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LB by adversary arguments LB for finding duplicates in a sorted list by comparisons

LB for finding duplicates in a sorted list is (n � 1)
by comparisons

1 Assume there exists an algorithm A which runs in (n � 2) comparisons
which correctly finds duplicates in an ordered list of size n

2 Let X be a list such that xi = 2i for i = 1 to n, where all elements are
unique.

3 Run algorithm A on input X ; since it only takes (n � 2) comparisons,
there is at least 1 element which is not compared to its next element

4 Find that element xi = 2i and set xi+1 = 2i ; note that previously,
xi+1 = 2(i + 1)

5 Rerun the algorithm; it will report no duplicates, as it did before, but
wrongly this time

Thus, using a comparison based scheme it is not possible to find duplicates
in a sorted list in less than (n � 1) comparisons
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2 LB by decision trees
Lower bound for searching

by comparison
Lower bound for sorting by
comparison

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 17, 2017 4 / 9



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

LB by decision trees Lower bound for searching by comparison

Lower bound for searching by comparison

Decision tree for binary searching in an
array of three elements

ky ? A[1]

ky ? A[0] ky ? A[2]
Found

NF NFFound NF NFFound

>
=

>
=

>
=

<

< <

Decision tree must have
one node for comparing
ky to each A[i]

An internal node
produces at most two
non-leaf nodes

At most 2k comparison
nodes at level k , no
comparisons at last level

Max comparisons in k

levels:
k�1P

0
2i = 2k � 1

Min n comparisons needed: 2k � 1 � n ) k � lg(n + 1)) k 2 
(lg n)

Binary search achieves this lower bound and so is asymptotically optimal
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LB by decision trees Lower bound for sorting by comparison

Lower bound for sorting by comparison

Example (A decision tree of comparison based sorting for three
distinct elements)

A[0] ? A[1]

A[1] ? A[2] A[0] ? A[2]

A[0] A[1] A[2] A[0] ? A[2]

A[0] A[2] A[1] A[2] A[0] A[1]

A[1] A[0] A[2] A[1] ? A[2]

A[1] A[2] A[0] A[2] A[1] A[0]

>

> >

<

<

< >

<

< >
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LB by decision trees Lower bound for sorting by comparison

Comparison based sorting algorithms

A sorting algorithm is comparison based if the comparisons A[i] <
A[j], A[i] � A[j], A[i] = A[j], A[i] � A[j], A[i] > A[j] are the only ways
in which it decides on the action on the input elements

Bubble sort, selection sort, insertion sort, quick sort, merge sort,
heap sort (to be covered) are all comparison based
What about counting sort and radix sort?
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LB by decision trees Lower bound for sorting by comparison

Decision tree for sorting by comparison

Decision tree for binary searching in an array of distinct elements

A[i ] ? A[j ]

A[k ] ? A[l ] A[r ] ? A[s]

...A[u] ? A[v ]

... ...

...A[p] ? A[q]

... ...

>

> >

<

<

< >

<

< >

Possible traces of a comparison based sorting algorithm can be
captured by a decision tree
Each node has three outcomes (<, =, >) in general, but two if the
keys are distinct (a restricted case)
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LB by decision trees Lower bound for sorting by comparison

LB for comparison based sorting is n lg n

Each leaf is a permutation of elements based on the decision
sequence
n! permutations must be covered

Let the binary decision tree be of height h
It will have at most 2h leaves – terminal decisions
These terminal decisions must cover at least the n! possibilities

Thus, n! � 2h ) h � lg(n!)

Now n! �
�n

2

� n
2 , therefore,

lg(n!) � lg
�

n
2

n
2

�
= n

2 lg
�n

2

�
= n

2(lg n � lg 2)

Thus, h � lg n! � n
2(lg n � lg 2)) h 2 
(n lg n)

No loss of generality in considering the special case of all distinct
elements, as this case must be covered by the sorting technique
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