Rightarrow d_2 n^3 + d_1 n^2 + d_0 n =$ $(n-2)(d_2(n^2-4n+4)+d_1(n-2)+d_0)+(n^2+1)$ $\Rightarrow d_2 n^3 + d_1 n^2 + d_0 n = d_2 n^3 - 4 d_2 n^2 + 4 d_2 n - 2 d_2 n^2 + 8 d_2 n - 8 d_2 + 4 d_2 n - 2 d_2 n^2 + 8 d_2 n - 8 d_2 + 4 d_2 n - 2 d_2 n^2 + 8 d_2 n - 8 d_2 + 4 d_$ $d_1n^2 - 2d_1n - 2d_1n + 4d_1 + d_0n - 2d_0 + (n^2 + 1)$ $\Rightarrow n^2(d_1 + 4d_2 + 2d_2 - d_1 - 1) +$ $n(d_0 - 4d_2 - 8d_2 + 2d_1 + 2d_1 - d_0) = (-8d_2 + 4d_1 - 2d_0 + 1)$ $\Rightarrow n^2 (6d_2 - 1) + n(-12d_2 + 4d_1) = (-8d_2 + 4d_1 - 2d_0 + 1)$

Chittaranjan Mandal (IIT Kharagpur)

LNHR where σ is a root of $\chi(x)$ (contd.)

Example (g(n) with σ as root of $\chi(x)$ (contd.))

• $6d_2 = 1, -12d_2 + 4d_1 = 0, 8d_2 - 4d_1 + 2d_0 = 1$, so

43/67

LNHR where σ is a root of $\chi(x)$ (contd.)

Example (g(n) with σ as root of $\chi(x)$ (contd.)) • $6d_2 = 1, -12d_2 + 4d_1 = 0, 8d_2 - 4d_1 + 2d_0 = 1, \text{ so}$ • $d_2 = \frac{1}{6}, d_1 = \frac{1}{2}, d_0 = \frac{5}{6}, V_n = \frac{1}{6}n(n^2 + 3n + 5),$ $T_n = \underbrace{c1^n + c'(-1)^n}_{W_n} + \underbrace{\frac{1}{6}n(n^2 + 3n + 5)}_{V_n} \forall n \in \mathbb{N}_0$

43/67

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

August 28, 2021

(口) (同) (三) (三) (

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

August 28, 2021

3

43/67

LNHR where σ is a root of $\chi(x)$ (contd.)

Chittaranjan Mandal (IIT Kharagpur)

Example of LHNR (roots with multiplicity 2)

Example (LNHR with repeated roots in χ)

•
$$T_n = 6T_{n-2} - 9T_n + 5 \cdot 3^n, n \ge 2, T_0 = 1, T_1 = 2$$

44/67

A 30 b
Example of LHNR (roots with multiplicity 2)

Example (LNHR with repeated roots in χ)

- $T_n = 6T_{n-2} 9T_n + 5 \cdot 3^n, n \ge 2, T_0 = 1, T_1 = 2$
- $\sigma = 3, g(n) = 5(3^n), \chi(x) = x^2 6x + 9 = (x 3)^2 = 0,$ $\{\rho\} = \{3, 3\}$

Example of LHNR (roots with multiplicity 2)

Example (LNHR with repeated roots in χ)

- $T_n = 6T_{n-2} 9T_n + 5 \cdot 3^n, n \ge 2, T_0 = 1, T_1 = 2$
- $\sigma = 3, g(n) = 5(3^n), \chi(x) = x^2 6x + 9 = (x 3)^2 = 0,$ { ρ } = {3,3}
- $\mu = 2$, $V_n = dn^2 3^n$, substituting,

•
$$5 \cdot 3^n = V_n - 6V_{n-1} + 9V_n$$
, so

э

Example of LHNR (roots with multiplicity 2)

Example (LNHR with repeated roots in χ)

- $T_n = 6T_{n-2} 9T_n + 5 \cdot 3^n, n \ge 2, T_0 = 1, T_1 = 2$
- $\sigma = 3, g(n) = 5(3^n), \chi(x) = x^2 6x + 9 = (x 3)^2 = 0,$ { ρ } = {3,3}
- $\mu = 2$, $V_n = dn^2 3^n$, substituting,

•
$$5 \cdot 3^n = V_n - 6V_{n-1} + 9V_n$$
, so

•
$$d_0 = \frac{5}{18}, V_n = \frac{5}{18}n^2 3^n, T_n = \underbrace{(c_1 + c_2 n)3^n}_{W_n} + \underbrace{\frac{5}{18}n^2 3^n}_{V_n}, \forall n \in \mathbb{N}_0$$

•
$$T_0 = 1, T_1 = 2 \Rightarrow c_1 = 1, c_2 = -\frac{11}{18}$$

• $T_n = (1 - \frac{11}{18}n + \frac{5}{18}n^2)3^n$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

PS of LNHR,
$$g(n) = \sum_{j} p_j(n) \sigma_j^n$$

- Let the non-homogeneous term be of the form $p_1(n)\sigma_1^n + p_2(n)\sigma_2^n + \ldots + p_m(n)\sigma_m^n, \sigma_i$ are mutually distinct
- There is a PS of the form $V_n = V_{1,n} + V_{2,n} + \ldots + V_{m,n}$ $V_{i,n}$ is a PS of the LNHR $T_n = a_1 T_{n-1} + a_2 T_{n-2} + \ldots + a_k T_{n-k} + p_i(n) s^n$

45/67

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Example

• $T_n = 2T_{n-1} + 2^n - n$ for $n \ge 1$, $T_0 = 1$ $g(n) = g_1(n) + g_2(n)$ where $g_1(n) = 2^n$ and $g_2(n) = -n(1^n)$

Example

- $T_n = 2T_{n-1} + 2^n n$ for $n \ge 1$, $T_0 = 1$ $g(n) = g_1(n) + g_2(n)$ where $g_1(n) = 2^n$ and $g_2(n) = -n(1^n)$
- $\chi(x) = x 2 = 0$, $\{\rho\} = \{2\} V_{1,n}$ for $T_n = 2T_{n-1} + 2^n$ is of the form $V_{1,n} = nd2^n$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Example

- $T_n = 2T_{n-1} + 2^n n$ for $n \ge 1$, $T_0 = 1$ $g(n) = g_1(n) + g_2(n)$ where $g_1(n) = 2^n$ and $g_2(n) = -n(1^n)$
- $\chi(x) = x 2 = 0$, $\{\rho\} = \{2\} V_{1,n}$ for $T_n = 2T_{n-1} + 2^n$ is of the form $V_{1,n} = nd2^n$
- Substituting, $nd2^n = 2(n-1)d2^{n-1} + 2^n$, so d = 1, $V_{1,n} = n2^n$ $V_{2,n}$ for $T_n = 2T_{n-1} - n$ is of the form V - 2, n = dn + d'

э

46/67

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example

- $T_n = 2T_{n-1} + 2^n n$ for $n \ge 1$, $T_0 = 1$ $g(n) = g_1(n) + g_2(n)$ where $g_1(n) = 2^n$ and $g_2(n) = -n(1^n)$
- $\chi(x) = x 2 = 0$, $\{\rho\} = \{2\} V_{1,n}$ for $T_n = 2T_{n-1} + 2^n$ is of the form $V_{1,n} = nd2^n$
- Substituting, $nd2^n = 2(n-1)d2^{n-1} + 2^n$, so d = 1, $V_{1,n} = n2^n$ $V_{2,n}$ for $T_n = 2T_{n-1} - n$ is of the form V - 2, n = dn + d'
- Substituting, dn + d' = 2(d(n-1) + d') n, so d = 1 and d' = 2, $V_{2,n} = n + 2$

э

46/67

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example

- $T_n = 2T_{n-1} + 2^n n$ for $n \ge 1$, $T_0 = 1$ $g(n) = g_1(n) + g_2(n)$ where $g_1(n) = 2^n$ and $g_2(n) = -n(1^n)$
- $\chi(x) = x 2 = 0$, $\{\rho\} = \{2\} V_{1,n}$ for $T_n = 2T_{n-1} + 2^n$ is of the form $V_{1,n} = nd2^n$
- Substituting, $nd2^n = 2(n-1)d2^{n-1} + 2^n$, so d = 1, $V_{1,n} = n2^n$ $V_{2,n}$ for $T_n = 2T_{n-1} - n$ is of the form V - 2, n = dn + d'
- Substituting, dn + d' = 2(d(n-1) + d') n, so d = 1 and d' = 2, $V_{2,n} = n + 2$
- Thus, a general solution of $T_n = 2T_{n-1} + 2^n n$ is $T_n = c2^n + n2^n + n + 2 \ \forall n \in \mathbb{N}_0$

Example

- $T_n = 2T_{n-1} + 2^n n$ for $n \ge 1$, $T_0 = 1$ $g(n) = g_1(n) + g_2(n)$ where $g_1(n) = 2^n$ and $g_2(n) = -n(1^n)$
- $\chi(x) = x 2 = 0$, $\{\rho\} = \{2\} V_{1,n}$ for $T_n = 2T_{n-1} + 2^n$ is of the form $V_{1,n} = nd2^n$
- Substituting, $nd2^n = 2(n-1)d2^{n-1} + 2^n$, so d = 1, $V_{1,n} = n2^n$ $V_{2,n}$ for $T_n = 2T_{n-1} - n$ is of the form V - 2, n = dn + d'
- Substituting, dn + d' = 2(d(n-1) + d') n, so d = 1 and d' = 2, $V_{2,n} = n + 2$
- Thus, a general solution of $T_n = 2T_{n-1} + 2^n n$ is $T_n = c2^n + n2^n + n + 2 \ \forall n \in \mathbb{N}_0$
- $T_0 = 1 = c + 2 \Rightarrow c = -1$, so $T_n = (n 1)2^n + n + 2$, $\forall n \in \mathbb{N}_0$

3

Section outline

Deriving solution of LNHR when $g(n) = q(n)\sigma^n$ • Binomial identities

- Convolving binomial coefficients with g(n)
- A PS of LNHR for $g(n) = q(n)\sigma^n$

47/67

3 1 4 3 1

Binomial identities

Theorem

$$\sum_{r=0}^{n} (-1)^r r^d \binom{n}{r} = 0, \, d < n$$

Corollary

$$\sum_{r=0}^{n} (-1)^{r} p(r) \binom{n}{r} = 0 \text{ where } p(r) \text{ is a polynomial of degree } d < n$$

- First prove the theorem using the method of induction
- Thereafter, the corollary follows

48/67

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

Binomial identities (contd.)

Induction basis

$$\begin{aligned} \left(1-x\right)^{n}\Big|_{x=1} &= \sum_{r=0}^{n} (-1)^{r} \binom{n}{r} = \sum_{r=0}^{n} (-1)^{r} r^{0} \binom{n}{r} = 0\\ \end{aligned}$$

$$\begin{aligned} \text{Observation} \quad \sum_{r=0}^{n} (-1)^{r} \binom{n}{r} &= 1 + \sum_{r=1}^{n} (-1)^{r} \binom{n}{r} = 1 + \sum_{r=1}^{n} (-1)^{r} \frac{n}{r} \binom{n-1}{r-1}\\ \end{aligned}$$

$$\begin{aligned} \text{Induction mechanism} \quad \sum_{r=0}^{n} (-1)^{r} \binom{n}{r} &= 0 + \sum_{r=1}^{n} (-1)^{r} \binom{n}{r} = \\ &\sum_{r=1}^{n} (-1)^{r} \frac{n}{r} \binom{n-1}{r-1} = n \sum_{r=1}^{n} (-1)^{r} \binom{n-1}{r-1} = \\ &n \sum_{r=0}^{n-1} (-1)^{r} \binom{n-1}{r} &= n \left(1-x\right)^{n-1}\Big|_{x=1} = 0 \end{aligned}$$

August 28, 2021

э

49/67

Binomial identities (contd.)

Induction hypothesis

$$\sum_{r=0}^{n-1} (-1)^r r^d \binom{n-1}{r} = 0$$

Induction step

$$\sum_{r=0}^{n} (-1)^{r} r^{d} \binom{n}{r} = 0 + \sum_{r=1}^{n} (-1)^{r} r^{d} \binom{n}{r} =$$
$$\sum_{r=1}^{n} (-1)^{r} r^{d} \frac{n}{r} \binom{n-1}{r-1} = n \sum_{r=1}^{n} (-1)^{r} r^{d-1} \binom{n-1}{r-1} = 0$$

Corollar

$$ry \sum_{r=0}^{n} (-1)^{r} p(r) {n \choose r} = \sum_{r=0}^{n} (-1)^{r} \left(\sum_{j=0}^{j=d < n} b_{j} r^{j} \right) {n \choose r} = \sum_{j=0}^{j=d < n} b_{j} \sum_{r=0}^{n} (-1)^{r} (r^{j}) {n \choose r} = 0$$

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

50/67

Convolving binomial coefficients with g(n)

Let q(n) be a polynomial of degree d, so p(k) = q(n - k) is a polynomial of degree d in k

$$\sum_{k=0}^{r+1} \binom{r+1}{k} (-1)^k \underbrace{q(n-k)}_{p(k)} = 0, \forall n$$
 (2.1)

• Multiplying eq 2.1 by σ^n , we get:

$$\sum_{k=0}^{r+1} \binom{r+1}{k} (-1)^k \underbrace{q(n-k)}_{p(k)} \sigma^n = 0, \forall n$$
(2.2)

Chittaranjan Mandal (IIT Kharagpur)

٠

BAR A BA

51/67

Convolving binomial coefficients with g(n) (contd.)

• This may be rewritten as:

$$\sum_{k=0}^{r+1} \underbrace{\binom{r+1}{k}}_{\ell_k} \underbrace{(-1)^k (\sigma)^k}_{\ell_k} \underbrace{q(n-k)\sigma^{n-k}}_{g(n-k)} = 0, \forall n \qquad (2.3)$$

- And more compactly as: $\ell_{r+1}q(n)\sigma^n + \ell_rq(n-1)\sigma^{n-1} + \ldots + \ell_0q(n-(r+1))\sigma^{n-(r+1)} = 0$
- With $g(k) = q(k)\sigma^k$, it may be written as:

 $\ell_{r+1}g(n) + \ell_r g(n-1) + \ldots + \ell_0 g(n-(r+1)) = 0$ (2.4)

A PS of LNHR for $g(n) = q(n)\sigma^n$

• Identity (eq 2.4) may be used to eliminate g(n) from (eq 1.1)

$$\ell_{r+1}T_n - \ell_{r+1}a_1T_{n-1} - \dots - \ell_{r+1}a_kT_{n-k} = \ell_{r+1}g(n)$$

$$\ell_rT_{n-1} - \ell_ra_1T_{n-2} - \dots - \ell_ra_kT_{n-k-1} = \ell_rg(n-1)$$

$$\vdots$$

$$\ell_0T_{n-(r+1)} - \ell_0a_1T_{n-(r+2)} - \dots - \ell_0a_kT_{n-(r+k+1)} = \ell_0g(n-(r+1))$$

$$\alpha_0T_n + \alpha_1T_{n-1} + \dots + \alpha_{(r+k+1)}T_{n-(r+k+1)} = 0$$
(3.1)

• Row-wise, replace T_j by x^j and factor out common powers of x and add: $x^{n-k}\ell_{r+1}\chi_A(x) + x^{n-k-1}\ell_r\chi_A(x) + \ldots + x^{n-k-r-1}\ell_0\chi_A(x) =$ $x^{n-k-r-1}\chi_A(x)[\ell_{r+1}x^{r+1} + x^r\ell_r + \ldots + \ell_0] = \chi_A(x)(x-\sigma)^{r+1}x^{n-k-r-1} =$ $\ell_{r+1}g(n) + \ell_rg(n-1) + \ldots + \ell_0g(n-(r+1)) = 0$

• Characteristic equation of eq 3.1: $\chi_{\alpha}(x) = \chi_{A}(x)(x-\sigma)^{r+1} = 0$

Chittaranjan Mandal (IIT Kharagpur)

э

- We have $\chi_{\alpha}(x) = \chi_{A}(x)(x-\sigma)^{r+1} = 0$
- If σ is not a root of $\chi_A(x)$, eq 3.1 will have solutions

э

• We have
$$\chi_{\alpha}(x) = \chi_{A}(x)(x-\sigma)^{r+1} = 0$$

• If σ is not a root of $\chi_A(x)$, eq 3.1 will have solutions $\sum_{s=0}^{\infty} (d_s n^s) \sigma^n$ which may be considered PS $V_n = p(n)\sigma^n$ of eq 1.1

54/67

- We have $\chi_{\alpha}(x) = \chi_{A}(x)(x-\sigma)^{r+1} = 0$
- If σ is not a root of $\chi_A(x)$, eq 3.1 will have solutions $\sum_{s=0}^{n} (d_s n^s) \sigma^n$ which may be considered PS $V_n = p(n)\sigma^n$ of eq 1.1
- If σ is a root of $\chi_A(x)$ of multiplicity *m*, eq 3.1 will have solutions

- We have $\chi_{\alpha}(x) = \chi_{A}(x)(x-\sigma)^{r+1} = 0$
- If σ is not a root of $\chi_A(x)$, eq 3.1 will have solutions $\sum_{s=0}^{\infty} (d_s n^s) \sigma^n$ which may be considered PS $V_n = p(n)\sigma^n$ of eq 1.1
- If σ is a root of $\chi_A(x)$ of multiplicity *m*, eq 3.1 will have solutions $\sum_{s=0}^{s=r+m} (d'_s n^s) \sigma^n$
- From these, PS of eq 1.1 may be considered as

 $V_n =$

54/67

э

A B > A B >

- We have $\chi_{\alpha}(x) = \chi_{A}(x)(x-\sigma)^{r+1} = 0$
- If σ is not a root of $\chi_A(x)$, eq 3.1 will have solutions $\sum_{s=0}^{\infty} (d_s n^s) \sigma^n$ which may be considered PS $V_n = p(n)\sigma^n$ of eq 1.1
- If σ is a root of $\chi_A(x)$ of multiplicity *m*, eq 3.1 will have solutions $\sum_{s=0}^{s=r+m} (d'_s n^s) \sigma^n$
- From these, PS of eq 1.1 may be considered as

$$V_n = \sum_{s=m}^{s=r+m} (d'_s n^s) \, \sigma^n = n^s p(n) \sigma^n$$

• We have
$$\chi_{\alpha}(x) = \chi_{A}(x)(x-\sigma)^{r+1} = 0$$

- If σ is not a root of $\chi_A(x)$, eq 3.1 will have solutions $\sum_{s=0}^{\infty} (d_s n^s) \sigma^n$ which may be considered PS $V_n = p(n)\sigma^n$ of eq 1.1
- If σ is a root of $\chi_A(x)$ of multiplicity *m*, eq 3.1 will have solutions $\sum_{s=0}^{s=r+m} (d'_s n^s) \sigma^n$
- From these, PS of eq 1.1 may be considered as

$$V_n = \sum_{s=m}^{s=r+m} (d'_s n^s) \, \sigma^n = n^s p(n) \sigma^n$$

Both cases are covered via

$$V_n = n^{\mu} (d_r n^r + d_{r-1} n^{r-1} + \ldots + d_1 n + d_0) \sigma^n,$$

$$\mu = \begin{cases} 0 & \sigma \text{ is not a root of } \chi_A(x) \\ m & \sigma \text{ is a root of multiplicity } m \text{ of } \chi_A(x) \end{cases}$$

医下颌 医下颌

Section outline

Divide and conquer recurrences

- Revisiting $T_n = 2T_{\frac{n}{2}} + an$
- DC result for
 - $T_n = aT_{\frac{n}{s}} + g(n)$
- Example of the form

 $T_n = aT_{\frac{n}{s}} + p(n)$

- DC recurrence when $a = s^r$, $n = s^m$, $m \ge 0$
- DC recurrence when $a \neq s^r$, $n = s^m$, $m \ge 0$
- Alternate statement of DC recurrence

55/67

B N A B N

Revisiting $T_n = 2T_{\frac{n}{2}} + an$

Example ($T_n = 2T_{\frac{n}{2}} + an$, $T_1 = 1$ **)**

• It's a linear non-homogeneous recurrence with constant coeefficients, but not of constant order

Revisiting $T_n = 2T_{\frac{n}{2}} + an$

Example ($T_n = 2T_{\frac{n}{2}} + an$, $T_1 = 1$ **)**

- It's a linear non-homogeneous recurrence with constant coeefficients, but not of constant order
- Let $n = 2^m$, $T_n = T_{2^m} = S_m$ we actually skip over many intermediate sizes

Revisiting $T_n = 2T_{\frac{n}{2}} + an$

Example ($T_n = 2T_{\frac{n}{2}} + an$, $T_1 = 1$ **)**

- It's a linear non-homogeneous recurrence with constant coeefficients, but not of constant order
- Let $n = 2^m$, $T_n = T_{2^m} = S_m$ we actually skip over many intermediate sizes

•
$$S_m = 2S_{m-1} + a2^m$$
, $S_0 = 1 - LNHR$

Revisiting $T_n = 2T_{\frac{n}{2}} + an$

Example ($T_n = 2T_{\frac{n}{2}} + an$, $T_1 = 1$ **)**

- It's a linear non-homogeneous recurrence with constant coeefficients, but not of constant order
- Let $n = 2^m$, $T_n = T_{2^m} = S_m$ we actually skip over many intermediate sizes

•
$$S_m = 2S_{m-1} + a2^m$$
, $S_0 = 1 - LNHR$

•
$$\chi_A(x) = x - 2, \{\rho\} = \{2\}$$

•
$$V_m = md2^m$$
, substituting, $md2^m = 2(m-1)d2^{m-1} + a2^m$
 $md = (m-1)d + a \Rightarrow d = a$, $V_m = am2^m$

•
$$S_m = c2^m + am2^m$$
, $S_0 = 1 \Rightarrow c = 1$, so $S_m = \underbrace{2^m}_n (a \underbrace{m}_{\lg n} + 1)$

• Finally, $S_m = T_{2^m} = \frac{T_n = n(a \lg n + 1) \in \Theta(n \lg n)}{m \ge 0}$, for $n = 2^m$, $m \ge 0$

DC result for $T_n = aT_{\frac{n}{s}} + g(n)$

When $n = s^m$, $T_n = aT_{\frac{n}{s}} + g(n)$ can be solved with the transformation $n = s^m$

Theorem (
$$T_n = aT_{\frac{n}{2}} + g(n)$$
 for $n = s^m$)

• Let
$$g(n)$$
 (degree $r \in \mathbb{N}_0$) be
 $g(n) = b_r n^r + b_{r-1} n^{r-1} + \ldots + b_1 n + b_0$,
 $b_0, b_1, \ldots, b_t \in \mathbb{R}, b_r > 0$

• Let T_n be a monotonically increasing sequence that satisfies $T_n = aT_{\frac{n}{s}} + g(n)$ whenever $n = s^m$, then $(\varepsilon > 0$ below) • $T_n \in \begin{cases} \Theta(n^r) & a < s^r & [\log_s a + \varepsilon = r \Rightarrow g(n) \in \Omega(n^{\log_s a})] \\ \Theta(n^r \log n) & a = s^r & [\log_s a = r \Rightarrow g(n) \in \Theta(n^{\log_s a})] \\ \Theta(n^{\log_s a}) & a > s^r & [\log_s a - \varepsilon = r \Rightarrow g(n) \in O(n^{\log_s a})] \end{cases}$

Chittaranjan Mandal (IIT Kharagpur)

3

还

$$T_n \in \begin{cases} \Theta(n^r) & a < s^r \\ \Theta(n^r \log_s n) & a = s^r \\ \Theta(n^{\log_s a}) & a > s^r \end{cases}, n = s^m, m \ge 0$$

Example

Binary search

$$T_n = T_{\frac{n}{2}} + c; [p(n) = c]$$

$$a = 1, s = 2, r = 0, s^r = 1, a = s^r$$

$$T_n \in \Theta(n^r \lg n) = \Theta(\lg n)$$

58/67

$$T_n \in \begin{cases} \Theta(n^r) & a < s^r \\ \Theta(n^r \log_s n) & a = s^r \\ \Theta(n^{\log_s a}) & a > s^r \end{cases}, n = s^m, m \ge 0$$

Example

Binary search

$$T_n = T_{\frac{n}{2}} + c; [p(n) = c]$$

- $a = 1, s = 2, r = 0, s^{r} = 1, a = s^{r}$
- $T_n \in \Theta(n^r \lg n) = \Theta(\lg n)$
- Strange recurrence

$$T_n = T_{\frac{n}{2}} + bn + c; [p(n) = bn + c]$$

 $a = 1, s = 2, r = 1, s^r = 2, a < s^r$
 $T_n \in \Theta(n^r) = \Theta(n)$

$$T_n \in \begin{cases} \Theta(n^r) & a < s^r \\ \Theta(n^r \log_s n) & a = s^r \\ \Theta(n^{\log_s a}) & a > s^r \end{cases}, n = s^m, m \ge 0$$

Example

• Binary search $T_n = T_{\frac{n}{2}} + c; [p(n) = c]$ $a = 1, s = 2, r = 0, s^r = 1, a = s^r$ $T_n \in \Theta(n^r \lg n) = \Theta(\lg n)$ • Strange recurrence $T_n = T_{\frac{n}{2}} + bn + c; [p(n) = bn + c]$ $a = 1, s = 2, r = 1, s^r = 2, a < s^r$ $T_n \in \Theta(n^r) = \Theta(n)$

• FFT

$$T_n = 2T_{\frac{n}{2}} + bn + c; [p(n) = bn + c]$$

 $a = 2, s = 2, r = 1, s^r = 2, a = s^r$
 $T_n \in \Theta(n^r \lg n) = \Theta(n \lg n)$

$$T_n \in \begin{cases} \Theta(n^r) & a < s^r \\ \Theta(n^r \log_s n) & a = s^r \\ \Theta(n^{\log_s a}) & a > s^r \end{cases}, n = s^m, m \ge 0$$

Example

Binary search

$$T_n = T_{\frac{n}{2}} + c; [p(n) = c]$$

- $a = 1, s = 2, r = 0, s^{r} = 1, a = s^{r}$
- $T_n \in \Theta(n^r \lg n) = \Theta(\lg n)$
- Strange recurrence

$$T_n = T_{\frac{n}{2}} + bn + c; [p(n) = bn + c]$$

 $a = 1, s = 2, r = 1, s^r = 2, a < s^r$
 $T_n \in \Theta(n^r) = \Theta(n)$

• FFT

$$T_n = 2T_{\frac{n}{2}} + bn + c; [p(n) = bn + c]$$

$$a = 2, s = 2, r = 1, s^r = 2, a = s^r$$

$$T_n \in \Theta(n^r \lg n) = \Theta(n \lg n)$$

$$T_n = 3T_{\frac{n}{2}} + bn + c; [p(n) = bn + c]$$

$$T_n \in \Theta(n^{\log_s a}) = \Theta(n^{\log_2 3})$$
$$\log_2 3 = 1.58496\dots$$

DC recurrence when $a = s^r$, $n = s^m$, $m \ge 0$

Proof for DC recurrence when $a = s^r$ **.**

• $f(n) = af(\frac{n}{s}) + bn^r$

Chittaran	ian Manda	al (IIT Khara	(apur)

DC recurrence when $a = s^r$, $n = s^m$, $m \ge 0$

Proof for DC recurrence when $a = s^r$ **.**

•
$$f(n) = af(\frac{n}{s}) + bn^r$$

= $a\left(af(\frac{n}{s^2}) + b(\frac{n}{s})^r\right) + bn^r = a^2f(\frac{n}{s^2}) + ab(\frac{n}{s})^r + bn^r$

Chittaranjan Mandal (IIT k	(haragpur)
----------------------------	------------

<ロ> <部> < き> < き> < 。</p>

DC recurrence when $a = s^r$, $n = s^m$, $m \ge 0$

Proof for DC recurrence when $a = s^r$ **.**

•
$$f(n) = af(\frac{n}{s}) + bn^r$$

 $= a\left(af(\frac{n}{s^2}) + b(\frac{n}{s})^r\right) + bn^r = a^2 f(\frac{n}{s^2}) + ab(\frac{n}{s})^r + bn^r$
 $= a^2\left(af(\frac{n}{s^3}) + b(\frac{n}{s^2})^r\right) + ab(\frac{n}{s})^r + bn^r$
 $= a^3 f(\frac{n}{s^3}) + a^2 b(\frac{n}{s^2})^r + ab(\frac{n}{s})^r + bn^r$
 $= \dots = a^m f(1) + \sum_{j=0}^{m-1} a^j b(\frac{n}{s^j})^r$

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

<ロ> <部> < き> < き> < 。</p>
Proof for DC recurrence when $a = s^r$ **.**

•
$$f(n) = af(\frac{n}{s}) + bn^{r}$$

 $= a\left(af(\frac{n}{s^{2}}) + b(\frac{n}{s})^{r}\right) + bn^{r} = a^{2}f(\frac{n}{s^{2}}) + ab(\frac{n}{s})^{r} + bn^{r}$
 $= a^{2}\left(af(\frac{n}{s^{3}}) + b(\frac{n}{s^{2}})^{r}\right) + ab(\frac{n}{s})^{r} + bn^{r}$
 $= a^{3}f(\frac{n}{s^{3}}) + a^{2}b(\frac{n}{s^{2}})^{r} + ab(\frac{n}{s})^{r} + bn^{r}$
 $= \dots = a^{m}f(1) + \sum_{j=0}^{m-1}a^{j}b(\frac{n}{s^{j}})^{r} = a^{m}f(1) + \sum_{j=0}^{m-1}s^{r_{j}}b(\frac{n}{s^{j}})^{r}$

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

<ロ> <部> < き> < き> < 。</p>

э.

Proof for DC recurrence when $a = s^r$ **.**

•
$$f(n) = af(\frac{n}{s}) + bn^r$$

 $= a\left(af(\frac{n}{s^2}) + b(\frac{n}{s})^r\right) + bn^r = a^2f(\frac{n}{s^2}) + ab(\frac{n}{s})^r + bn^r$
 $= a^2\left(af(\frac{n}{s^3}) + b(\frac{n}{s^2})^r\right) + ab(\frac{n}{s})^r + bn^r$
 $= a^3f(\frac{n}{s^3}) + a^2b(\frac{n}{s^2})^r + ab(\frac{n}{s})^r + bn^r$
 $= \dots = a^mf(1) + \sum_{j=0}^{m-1} a^jb(\frac{n}{s^j})^r = a^mf(1) + \sum_{j=0}^{m-1} s^{r_j}b(\frac{n}{s^j})^r$
 $= a^mf(1) + \sum_{j=0}^{m-1} bn^r = a^mf(1) + bmn^r = a^mf(1) + b(\log_s n)n^r$

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

э.

59/67

<ロ> <部> < き> < き> < 。</p>

Proof for DC recurrence when $a = s^r$ **.**

•
$$f(n) = af(\frac{n}{s}) + bn^r$$

 $= a\left(af(\frac{n}{s^2}) + b(\frac{n}{s})^r\right) + bn^r = a^2f(\frac{n}{s^2}) + ab(\frac{n}{s})^r + bn^r$
 $= a^2\left(af(\frac{n}{s^3}) + b(\frac{n}{s^2})^r\right) + ab(\frac{n}{s})^r + bn^r$
 $= a^3f(\frac{n}{s^3}) + a^2b(\frac{n}{s^2})^r + ab(\frac{n}{s})^r + bn^r$
 $= \dots = a^mf(1) + \sum_{j=0}^{m-1} a^jb(\frac{n}{s^j})^r = a^mf(1) + \sum_{j=0}^{m-1} s^{r_j}b(\frac{n}{s^j})^r$
 $= a^mf(1) + \sum_{j=0}^{m-1} bn^r = a^mf(1) + bmn^r = a^mf(1) + b(\log_s n)n^r$
 $= s^{rm}f(1) + b(\log_s n)n^r = (s^m)^rf(1) + b(\log_s n)n^r$

Chittaranjan Mandal (IIT Kharagpur)

э.

59/67

Proof for DC recurrence when $a = s^r$ **.**

•
$$f(n) = af(\frac{n}{s}) + bn^{r}$$

 $= a\left(af\left(\frac{n}{s^{2}}\right) + b\left(\frac{n}{s}\right)^{r}\right) + bn^{r} = a^{2}f\left(\frac{n}{s^{2}}\right) + ab\left(\frac{n}{s}\right)^{r} + bn^{r}$
 $= a^{2}\left(af\left(\frac{n}{s^{3}}\right) + b\left(\frac{n}{s^{2}}\right)^{r}\right) + ab\left(\frac{n}{s}\right)^{r} + bn^{r}$
 $= a^{3}f\left(\frac{n}{s^{3}}\right) + a^{2}b\left(\frac{n}{s^{2}}\right)^{r} + ab\left(\frac{n}{s}\right)^{r} + bn^{r}$
 $= \dots = a^{m}f(1) + \sum_{j=0}^{m-1} a^{j}b\left(\frac{n}{s^{j}}\right)^{r} = a^{m}f(1) + \sum_{j=0}^{m-1} s^{r_{j}}b\left(\frac{n}{s^{j}}\right)^{r}$
 $= a^{m}f(1) + \sum_{j=0}^{m-1} bn^{r} = a^{m}f(1) + bmn^{r} = a^{m}f(1) + b\left(\log_{s} n\right)n^{r}$
 $= s^{rm}f(1) + b\left(\log_{s} n\right)n^{r} = (s^{m})^{r}f(1) + b\left(\log_{s} n\right)n^{r}$
 $= n^{r}f(1) + bn^{r}\log_{s} n$

Proof for DC recurrence when $a \neq s^r$ **.**

•
$$T(n) = c_1 n^r + c_2 n^{\log_s a}, c_1 = s^r \frac{b}{s^r - a}, c_2 = T(1) + s^r \frac{b}{a - s^r}$$
 [Ind hypothesis]

< ロ > < 同 > < 回 > < 回 >

э

Proof for DC recurrence when $a \neq s^r$ **.**

•
$$T(n) = c_1 n^r + c_2 n^{\log_s a}, c_1 = s^r \frac{b}{s^r - a}, c_2 = T(1) + s^r \frac{b}{a - s^r}$$
 [Ind hypothesis]
Basis: $m = 0$ $(n = s^m = 1)$ $T(1) = c_1 n^r + c_2 n^{\log_s a} = c_1 + c_2 = T(1)$ \checkmark

Proof for DC recurrence when $a \neq s^r$ **.**

• $T(n) = c_1 n^r + c_2 n^{\log_8 a}, c_1 = s^r \frac{b^r}{s^r - a}, c_2 = T(1) + s^r \frac{b}{a - s^r}$ Basis: m = 0 $(n = s^m = 1)$ $T(1) = c_1 n^r + c_2 n^{\log_8 a} = c_1 + c_2 = T(1) \checkmark$ Inductive step: m > 0, assume true for $n \le s^{m-1}$, check for $n = s^m$

[Ind hypothesis]

Proof for DC recurrence when $a \neq s^r$ **.**

• $T(n) = c_1 n^r + c_2 n^{\log_s a}, c_1 = s^r \frac{b^s}{s^r - a}, c_2 = T(1) + s^r \frac{b}{a - s^r}$ [Ind hypothesis] Basis: m = 0 $(n = s^m = 1)$ $T(1) = c_1 n^r + c_2 n^{\log_s a} = c_1 + c_2 = T(1) \checkmark$ Inductive step: m > 0, assume true for $n \le s^{m-1}$, check for $n = s^m$

• $T(n) = af(\frac{n}{s}) + bn^r =$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proof for DC recurrence when $a \neq s^r$ **.**

•
$$T(n) = c_1 n^r + c_2 n^{\log_s a}$$
, $c_1 = s^r \frac{b}{s^r - a}$, $c_2 = T(1) + s^r \frac{b}{a - s^r}$ [Ind hypothesis]
Basis: $m = 0$ $(n = s^m = 1)$ $T(1) = c_1 n^r + c_2 n^{\log_s a} = c_1 + c_2 = T(1)$ \checkmark
Inductive step: $m > 0$, assume true for $n \le s^{m-1}$, check for $n = s^m$
• $T(n) = af(\frac{n}{s}) + bn^r = a \left[\underbrace{\left(s^r \frac{b}{s^r - a} \right) \left(\frac{n}{s} \right)^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) \left(\frac{n}{s} \right)^{\log_s a}}_{\text{by induction hypothesis, $\frac{n}{s} = s^{m-1}} \right] + bn^r =$$

Proof for DC recurrence when $a \neq s^r$ **.**

•
$$T(n) = c_1 n^r + c_2 n^{\log_s a}, c_1 = s^r \frac{b}{s^{r} - a}, c_2 = T(1) + s^r \frac{b}{a - s^r}$$
 [Ind hypothesis]
Basis: $m = 0$ $(n = s^m = 1)$ $T(1) = c_1 n^r + c_2 n^{\log_s a} = c_1 + c_2 = T(1) \checkmark$
Inductive step: $m > 0$, assume true for $n \le s^{m-1}$, check for $n = s^m$
• $T(n) = af(\frac{n}{s}) + bn^r = a \left[\underbrace{\left(s^r \frac{b}{s^r - a} \right) \left(\frac{n}{s} \right)^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) \left(\frac{n}{s} \right)^{\log_s a}}_{\text{by induction hypothesis, $\frac{n}{s} = s^{m-1}} \right] + bn^r = s^r \left(\frac{ab}{s^r - a} \right) \frac{n^r}{s^r} + a \left(T(1) + s^r \frac{b}{a - s^r} \right) \frac{n^{\log_s a}}{a} + \frac{b(s^r - a)n^r}{(s^r - a)} = s^r \left(\frac{ab}{s^r - a} \right) \frac{n^r}{s^r} + a \left(T(1) + s^r \frac{b}{a - s^r} \right) \frac{n^{\log_s a}}{a} + \frac{b(s^r - a)n^r}{(s^r - a)} = s^r \left(\frac{b}{s^r - a} \right) \frac{n^r}{s^r} + a \left(\frac{b}{s^r - a} \right) \frac{n^r}{s^r} + a \left(\frac{b}{s^r - a^r} \right) \frac{n^{\log_s a}}{s^r - a^r} = s^r \left(\frac{b}{s^r - a} \right) \frac{n^r}{s^r} + a \left(\frac{b}{s^r - a^r} \right) \frac{n^{\log_s a}}{s^r - a^r} + \frac{b(s^r - a)n^r}{(s^r - a)^r} = s^r \left(\frac{b}{s^r - a^r} \right) \frac{n^r}{s^r} + a \left(\frac{b}{s^r - a^r} \right) \frac{n^r}{s^r} \frac{n^r}{s^r} + a \left(\frac{b}{s^r - a^r} \right) \frac{n^r}{s^r} \frac{n^r}{s^r$$

60/67

Proof for DC recurrence when $a \neq s^r$ **.**

•
$$T(n) = c_1 n^r + c_2 n^{\log_s a}, c_1 = s^r \frac{b}{s^r - a}, c_2 = T(1) + s^r \frac{b}{a - s^r}$$
 [Ind hypothesis]
Basis: $m = 0$ $(n = s^m = 1)$ $T(1) = c_1 n^r + c_2 n^{\log_s a} = c_1 + c_2 = T(1) \checkmark$
Inductive step: $m > 0$, assume true for $n \le s^{m-1}$, check for $n = s^m$
• $T(n) = af(\frac{n}{s}) + bn^r = a \left[\underbrace{\left(s^r \frac{b}{s^r - a} \right) \left(\frac{n}{s} \right)^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) \left(\frac{n}{s} \right)^{\log_s a}}_{\text{by induction hypothesis, $\frac{n}{s} = s^{m-1}} \right] + bn^r = s^r \left(\frac{ab}{s^r - a} \right) \frac{n^r}{s^r} + a \left(T(1) + s^r \frac{b}{a - s^r} \right) \frac{n^{\log_s a}}{a} + \frac{b(s^r - a)n^r}{(s^r - a)} = \left(\frac{ab + b(s^r - a)}{s^r - a} \right) n^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) n^{\log_s a} = s^{m-1}$$

60/67

Proof for DC recurrence when $a \neq s^r$ **.**

•
$$T(n) = c_1 n^r + c_2 n^{\log_s a}, c_1 = s^r \frac{b}{s^r - a}, c_2 = T(1) + s^r \frac{b}{a - s^r}$$
 [Ind hypothesis]
Basis: $m = 0$ $(n = s^m = 1)$ $T(1) = c_1 n^r + c_2 n^{\log_s a} = c_1 + c_2 = T(1)$ \checkmark
Inductive step: $m > 0$, assume true for $n \le s^{m-1}$, check for $n = s^m$
• $T(n) = af(\frac{n}{s}) + bn^r = a \left[\underbrace{\left(s^r \frac{b}{s^r - a} \right) \left(\frac{n}{s} \right)^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) \left(\frac{n}{s} \right)^{\log_s a}}_{\text{by induction hypothesis, $\frac{n}{s} = s^{m-1}} \right] + bn^r = s^r \left(\frac{ab}{s^r - a} \right) \frac{n^r}{s^r} + a \left(T(1) + s^r \frac{b}{a - s^r} \right) \frac{n^{\log_s a}}{a} + \frac{b(s^r - a)n^r}{(s^r - a)} = \left(\frac{ab + b(s^r - a)}{s^r - a} \right) n^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) n^{\log_s a} = c_1 n^r + c_2 n^{\log_s a} \checkmark$$

Ŷ

э

Proof for DC recurrence when $a \neq s^r$ **.**

•
$$T(n) = c_1 n^r + c_2 n^{\log_5 a}$$
, $c_1 = s^r \frac{b}{s^r - a}$, $c_2 = T(1) + s^r \frac{b}{a - s^r}$ [Ind hypothesis]
Basis: $m = 0$ $(n = s^m = 1)$ $T(1) = c_1 n^r + c_2 n^{\log_5 a} = c_1 + c_2 = T(1)$ \checkmark
Inductive step: $m > 0$, assume true for $n \le s^{m-1}$, check for $n = s^m$
• $T(n) = af(\frac{n}{s}) + bn^r = a \left[\underbrace{\left(s^r \frac{b}{s^r - a} \right) \left(\frac{n}{s} \right)^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) \left(\frac{n}{s} \right)^{\log_5 a}}_{\text{by induction hypothesis, $\frac{n}{s} = s^{m-1}} \right] + bn^r = \frac{s^r \left(\frac{ab}{s^r - a} \right) \frac{n^r}{s^r} + a \left(T(1) + s^r \frac{b}{a - s^r} \right) \frac{n^{\log_5 a}}{a} + \frac{b(s^r - a)n^r}{(s^r - a)} = \left(\frac{ab + b(s^r - a)}{s^r - a} \right) n^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) n^{\log_5 a} = \frac{s^r (s^r \frac{b}{s^r - a}) n^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) n^{\log_5 a} = \frac{s^r (s^r \frac{b}{s^r - a}) n^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) n^{\log_5 a} = \frac{s^r (s^r \frac{b}{s^r - a}) n^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) n^{\log_5 a} = \frac{s^r (s^r \frac{b}{s^r - a}) n^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) n^{\log_5 a} \le (c_1 + c_2) n^r \in \Theta(n^r)$$

 \mathbf{R}

A B > A B >

Image: A mage: A ma

э

Proof for DC recurrence when $a \neq s^r$ **.**

•
$$T(n) = c_1 n^r + c_2 n^{\log_S a}$$
, $c_1 = s^r \frac{b}{s^r - a}$, $c_2 = T(1) + s^r \frac{b}{a - s^r}$ [Ind hypothesis]
Basis: $m = 0$ $(n = s^m = 1)$ $T(1) = c_1 n^r + c_2 n^{\log_S a} = c_1 + c_2 = T(1)$ \checkmark
Inductive step: $m > 0$, assume true for $n \le s^{m-1}$, check for $n = s^m$
• $T(n) = af(\frac{n}{s}) + bn^r = a \left[\underbrace{\left(s^r \frac{b}{s^r - a} \right) \left(\frac{n}{s} \right)^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) \left(\frac{n}{s} \right)^{\log_S a}}_{by induction hypothesis, \frac{n}{s} = s^{m-1}} \right] + bn^r = s^r \left(\frac{ab}{s^r - a} \right) \frac{n^r}{s^r} + a \left(T(1) + s^r \frac{b}{a - s^r} \right) \frac{n^{\log_S a}}{a} + \frac{b(s^r - a)n^r}{(s^r - a)} = \left(\frac{ab + b(s^r - a)}{s^r - a} \right) n^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) n^{\log_S a} = \frac{(s^r \frac{b}{s^r - a}) n^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) n^{\log_S a} = \frac{(s^r \frac{b}{s^r - a}) n^r + \left(T(1) + s^r \frac{b}{a - s^r} \right) n^{\log_S a} \le (c_1 + c_2)n^r \in \Theta(n^r)}{s^r a \in \Theta(n^{\log_S a} > r, \text{ so } T(n) = c_1 n^r + c_2 n^{\log_S a} \le (c_1 + c_2)n^{\log_S a} \in \Theta(n^{\log_S a})}$

- ₹ ₹ >

э

Image: Image:

Alternate statement of DC recurrence

Consider the recurrence $T(n) = aT\left(\frac{n}{s}\right) + f(n)$.

- If $f(n) = O(n^{\log_s a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = O(n^{\log_s a})$
- If $f(n) = \Theta(n^{\log_s a})$, then $T(n) = \Theta(n^{\log_s a} \log n)$
- If f(n) = Ω (n^{log_s a+ε}) for some constant ε > 0, and if f satisfies the smoothness condition af (ⁿ/_s) ≤ cf(n) for some constant c < 1, then T(n) = Θ(f(n))

For detailed proof see: https://www.cs.cornell.edu/courses/ cs3110/2012sp/lectures/lec20-master/mm-proof.pdf

61/67

Section outline

Practice problems

62/67

Chittaranjan Mandal (IIT Kharagpur)

August 28, 2021

< ∃⇒

э

< < >> < <</>

Practice problems

Some quick sort recurrences

- The sorting time of quick sort depends on the placement of the pivot; solve these cases:
 - Pivot is always placed at position k, so T(n) = T(k) + T(n k) + an, T(k) = b (when n > k, consider n ≤ k to be base cases sorted in constant time using any other sorting procedure)
 - Pivot is always placed to split the array in ratio α : (1α) , so $T(n) = T(\alpha n) + T((1 \alpha)n) + an$, T(1) = b

Example ($\alpha = \frac{1}{4}$)

•
$$T(n) = T\left(\frac{n}{4}\right) + T\left(\frac{3n}{4}\right) + an, T(1) = b$$

- Depth for the (longer) $\frac{3}{4}$ branch is $\log_{\frac{4}{5}} n$
- Contribution of each level (until shorter branch is exhausted) is $\leq \max(a, b)n$
- The overall contribution for all the levels is $\leq \max(a, b) n \log_{\frac{4}{2}} n \in \mathcal{O}(n \log n)$

• For
$$\alpha$$
, the depth *d* will satisfy $\alpha^d = \frac{1}{n}$, so, $n = \left(\frac{1}{\alpha}\right)^d \Rightarrow d = \log_{\frac{1}{\alpha}} n$

•
$$T(n) \leq \max(a, b)n$$

max contribution at level $\max\left(\log_{\frac{1}{\alpha}} n, \log_{\frac{1}{(1-\alpha)}} n\right) \in \Theta(n \log n)$
depth of recursion tree

Chittaranjan Mandal (IIT Kharagpur)

Use the Master Theorem or DC recurrence technique to asymptotically solve each of the following recurrences or state why those doesn't apply.

• $T(n) = 4T(\frac{n}{2}) + n$ • $T(n) = 4T(\frac{n}{2}) + n^2$ • $T(n) = 4T(\frac{n}{2}) + n^3$ • $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n}$ • $T(n) = 2T(\frac{n}{4}) + n^{0.51}$ • $T(n) = 8T(\frac{n}{3}) + n!$ • $T(n) = T(n-1) + \sqrt{\pi}$ • $T(n) = 4T(\frac{n}{2}) + n^2 + n$ • $T(n) = T(\frac{n}{2}) + n(n\sin(n-\frac{\pi}{2})+2)$ **NB** $n! \in \omega(n^n)$ **NB** $n! \in \omega(2^n)$ **NB** $\lg n! \in \Theta((n \lg n))$

64/67

э

•
$$T(n) = 3T\left(\frac{n}{2}\right) + n \lg n$$

• $T(n) = 4T\left(\frac{n}{2}\right) + n^2 \lg n$
• $T(n) = 5T\left(\frac{n}{2}\right) + n^2 \lg n$
• $T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\lg n}$
• $T(n) = T\left(\frac{n}{4}\right) + \lg n$
• $T(n) = 2T\left(\frac{n}{4}\right) + \lg n$
• $T(n) = T\left(\frac{n}{2}\right) + \lg n!$
• $T(n) = 4T\left(\frac{n}{2}\right) + \frac{n}{\lg \lg n}$
• $T(n) = 2T\left(\sqrt{n}\right) + \lg n$

$$T_n = \begin{cases} 0 & n = 0 \\ 2 & n = 1 \\ T_{n-1} + 2U_{n-1} & n \ge 2 \\ 0 & n = 0 \\ 1 & n = 1 \\ 2T_{n-1} + 3U_{n-1} & n \ge 2 \end{cases}$$

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

August 28, 2021

Josephus recurrence

- 41 rebels were trapped by the Romans at the Jotapata fortress. Instead of surrendering and facing painful consequences, they made a suicide pact
- They were to stand in a circle, every third man was to be killed, the last man was to kill himself
- Flavius Josephus and a friend wanted to survive
- At what positions would they have to stand to be the last two surviving positions?
- Develop a recurrence J^k_n for the position of the last person alive in a circle of n people where the kth person must fall every time

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・