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Beyond the binary heap Merging of binary heaps

Merging of binary heaps

Heap merging can be used to implement heap operations
insert A single element is a heap; merging it with an existing

heap leads to an insertion of that element into the heap
delete After the min/max element is removed from the heap, we

are left with two heaps; being able to merge these two
heaps would allow the deletion to be completed

Efficient merging mechanism is needed

Merging of binary heaps
Concatenate the two arrays of m and n keys
Make a new heap in O(N) time, N = m + n
Also possible to add elements from one heap to the other, if there
is additional space left over in the array

Complexity: N lg N � lg n + : : :+ lg(n + m � 1) = lg
�
(N�1)!
(n�1)!

�
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Beyond the binary heap Alternate formulation of heap merging

Alternate formulation of heap merging

Inputs Let two heaps A and B be given for merging, objective is
to merge these two heaps – via heapMerge(A, B)

Base case If either of A or B is empty, return the other
Induction 1 Choose the heap (say A with sub-trees AL and AR)

containing the larger max element
2 If any sub-tree of A is missing, attach B in its place

and return heap rooted at A
3 Detach either of the sub-trees AL or AR of as X and

replace it with heapMerge(X , B)
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Beyond the binary heap Example of alternate formulation of heap merging

Example of alternate formulation of heap merging

Example (Merging of two heaps)

Heaps to merge

192 351

171 141 241 70

80 110 20 60 30 10 414

Red box indicates the heap resulting from merging the heaps inside it
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Example of alternate formulation of heap merging

Example (Merging of two heaps)

Heaps to merge

192 351

171 141 241 70

80 110 20 60 30 10 414

Let the larger key be the root

192

35

171 141 241 70

80 110 20 60 30 10 414

Red box indicates the heap resulting from merging the heaps inside it
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Beyond the binary heap Example of alternate formulation of heap merging

Naive merging of heaps

Example (Merging of two heaps (contd.))

Step 3 of merging recursively

192

35

171 141

24

70

80 110 20 60 30 10 40

Red box indicates the heap resulting from merging the heaps inside it
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Beyond the binary heap Example of alternate formulation of heap merging

Naive merging of heaps

Example (Merging of two heaps (contd.))

Step 3 of merging recursively

192

35

171 141

24

70

80 110 20 60 30 10 40

Step 4 of merging recursively

19

35

171 141

24

70

80 110 20 60 30 10 40

Red box indicates the heap resulting from merging the heaps inside it
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Beyond the binary heap Example of alternate formulation of heap merging

Naive merging of heaps (contd.)

Example (Merging of two heaps (contd.))

Step 5 of merging recursively

19

35

171 14

24

70

80 110 20 60 30 10 410

Red box indicates the heap resulting from merging the heaps inside it
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Beyond the binary heap Example of alternate formulation of heap merging

Naive merging of heaps (contd.)

Example (Merging of two heaps (contd.))

Step 5 of merging recursively

19

35

171 14

24

70

80 110 20 60 30 10 410

Step 6 of merging recursively

19

35

171 14

24

70

80 110 20 6 30 10 4

Red box indicates the heap resulting from merging the heaps inside it

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 7 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Beyond the binary heap Example of alternate formulation of heap merging

Observations on naive merging of heaps

Example (Merging of two heaps
(contd.))

Step 7 of merging recursively

192

352

171

141

241

70

80 110 20

60

30 10 40
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Beyond the binary heap Example of alternate formulation of heap merging

Observations on naive merging of heaps

Example (Merging of two heaps
(contd.))

Step 7 of merging recursively

192

352

171

141

241

70

80 110 20

60

30 10 40

Observations
Resulting structure no longer
a complete binary tree
Heap ordering is maintained
Structurally only a binary tree
Merging proceeds along
arbitrary paths of both trees
Longest path in each tree
may be followed
Each tree may be
degenerate
Complexity: O(n1 + n2)
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Beyond the binary heap Optimised heap merging using NPL

Optimised heap merging using NPL

Key observation
Merging proceeds along arbitrary (possibly longest) paths of both trees

Can the choice be optimised so that longer paths are avoided?
Let � denote the shortest distance to a leaf – the null path length
(NPL)
Let A0

R be such that n02 = min(�1; �2), so that termination can
happen along the shortest available path to a leaf

Heaps to merge

B

A

AL
�1

AR
�2

Let the larger key be the root

B

A

A0
L

�01

A0
R
�02
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Beyond the binary heap Time complexity of NPL guided heap merging

Time complexity of NPL guided heap merging

As merging proceeds, it is necessary to update the NPL of nodes
on the affected path as:
n->npl = 1 + min(n->lC ? n->lC->npl:-1,

n->rC ? n->rC->npl:-1);

NPL is at most lg n (for a binary heap), otherwise less
Merging is done in O(2 lg

�n
2

�
) = O(lg n) time

NPL properties
Let the NPL of a binary tree T be l

The nodes of T from the root till level l form a perfect binary tree
(otherwise, the NPL would have to be shorter)
The mininum number of nodes in T is 2l+1 � 1

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 10 / 45
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Beyond the binary heap Leftist heap

Leftist heap
Definition (Leftist tree)
A binary tree T is said to be leftist, if for any node u of T with left and
right children vl and vr , respectively, npl(vl) � npl(vr ); it is
conventionally assumed that npl(�) = �1.

A leftist binary tree satisfying the heap property is a leftist heap,
invented by Knuth, 1973

Thus, for every node in the leftist tree, the left subtree is at least as
deep as the right subtree.

In a leftist tree, the length of the rightmost path starting from the root
node (RPL) matches the NPL

NPL guided merging does preserves leftist heap property? No!
Property can be restored by swapping children of nodes violating
this property while retreating after completion of recursive merging
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Beyond the binary heap Leftist heap operations

Leftist heap operations

Leftist heap operations:
1 creating a new heap
2 finding the minimum

key
3 merging two leftist

heaps
4 inserting a key
5 deleting the root of

a tree
6 increasing a key
7 decreasing a key

Op-1 is trivial, takes O(1) time
Op-2 key in root node located in O(1) time
Op-3 in O(lg n) time, as explained
Op-4 may be done by merging a single
node heap for the key with the existing
heap, in O(lg n) time
Op-5 would require removing, root node
and merging the resulting subtrees in
O(lg n) time
Op-6 only leads to the percolation keys
downwards in the leftist tree in O(lg n) time
Op-7 for simple heaps, remove sub-tree,
adjust heap and then merge – O(lg n) time
Does not work for leftist heaps (why?)

Utility of leftist heaps?
Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 12 / 45
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Section outline

2 Binomial Heaps
Binomial trees
Binomial heap
Representation of a binomial heap
Heap union of two trees of the same order
Operations on binomial heaps
Merging two binomial heaps
Comparison of binary and binomial heaps
Amortised accounting analysis of Insert
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Binomial trees

Definition (Binomial tree)
A binomial tree Bk , having an order k , is an ordered tree defined
recursively as:

B0 consists of a single node.
Bk , k � 1, is a pair of Bk�1 trees, where the root of one Bk�1
becomes the leftmost child of the other.

Example (Binomial trees)

B0

N(0) = 20
B1

N(1) = 21
B2

N(2) = 22

Bk�1

Bk�1

Bk

N(k) = 2k

Nodes at level ` of Bk

N`
k =

8<
:

1 ` = 0
1 ` = k
N`

k�1 + N`�1
k�1 0 < ` < k

N`
k =

�k
`

�
or kC`

Hence the name binomial tree
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Structure of a binomial tree
Decomposition of binomial tree Bk

Bk�1

Bk�1

Definition (Alternate definition of binomial tree)
A binomial tree is defined recursively as follows:

A binomial tree of order 0 is a single node
A binomial tree of order k has a root node whose children are root
nodes of binomial trees of orders k � 1, k � 2, : : :, 2, 1, 0 (in order)
Number of children of the root is the rank (= order) of the tree
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Binomial heap
Definition (Binomial heap)
A binomial heap, invented by Vuillemin, 1978, is a collection of
binomial trees that satisfies the following binomial-heap properties:

1 No two binomial trees in the collection have the same size.
2 Each node in each tree has a key.
3 Each binomial tree in the collection is heap-ordered in the sense

that each non-root has a key strictly less than the key of its parent.

Some implications
For all n � 1 and k � 0, Bk appears in an n-node binary heap if
and only if the (k + 1)st bit of the binary representation of n is a 1
The number of trees in a binomial heap of n nodes is O(lg n)
The time to search for the minimum element is O(lg n)
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Some implications
For all n � 1 and k � 0, Bk appears in an n-node binary heap if
and only if the (k + 1)st bit of the binary representation of n is a 1
The number of trees in a binomial heap of n nodes is O(lg n)
The time to search for the minimum element is O(lg n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 16 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Binomial Heaps Binomial heap

Binomial heap
Definition (Binomial heap)
A binomial heap, invented by Vuillemin, 1978, is a collection of
binomial trees that satisfies the following binomial-heap properties:

1 No two binomial trees in the collection have the same size.
2 Each node in each tree has a key.
3 Each binomial tree in the collection is heap-ordered in the sense

that each non-root has a key strictly less than the key of its parent.

Some implications
For all n � 1 and k � 0, Bk appears in an n-node binary heap if
and only if the (k + 1)st bit of the binary representation of n is a 1
The number of trees in a binomial heap of n nodes is O(lg n)
The time to search for the minimum element is O(lg n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 16 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Binomial Heaps Binomial heap

Binomial heap
Definition (Binomial heap)
A binomial heap, invented by Vuillemin, 1978, is a collection of
binomial trees that satisfies the following binomial-heap properties:

1 No two binomial trees in the collection have the same size.
2 Each node in each tree has a key.
3 Each binomial tree in the collection is heap-ordered in the sense

that each non-root has a key strictly less than the key of its parent.

Some implications
For all n � 1 and k � 0, Bk appears in an n-node binary heap if
and only if the (k + 1)st bit of the binary representation of n is a 1
The number of trees in a binomial heap of n nodes is O(lg n)
The time to search for the minimum element is O(lg n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 16 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Binomial Heaps Representation of a binomial heap

Representation of a binomial heap

: : :

Bk�1

Bk�2

B1

: : :

Bk�1

Bk�2

B1

Bi1

Bi2

: : :

Bin

H

1 The following items of information per node are needed:
a field key for its key,
a field degree for the number of children,
a pointer child , which points to the leftmost-child,
a pointer sibling, which points to the right-sibling, and
a pointer parent, which points to the parent

2 The roots of the trees are connected so that the sizes of the
connected trees are in decreasing order

3 For a heap H, H.head points to the head of the list

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 17 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Binomial Heaps Representation of a binomial heap

Representation of a binomial heap

: : :

Bk�1

Bk�2

B1

: : :

Bk�1

Bk�2

B1

Bi1

Bi2

: : :

Bin

H

1 The following items of information per node are needed:
a field key for its key,
a field degree for the number of children,
a pointer child , which points to the leftmost-child,
a pointer sibling, which points to the right-sibling, and
a pointer parent, which points to the parent

2 The roots of the trees are connected so that the sizes of the
connected trees are in decreasing order

3 For a heap H, H.head points to the head of the list

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 17 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Binomial Heaps Heap union of two trees of the same order

Heap union of two trees of the same order

Heap union of two binomial min-heaps of the same order

x

: : :

Bk�1

Bk�2

B1

y

: : :

Bk�1

Bk�2

B1

"x ;y� max(x ; y)
#x ;y� min(x ; y)
Heap with smaller
key becomes the
superior member
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"x ;y

: : :
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Operations on binomial heaps

The important operations on a
binomial heap are:

1 creating a new heap
2 finding the minimum key
3 merging two binomial heaps
4 inserting a key
5 deleting the root of a tree
6 decreasing a key

Op-1 is trivial, O(1) time
Op-2 requires traversing
through all the binomial trees,
takes O(lg n) time

Op-4 may be done by merging a
single node heap for the key with the
existing heap
Op-5 would require removing, in
O(lg n) time,the binomial tree T
having the minimum element from the
heap yielding H 0; removing the root
node of T and reorganising the
remaining binomial trees of T , in
O(lg n) time, as a binomial heap and
merging this with H 0

Op-6 only leads to percolation of the
key the binomial tree containing the
affected key in O(lg n) time
Op-3 remains to be addressed
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Merging two binomial heaps
Example (Analogy of merging binomial heaps to binary addition)

H k

i is a certain heap of k items; we wish to merge, say, H 7

1 and H
11

2
20 21 22 23 24 B0 B1 B2 B3 B4

H 7

1 1 1 1 0 B 7

0 B 7

1 B 7

2

H
11

2 1 1 0 1 B
11

0 B
11

1 B
11

3

S 0 1 0 0 1 B S

1 B S

4

C 1 1 1 1 B C

1 B C

2 B C

3 B C

4

NB: The binomial trees are in ascending order in a linked list, tree order is
found from the degree field of the root node (and not positionally)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 20 / 45
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Merging two binomial heaps (contd.)

Similar to ripple carry addition of two unsigned binary numbers
Let H1 and H2 represent the two binomial heaps, initially,
H1 =

D
B1

i1
;B1

i2
; : : : ;B1

im

E
and H2 =

D
B2

j1
;B2

j2
; : : : ;B2

jn

E

Let there be a carry over tree B, initially empty; its order is B�

Let the resulting binomial heap be H, initially empty;
jHj = jH1j+ jH2j

While merging, let B1
ip and B2

jq be at the heads of their respective
sequences of binomial trees
Merging proceeds by examining B and B1

ip and B2
jq

From time to time a tree is extracted from the head of H1 or H2

Let
�

B1
ip � B2

jq

�
; ip = jq, represent the heap union of B1

ip B2
jq to form

a binomial tree of order ip + 1 = jq + 1
If H1 and H2 are exhausted

If B 6= �, H  HkB, terminate If B = �, terminate
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�
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�
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If B 6= �, H  HkB, terminate If B = �, terminate
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Merging two binomial heaps (contd.)
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if B� < ip = jq, H  HkB
O (lg jHj) time, each possible tree position in H processed in O(1) time
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If only H1 is exhausted

if B = �, H  HkH2, terminate
if B� < jq, H  HkB, B  �

if B� = jq, B  
�

B � B2
jq

�

If only H2 is exhausted
if B = �, H  HkH1, terminate
if B� < ip, H  HkB, B  �

if B� = ip, B  
�

B � B1
ip

�

Case: B is empty
if ip < jq, H  HkB1

ip

if ip > jq, H  HkB2
jq

if ip = jq,
B  

�
B1

ip � B2
jq

�

Case: B is non-empty

if B� = ip = jq, H  HkB, B  
�

B1
ip � B2

jq

�

if B� 6= ip < jq, H  HkB1
ip

if ip > jq 6= B�, H  HkB2
jq

if B� = ip < jq, B  
�

B � B1
ip

�

if ip > jq = B�, B  
�

B � B2
jq

�
; B  �

if B� < ip = jq, H  HkB
O (lg jHj) time, each possible tree position in H processed in O(1) time

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 22 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Binomial Heaps Merging two binomial heaps

Merging two binomial heaps (contd.)
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Comparison of binary and binomial heaps
Op Binary Binomial
Create �(1) �(1)
Merge �(n) O(lg(n))
FindMin �(1) O(lg(n))
DelMin O(lg(n)) O(lg(n))
Insert O(lg(n)) O(lg(n))
DecKey O(lg(n)) O(lg(n))

Can FindMin for binomial heaps
be improved?

Yes, with a modification
Keep track of the tree with
the minimum element
Update on Insert, DelMin,
DecKey
Cost: �(1)

A closer look at Insert
What is the total cost of
inserting n = 2k elements?
Each element is first
inserted as B0s – cost: 2k

Pairs of B0s are combined
as B1s – cost: 2k

2

Pairs of B1s are combined
as B2s – cost: 2k

4

Total cost:
2k +2k�1+2k�2+ : : :+1 =
2k+1 � 1 = 2n � 1 2 �(n)
Amortised cost (avg cost
over n insertions by the
aggregate method): �(1)
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Amortised accounting analysis of Insert

Charge each item two units for insertion
One unit is used immediately to insert key as a B0 tree in the list of
binomial trees
The other unit is saved as a credit
At times binomial trees of the same degree/order need to be
merged
Assume Bi1 and Bi2 each have one saved credit
One unit of credit is used up to merge them and the other stays
with

�
Bi1 � Bi2

�

Thus, the trees never run of credit through the process of merging
Hence, insertion is done with �(1) amortised cost
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Section outline

3 Lazy binomial heaps
Lazy merge of binomial heaps
Coalescing trees
Example of LBH operations
Cost of deleting minimum element
Summary of lazy binomial heap operation costs
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Lazy merge of binomial heaps

The binomial trees may be linked together in a doubly linked list
(why, really necessary?)
Merge is performed by just stitching the two linked lists together –
easily done with doubly linked lists (what about just linked lists?)
Merging of trees of identical rank/order is not immediately done –
hence lazy
Each heap has its min-pointer, the new list has as its min-pointer
the minimum of the two values at the min-pointers of the
consituent trees
Cost: �(1)
Note that if the minimum element is deleted, it will be necessary to
traverse through the entire list of trees to identify the new minimum
Number of trees in the heap grows with insert, merge and delete
After coalescing the number of trees are back to O(lg n)
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The binomial trees may be linked together in a doubly linked list
(why, really necessary?)
Merge is performed by just stitching the two linked lists together –
easily done with doubly linked lists (what about just linked lists?)
Merging of trees of identical rank/order is not immediately done –
hence lazy
Each heap has its min-pointer, the new list has as its min-pointer
the minimum of the two values at the min-pointers of the
consituent trees
Cost: �(1)
Note that if the minimum element is deleted, it will be necessary to
traverse through the entire list of trees to identify the new minimum
Number of trees in the heap grows with insert, merge and delete
After coalescing the number of trees are back to O(lg n)
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Coalescing trees

The following sequence of heaps do not satisfy the required order
for binomial heaps
They are formed by a sequence of lazy merge operations (lazy
insert, lazy merge)
Coalescing may be done after a DelMax or DelMin operation
because the list of heaps will have to be traversed to identify the
new min/max element

H:
B4 B2 B4 B0 B1 B0 B5

BinomT order 0 1 2 3 4 5 6

Coalesced
trees

B0 B1 B2 B3 B4 B5 B6
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Coalescing trees (contd.)

A binomial heap with n keys needs (1 + lg n) = m binomial trees
With lazy merging the trees in the heap are not of unique rank and
also ordered
Maintain an m-place vector V for trees B0;B1; : : : ;Bm

While handling T in the list, check V[T �]
if �, V[T �] T
otherwise, T  (T � V[T �]), V[T � = 1] � and continue

Finally, stitch the trees in V in the linked list
Needs to be done only for deleting the minimum element, worst
case time O(n), as all preceeding operations could be only inserts
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Example of LBH operations
Example (LBH operations)
Carry out the following operations on a min-lazy binomial heap:

insert 2, 5, 8, 11, 9, 7, 4, 3

3
B0

4
B0

7
B0

9
B0

11
B0

8
B0

5
B0

2
B0

H

delMin give count of the operations performed

5
B0

8,11
B1

3,4,7,9
B2

H

decKey 9! 1, show details of the affected tree
and the operations performed

5
B0

8,11
B1

1,3,4,7
B2

H

insert 13 18
delMin details of

affected
trees and
op count

decKey 19! 6,
details of
affected
trees and
op count
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Cost of deleting minimum element

A binomial heap with lazy merge has these worst-case time
bounds:

Insert: O(1)
Merge: O(1)
FindMin: O(1)
DelMin: O(n)
DecKey: O(lg n)

These are worst-case time bounds
Intuitively, DelMin does not have to do badly all the time!

The coalescing activity of Insert has been transferred to DelMin!

The worst case time complexity for DelMin for regular binomial
heaps was O(lg n)
The amortised cost of �(1) of Insert has been added to the
amortised cost of DelMin
The amortised cost of DelMin is O(�(1) + lg n) 2 O(lg n)
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Summary of lazy binomial heap operation costs

The amortised costs of the operations on a lazy binomial heap are
as follows:

Insert: O(1)
Merge: O(1)
FindMin: O(1)
DelMin: O(lg n)
DecKey: O(lg n)

Any series of e insert operations mixed with d DelMin operations
will take time O(e + d lg e)
Can anything be done about DecKey?

Can the cost of DecKey be suitably amortised and pushed on to
DelMin – as was done for Insert?

What is special about DecKey that must be avoided?

Percolation! For that would entail O(lg n) steps (in the worst case)
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IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Lazy binomial heaps Summary of lazy binomial heap operation costs

Summary of lazy binomial heap operation costs

The amortised costs of the operations on a lazy binomial heap are
as follows:

Insert: O(1)
Merge: O(1)
FindMin: O(1)
DelMin: O(lg n)
DecKey: O(lg n)

Any series of e insert operations mixed with d DelMin operations
will take time O(e + d lg e)
Can anything be done about DecKey?

Can the cost of DecKey be suitably amortised and pushed on to
DelMin – as was done for Insert?

What is special about DecKey that must be avoided?

Percolation! For that would entail O(lg n) steps (in the worst case)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 31 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Lazy binomial heaps Summary of lazy binomial heap operation costs

Summary of lazy binomial heap operation costs

The amortised costs of the operations on a lazy binomial heap are
as follows:

Insert: O(1)
Merge: O(1)
FindMin: O(1)
DelMin: O(lg n)
DecKey: O(lg n)

Any series of e insert operations mixed with d DelMin operations
will take time O(e + d lg e)
Can anything be done about DecKey?

Can the cost of DecKey be suitably amortised and pushed on to
DelMin – as was done for Insert?

What is special about DecKey that must be avoided?

Percolation! For that would entail O(lg n) steps (in the worst case)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 31 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Lazy binomial heaps Summary of lazy binomial heap operation costs

Summary of lazy binomial heap operation costs

The amortised costs of the operations on a lazy binomial heap are
as follows:

Insert: O(1)
Merge: O(1)
FindMin: O(1)
DelMin: O(lg n)
DecKey: O(lg n)

Any series of e insert operations mixed with d DelMin operations
will take time O(e + d lg e)
Can anything be done about DecKey?

Can the cost of DecKey be suitably amortised and pushed on to
DelMin – as was done for Insert?

What is special about DecKey that must be avoided?

Percolation! For that would entail O(lg n) steps (in the worst case)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 31 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Lazy binomial heaps Summary of lazy binomial heap operation costs

Summary of lazy binomial heap operation costs

The amortised costs of the operations on a lazy binomial heap are
as follows:

Insert: O(1)
Merge: O(1)
FindMin: O(1)
DelMin: O(lg n)
DecKey: O(lg n)

Any series of e insert operations mixed with d DelMin operations
will take time O(e + d lg e)
Can anything be done about DecKey?

Can the cost of DecKey be suitably amortised and pushed on to
DelMin – as was done for Insert?

What is special about DecKey that must be avoided?

Percolation! For that would entail O(lg n) steps (in the worst case)
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Section outline

4 Fibonacci heaps
Relation with binomial heaps
Restricting excessive damage through DecKey
Minimum rank of a node in a Fibonacci heap
Max damage to binomial trees in Fibonacci heap
Maximally damaged trees in Fibonacci heaps
Example of FH operations
Costing time taken for DecKey
Costing time taken for DecKey with DelMin
Charges and invariants for Fibonacci heaps
Comparison of heaps
Representation of a Fibonacci heap
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Relation with binomial heaps

Fibonacci heaps, developed by Fredman and Tarjan in 1986, are
very similar to lazy binomial heaps
If the reduction of the key does not violate the heap property, then
nothing needs to be done
Otherwise, there is a radical departure for DecKey

In order to avoid the O(lg n) cost entailed by percolation, the node
is simply cut out of the tree and entered into the list of trees!

There are consequences
The trees in a Fibonacci heap may not be binomial trees
There is risk of too many nodes getting deleted
If nodes are deleted arbitrarily, the height of the a tree may no
longer be logarithmic in the number of nodes in the tree
So, some damage control mechanism is needed
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IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Fibonacci heaps Relation with binomial heaps

Relation with binomial heaps

Fibonacci heaps, developed by Fredman and Tarjan in 1986, are
very similar to lazy binomial heaps
If the reduction of the key does not violate the heap property, then
nothing needs to be done
Otherwise, there is a radical departure for DecKey

In order to avoid the O(lg n) cost entailed by percolation, the node
is simply cut out of the tree and entered into the list of trees!

There are consequences
The trees in a Fibonacci heap may not be binomial trees
There is risk of too many nodes getting deleted
If nodes are deleted arbitrarily, the height of the a tree may no
longer be logarithmic in the number of nodes in the tree
So, some damage control mechanism is needed

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 33 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Fibonacci heaps Relation with binomial heaps

Relation with binomial heaps

Fibonacci heaps, developed by Fredman and Tarjan in 1986, are
very similar to lazy binomial heaps
If the reduction of the key does not violate the heap property, then
nothing needs to be done
Otherwise, there is a radical departure for DecKey

In order to avoid the O(lg n) cost entailed by percolation, the node
is simply cut out of the tree and entered into the list of trees!

There are consequences
The trees in a Fibonacci heap may not be binomial trees
There is risk of too many nodes getting deleted
If nodes are deleted arbitrarily, the height of the a tree may no
longer be logarithmic in the number of nodes in the tree
So, some damage control mechanism is needed

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 33 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Fibonacci heaps Relation with binomial heaps

Relation with binomial heaps

Fibonacci heaps, developed by Fredman and Tarjan in 1986, are
very similar to lazy binomial heaps
If the reduction of the key does not violate the heap property, then
nothing needs to be done
Otherwise, there is a radical departure for DecKey

In order to avoid the O(lg n) cost entailed by percolation, the node
is simply cut out of the tree and entered into the list of trees!

There are consequences
The trees in a Fibonacci heap may not be binomial trees
There is risk of too many nodes getting deleted
If nodes are deleted arbitrarily, the height of the a tree may no
longer be logarithmic in the number of nodes in the tree
So, some damage control mechanism is needed

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 33 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Fibonacci heaps Relation with binomial heaps

Relation with binomial heaps

Fibonacci heaps, developed by Fredman and Tarjan in 1986, are
very similar to lazy binomial heaps
If the reduction of the key does not violate the heap property, then
nothing needs to be done
Otherwise, there is a radical departure for DecKey

In order to avoid the O(lg n) cost entailed by percolation, the node
is simply cut out of the tree and entered into the list of trees!

There are consequences
The trees in a Fibonacci heap may not be binomial trees
There is risk of too many nodes getting deleted
If nodes are deleted arbitrarily, the height of the a tree may no
longer be logarithmic in the number of nodes in the tree
So, some damage control mechanism is needed

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 33 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Fibonacci heaps Restricting excessive damage through DecKey

Restricting excessive damage through DecKey

Mark the (non-root) parent of the deleted node, if not marked
If the parent is already marked, indicating that it has already lost a
child, it is also removed along with its subtree and added to the
root list and unmarked
These cuts can be cascading, as ancestor nodes could also be
marked earlier
This measure ensures that a node having lost more that a single
child does not remain within the tree

How is this supposed to help?
Coalescing of trees ensure that no two trees in the heap have the
same rank/order
If the number of nodes in each tree is shown to be exponential in
its rank/order, then the number of trees in the heap will be
logarithmic in the number of nodes in the heap
That helps to ensure that heap merging is done in lg n time
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Fibonacci heaps Restricting excessive damage through DecKey

Steps for DecKey

Let y be the parent of x .
After decreasing key[x ], if key[x ]<key[y ], mark x
Repeat the following step until x is unmarked:

Insert x to the root list.
Unmark x if x is marked.
Adjust min[H] if key[min[H]]>key[x ]
Eliminate x from the list of children; decrease degree[y ] by 1
If y is marked, then set x to y , set y to parent[x ],
otherwise, if y is not a root, then mark y
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Minimum rank of a node in a Fibonacci heap
Lemma

Let X be any node in the tree of a Fibonacci heap. Let C be the i th

youngest child of X , at the time of linking to X, then the rank of C is at
least i � 2

Proof.

At the time of linking C to X as the i th child, i � 1 earlier children
would have been present
Rank of X , at the time of linking C would be i � 1
Rank of C, at the time of linking C would be also be i � 1 (why ?)
– because only trees of the same rank are linked
C could lose at most one child in the future, until it is cut off from X
Its rank is at at least i � 2
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Evaluating the damage done by Deckey

If DecKey is never done, the Fibonacci heap remains structurally
identical to a binomial heap
Each tree in the heap is a binomial tree
Each tree of rank/order k has 2k nodes in it
Maximum rank of a tree in a such heap of n nodes is O(lg n)
On the other hand, suppose that all trees in the binomial heap
have lost the maximum possible number of nodes
In that case, how many nodes will each such maximally damaged
tree have?
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Max damage to binomial trees in Fibonacci heap

D0

B0 ! D0

D1

B1 ! D1

D2

D0 D0

B2 ! D2

During damage, children of root of Bk retained to obtain Dk

D3

D0 D0 D1

B3 ! D3

Inferior B2 � C3 can lose
only one child (why?)
By lemma, 3rd child of B3,
B2 � C3

damage
���! D3�2 or D1

For Bk with C1, C2, : : :, Ck
as children Dk has D0,
D2�2, D3�2, : : :, Dk�2 or
D0, D0, D1, : : :, Dk�2 as
children
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Maximally damaged trees in Fibonacci heaps

D0

D1 D2

D0 D0

D3

D0 D0 D1

D4

D0 D0 D1 D2

D0 D0

Dk

D0 D0 D1

Dk�2

: : :

Maximally damaged tree in a Fibonacci heap

A maximally-damaged tree of order/rank k
is rooted at a node whose children are
maximally-damaged trees of orders/ranks
0;0;1;2;3; : : : ; k � 2

jD0j = 1; jD1j = 2; jD2j = 3; jD3j = 5; jD4j = 8; jDk j = jDk�1j+ jDk�2j

Recalling Fibonacci numbers
F0 = 0;F1 = 1;F2 = 1,
Fk = Fk�1 + Fk�2; k > 1

Relating jDk j to Fibonacci numbers

jD0j = F2 = 1; jD1j = F3 = 2,
jDk j = Fk+2; k > 1
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Maximally damaged trees in Fibonacci heaps

D0

D1 D2

D0 D0

D3

D0 D0 D1

D4

D0 D0 D1 D2

D0 D0

Dk

D0 D0 D1

Dk�2

: : :

Maximally damaged tree in a Fibonacci heap

A maximally-damaged tree of order/rank k
is rooted at a node whose children are
maximally-damaged trees of orders/ranks
0;0;1;2;3; : : : ; k � 2

jD0j = 1; jD1j = 2; jD2j = 3; jD3j = 5; jD4j = 8; jDk j = jDk�1j+ jDk�2j

Recalling Fibonacci numbers
F0 = 0;F1 = 1;F2 = 1,
Fk = Fk�1 + Fk�2; k > 1

Relating jDk j to Fibonacci numbers

jD0j = F2 = 1; jD1j = F3 = 2,
jDk j = Fk+2; k > 1
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Example of FH operations
Example (FH operations)
Carry out the following operations on this Fibonacci heap:

26,35
B1

24,46
B1

23
B0

7
B0

3,52
B141,44

B1
18,39

B119,30
B1

H

decKey 19! 17 Note that 18 will get marked while loosing its
inferior B1 tree to the root list

17,30
B1 26,35

B1

24,46
B1

23
B0

7
B0

3,52
B141,44

B1
18,39

B1

H

insert 21 just a lazy addition to the root list
delMin lots of changes will happen, depict the details
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Fibonacci heaps Costing time taken for DecKey

Costing time taken for DecKey

Most of the acitivities bounded by constant time
Decreasing the key value, comparing with with parent key value
Possibly cutting node, transferring to root list and marking parent

Cascading cuts: worst case is O(lg n), but amortised cost?

Amortised cost of DecKey (by the accounting method)
Let there be a charge of 2 units for reducing the key value
One unit is used up immediately for fixed cost operations
The other unit is given to the marked parent as credit
A marked parent acquires 2 credits when its (second) child is cut
One unit is used immediately for the constant time bounded
operations to cut the parent node and transfer it to the root list
The other credit of 1 unit is passed to its parent
Thus, a sequence of DecKeys are fully supported by the constant
cost charged for each operation, so amortised cost is �(1) time
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Costing time taken for DecKey with DelMin

It was noted that the effort of coalescing trees resulting from Insert
operations was pushed to the DelMin while being fully costed
through the charge imposed for each Insert operation
It may be noted that the charge of 2 units imposed for DecKey
does not leave any spare credit for supporting coalescing of the
trees transferred to the root list
Fortunately, the problem is easily rectified, by increasing the
charge to 3 units – how does this help?

The extra charge of one unit is saved as credit with the tree (root)
transferred to the root list

At the time of coalescing the trees during DelMin this credit held
by each tree (root) introduced through the DecKey operation
completely covers the costs incurred
Amortised cost of DecKey continues to be �(1)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 42 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Fibonacci heaps Costing time taken for DecKey with DelMin

Costing time taken for DecKey with DelMin

It was noted that the effort of coalescing trees resulting from Insert
operations was pushed to the DelMin while being fully costed
through the charge imposed for each Insert operation
It may be noted that the charge of 2 units imposed for DecKey
does not leave any spare credit for supporting coalescing of the
trees transferred to the root list
Fortunately, the problem is easily rectified, by increasing the
charge to 3 units – how does this help?

The extra charge of one unit is saved as credit with the tree (root)
transferred to the root list

At the time of coalescing the trees during DelMin this credit held
by each tree (root) introduced through the DecKey operation
completely covers the costs incurred
Amortised cost of DecKey continues to be �(1)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 42 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Fibonacci heaps Costing time taken for DecKey with DelMin

Costing time taken for DecKey with DelMin

It was noted that the effort of coalescing trees resulting from Insert
operations was pushed to the DelMin while being fully costed
through the charge imposed for each Insert operation
It may be noted that the charge of 2 units imposed for DecKey
does not leave any spare credit for supporting coalescing of the
trees transferred to the root list
Fortunately, the problem is easily rectified, by increasing the
charge to 3 units – how does this help?

The extra charge of one unit is saved as credit with the tree (root)
transferred to the root list

At the time of coalescing the trees during DelMin this credit held
by each tree (root) introduced through the DecKey operation
completely covers the costs incurred
Amortised cost of DecKey continues to be �(1)

Chittaranjan Mandal (IIT Kharagpur) Algorithms March 21, 2016 42 / 45



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Fibonacci heaps Charges and invariants for Fibonacci heaps

Charges and invariants for Fibonacci heaps

Charge for insertion 2 units are charged
Usage 1 unit for constant time operations for insertion,

Further usage 1 unit retained as credit with the resulting B0

Invariant Each tree in the heap always has 1 saved credit
Usage of credit Coalescing of trees after DelMin at no extra cost

Charge for DecKey 3 units are charged
Usage (in case heap order is violated) 1 unit is used for constant

time operations for detaching node (with subtree) from
tree and adding to the root list and marking parent

Further usage 1 unit is transferred as credit to tree added to root list
Further usage 1 unit is retainied a credit with (last) marked parent

Invariant Each marked node has 1 saved credit
Usage of credit For cascaded detachment of marked nodes (along

with the subtree) at no extra cost
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Fibonacci heaps Comparison of heaps

Comparison of running times of heap operations
Operation Binary Binomial Lazy Binomiala Fibonaccia

Create �(1) �(1) �(1) �(1)
Merge �(n) O(lg(n)) �(1) �(1)
FindMin �(1) O(lg(n)) �(1) �(1)
DelMin O(lg(n)) O(lg(n)) O(lg n) O(lg n)
Insert O(lg(n)) O(lg(n)) �(1) �(1)
DecKey O(lg(n)) O(lg(n)) O(lg n) �(1)

aAmortised cost

Comparison of tree sizes

Binary [2h;2h+1�1] for tree height of h
Binomial 2k for tree of rank k

Lazy bino same a binomial
Fibonacci [2k ;Fk+2] for tree of rank k

Fk+2 = 'k+2�(�')k+2
p

5
, ' = 1+

p
5

2 � 1:61803

Tree heights
h(D0) = 0;h(D1) = 1
h(Dk ) =
1 + h(Dk�2); k > 1

h(Dk ) =
l

k
2

m
; k � 0

h(Bk ) = k ; k � 0
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Fibonacci heaps Representation of a Fibonacci heap

Representation of a Fibonacci heap
1 The following items of information per node are needed:

a field key for its key,
a field degree for the number of children,
a pointer child , which points to the leftmost-child,
a pointer sibLeft, which points to the leftt-sibling,
a pointer sibRight, which points to the right-sibling, and
a pointer parent, which points to the parent

2 The roots of the trees are connected in a circular doubly connected linked list
3 Ranks of the connected trees can be in any order, need not be unique unless coalasced
4 For a heap H, H.head points to the head of the list; H.min points to the min root in

the list

: : :

Bk�1

Bk�2

B1

Bi1

Bi2

: : :

Bin

H
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