
IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Contents

1 Hashing

2 Hashing with chaining

3 Hashing with linear probing

4 Clustering

5 Double hashing

6 Hashing with quadratic
probing

7 Analysis of open addressing

8 Handling filled-up tables

9 Commutative rings and
fields

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 1 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing

Section outline

1 Hashing

Introduction to hashing
Hash functions
Deletion from a hash table

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 2 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing Introduction to hashing

Introduction to hashing

Insert, search, or delete from a
table using address
computation
Given key is converted to an
index for a position in the table

Multiple keys may be mapped
to the same index – collision
Various collision resolution
schemes
Chaining
Open addressing – linear
probing, quadratic probing and
double hashing

Example (Hashing keys in a table of
size 8 using the division hash
function)

Table size: 8

H : K ! K mod 8

36! 36 mod 8 = 4

18! 18 mod 8 = 2

72! 72 mod 8 = 0

43! 43 mod 8 = 3

6! 6 mod 8 = 6

0: 72
1:
2: 18
3: 43
4: 36
5:
6: 6
7:

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 3 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing Introduction to hashing

Introduction to hashing

Insert, search, or delete from a
table using address
computation
Given key is converted to an
index for a position in the table
Multiple keys may be mapped
to the same index – collision
Various collision resolution
schemes
Chaining
Open addressing – linear
probing, quadratic probing and
double hashing

Example (Hashing keys in a table of
size 8 using the division hash
function)

Table size: 8

H : K ! K mod 8

36! 36 mod 8 = 4

18! 18 mod 8 = 2

72! 72 mod 8 = 0

43! 43 mod 8 = 3

6! 6 mod 8 = 6

0: 72
1:
2: 18
3: 43
4: 36
5:
6: 6
7:

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 3 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing Introduction to hashing

Introduction to hashing

Insert, search, or delete from a
table using address
computation
Given key is converted to an
index for a position in the table
Multiple keys may be mapped
to the same index – collision
Various collision resolution
schemes
Chaining
Open addressing – linear
probing, quadratic probing and
double hashing

Example (Hashing keys in a table of
size 8 using the division hash
function)

Table size: 8

H : K ! K mod 8

36! 36 mod 8 = 4

18! 18 mod 8 = 2

72! 72 mod 8 = 0

43! 43 mod 8 = 3

6! 6 mod 8 = 6

0: 72
1:
2: 18
3: 43
4: 36
5:
6: 6
7:

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 3 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing Hash functions

Hash functions

Some hash functions – table size n

Division hash
H(x) = x mod n

Modular multiplicative hashing (MMH)
H(x) = [(ax + b) mod p] mod n, p is
a prime, p > n, a;b 2 [0::p � 1], a 6= 0

Multiplication hash (FMH) – D E Knuth

H(x) = dn(ax � baxc)e, a =

p
5� 1
2

Binary multiplicative hashing (BMH)

H(x) =
j

ax mod 2w

2w�l

k
Hashing strings: b = 128 for 7-bit ASCII

c0c1 : : : cm !
mP
{=0

c{b{ mod n

Critique

Division hash
If n is even, x and H(x)
have the same parity
If n = 2k , only the last k bits
serve as the hash
H(x + 1) � H(x)+ 1 mod n

Multiplicative hash
Maximal use of operand bits
FMH with a = � achieves
optimal spacing between
consecutive keys
BMH uses middle l-bits of
ax and is easy to compute

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 4 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing Hash functions

Hash functions

Some hash functions – table size n

Division hash
H(x) = x mod n

Modular multiplicative hashing (MMH)
H(x) = [(ax + b) mod p] mod n, p is
a prime, p > n, a;b 2 [0::p � 1], a 6= 0

Multiplication hash (FMH) – D E Knuth

H(x) = dn(ax � baxc)e, a =

p
5� 1
2

Binary multiplicative hashing (BMH)

H(x) =
j

ax mod 2w

2w�l

k
Hashing strings: b = 128 for 7-bit ASCII

c0c1 : : : cm !
mP
{=0

c{b{ mod n

Critique

Division hash
If n is even, x and H(x)
have the same parity
If n = 2k , only the last k bits
serve as the hash
H(x + 1) � H(x)+ 1 mod n

Multiplicative hash
Maximal use of operand bits
FMH with a = � achieves
optimal spacing between
consecutive keys
BMH uses middle l-bits of
ax and is easy to compute

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 4 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing Hash functions

Hash functions

Some hash functions – table size n

Division hash
H(x) = x mod n

Modular multiplicative hashing (MMH)
H(x) = [(ax + b) mod p] mod n, p is
a prime, p > n, a;b 2 [0::p � 1], a 6= 0

Multiplication hash (FMH) – D E Knuth

H(x) = dn(ax � baxc)e, a =

p
5� 1
2

Binary multiplicative hashing (BMH)

H(x) =
j

ax mod 2w

2w�l

k
Hashing strings: b = 128 for 7-bit ASCII

c0c1 : : : cm !
mP
{=0

c{b{ mod n

Critique

Division hash
If n is even, x and H(x)
have the same parity
If n = 2k , only the last k bits
serve as the hash
H(x + 1) � H(x)+ 1 mod n

Multiplicative hash
Maximal use of operand bits
FMH with a = � achieves
optimal spacing between
consecutive keys
BMH uses middle l-bits of
ax and is easy to compute

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 4 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing Hash functions

Hash functions

Some hash functions – table size n

Division hash
H(x) = x mod n

Modular multiplicative hashing (MMH)
H(x) = [(ax + b) mod p] mod n, p is
a prime, p > n, a;b 2 [0::p � 1], a 6= 0

Multiplication hash (FMH) – D E Knuth

H(x) = dn(ax � baxc)e, a =

p
5� 1
2

Binary multiplicative hashing (BMH)

H(x) =
j

ax mod 2w

2w�l

k

Hashing strings: b = 128 for 7-bit ASCII

c0c1 : : : cm !
mP
{=0

c{b{ mod n

Critique

Division hash
If n is even, x and H(x)
have the same parity
If n = 2k , only the last k bits
serve as the hash
H(x + 1) � H(x)+ 1 mod n

Multiplicative hash
Maximal use of operand bits
FMH with a = � achieves
optimal spacing between
consecutive keys
BMH uses middle l-bits of
ax and is easy to compute

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 4 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing Hash functions

Hash functions

Some hash functions – table size n

Division hash
H(x) = x mod n

Modular multiplicative hashing (MMH)
H(x) = [(ax + b) mod p] mod n, p is
a prime, p > n, a;b 2 [0::p � 1], a 6= 0

Multiplication hash (FMH) – D E Knuth

H(x) = dn(ax � baxc)e, a =

p
5� 1
2

Binary multiplicative hashing (BMH)

H(x) =
j

ax mod 2w

2w�l

k

Hashing strings: b = 128 for 7-bit ASCII

c0c1 : : : cm !
mP
{=0

c{b{ mod n

Critique

Division hash
If n is even, x and H(x)
have the same parity
If n = 2k , only the last k bits
serve as the hash
H(x + 1) � H(x)+ 1 mod n

Multiplicative hash
Maximal use of operand bits
FMH with a = � achieves
optimal spacing between
consecutive keys
BMH uses middle l-bits of
ax and is easy to compute

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 4 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing Hash functions

Hash functions

Some hash functions – table size n

Division hash
H(x) = x mod n

Modular multiplicative hashing (MMH)
H(x) = [(ax + b) mod p] mod n, p is
a prime, p > n, a;b 2 [0::p � 1], a 6= 0

Multiplication hash (FMH) – D E Knuth

H(x) = dn(ax � baxc)e, a =

p
5� 1
2

Binary multiplicative hashing (BMH)

H(x) =
j

ax mod 2w

2w�l

k
Hashing strings: b = 128 for 7-bit ASCII

c0c1 : : : cm !
mP
{=0

c{b{ mod n

Critique

Division hash
If n is even, x and H(x)
have the same parity
If n = 2k , only the last k bits
serve as the hash
H(x + 1) � H(x)+ 1 mod n

Multiplicative hash
Maximal use of operand bits
FMH with a = � achieves
optimal spacing between
consecutive keys
BMH uses middle l-bits of
ax and is easy to compute

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 4 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing Deletion from a hash table

Deletion from a hash table

Probing requires stepping over table entries to find a vacant cell
If a cell stepped over for entering a certain key is deleted,
searching for that key will fail – unless it is filled with some other
key
Lazy deletion leaves behind an indication that a cell should be
stepped over even if there is no key in it
Avoids failure of searches

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 5 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with chaining

Section outline

2 Hashing with chaining

Method and example
Analysis of hashing with
chaining

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 6 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with chaining Method and example

Method and example

When a collision happens,
the new item is added to the
existing items

Items mapped to the same
table entry may be
maintained as a linked list

For uniform distribution of m
keys, expected number of
items in collision in a table of
size m is � = m

n – the load
factor

Time complexities remain
O(1) for low load factors

Example (Hashing keys in a table of
size 8 using chaining)

Table size: 8

H : K ! K mod 8

36! 36 mod 8 = 4

18! 18 mod 8 = 2

72! 72 mod 8 = 0

43! 43 mod 8 = 3

6! 6 mod 8 = 6

5! 5 mod 8 = 5

15! 15 mod 8 = 7

0: 72
1:
2: 10, 18
3: 43
4: 36
5:
6: 6
7:

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 7 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with chaining Analysis of hashing with chaining

Analysis of hashing with chaining

How many steps does it take to know that a key is absent?
Any key, including the search key, is equally likely to be in any one
of the n slots
Length of the chain in any slot is m

n = �

For failure, after computing the hash function each of these � keys
will have to be examined
Total time needed for failure: �(1 + �)

The average time for searching in a chain is obtained as
�P

{=1
{

�
=

1 + �

2
Both are O(1)

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 8 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with chaining Analysis of hashing with chaining

Analysis of hashing with chaining

How many steps does it take to know that a key is absent?
Any key, including the search key, is equally likely to be in any one
of the n slots
Length of the chain in any slot is m

n = �

For failure, after computing the hash function each of these � keys
will have to be examined
Total time needed for failure: �(1 + �)

The average time for searching in a chain is obtained as
�P

{=1
{

�
=

1 + �

2
Both are O(1)

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 8 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with linear probing

Section outline

3 Hashing with linear probing

Linear probing method
Hashing with linear probing
example

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 9 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with linear probing Linear probing method

Linear probing method

1 Calculate k = H(K), where H is the hash function and K is the key
2 If position k is empty or contains K , the search is complete
3 Otherwise, repeat earlier step setting

k = k + 1 mod n, where n is the table size
until the starting position is revisited

Simple generalisation is to probe using the key sequence k + a{
Probe updation will then be: k = k + a

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 10 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with linear probing Hashing with linear probing example

Hashing with linear probing example

Example (Hashing keys in a table of size 8)

0: 72
1:
2: 18
3: 43
4: 36
5:
6: 6
7:

Add keys 10, 5 and 15 to the previous
table

Table size: 8
H : K ! K mod 8
10 ! 10 mod 8 = 2 +3

��! 5
5 ! 5 mod 8 = 5 +2

��! 7
15 ! 15 mod 8 = 7 +2

��! 2

0: 72
1: 15
2: 18
3: 43
4: 36
5: 10
6: 6
7: 5

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 11 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Clustering

Section outline

4 Clustering
Primary and secondary

clustering
Clustering problem with
linear problem

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 12 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Clustering Primary and secondary clustering

Primary and secondary clustering

Definition (Primary clustering)
The tendency for a collision resolution scheme to create runs of filled
slots near the hash function position of keys

Definition (Secondary clustering)
The tendency for a collision resolution scheme to create runs of filled
slots away the hash function position of keys

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 13 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Clustering Clustering problem with linear problem

Clustering problem with linear problem

Two key sequences originating from k1 and k2 may come together
so that H(k1) + a{ = H(k2) + a|
Thereafter, all subsequent probes turn out to be identical
Collisions lead to clustering of keys
Primary clustering results for a = 1
Larger values of a lead to secondary clustering
Increase in search time over the expected values where the
distribution of keys is assumed to be truly random
Problem is aggravated when the clusters are bridged with new
keys

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 14 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Double hashing

Section outline

5 Double hashing

Method of double hashing
Example of double hashing

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 15 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Double hashing Method of double hashing

Method of double hashing

Double is another solution to the primary and secondary
clustering problem
Another hash function is used along with the primary hash
function
In the event of a collision, the probing sequence used is
z{ = H(K) + {H2(K), { � 0
Required properties for the second hash function are:

it must never evaluate to 0
must ensure that all table entries can be probed

An example of such a hash function is H2(K) = R � (K mod R),
R being a prime number smaller than the size of the hash table –
R is chosen prime to minimise the pitfalls of division hashing

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 16 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Double hashing Example of double hashing

Example of double hashing

Example (Hashing keys in a table of size 10)

Table size: 10
H : K ! K mod 10
H2 : K ! 7� (K mod 7)
89 ! 89 mod 10 = 9
18 ! 18 mod 10 = 8
49 ! 49 mod 10 = 9; 7� (49 mod 7) = 7
58 ! 58 mod 10 = 8; 7� (58 mod 7) = 5;
69 ! 69 mod 10 = 9; 7� (69 mod 7) = 1

0: 69
1:
2:
3: 58
4:
5:
6: 49
7:
8: 18
9: 89

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 17 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing

Section outline

6 Hashing with quadratic
probing

Method and advantage over
linear probing
Example of hashing with
quadratic probing
Table coverage

Period of a quadratic
sequence
Quadratic sequence with full
table coverage
Example of an aperiodic
quadratic sequence
Faster computation of
quadratic probing sequence

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 18 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Method and advantage over linear probing

Method and advantage over linear probing

Calculate k = H(K), as before
Probing loop is similar to linear probing
However, probing sequence is k + a{+ b{2 mod n, where n is the
table size

Primary clustering is avoided
Elements that hash to the same address will always probe the
same alternative cells, leading to secondary clustering
Unlike in linear probing, once two sequences meet, they do not
continue lock-step
Table coverage is an issue

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 19 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Method and advantage over linear probing

Method and advantage over linear probing

Calculate k = H(K), as before
Probing loop is similar to linear probing
However, probing sequence is k + a{+ b{2 mod n, where n is the
table size
Primary clustering is avoided
Elements that hash to the same address will always probe the
same alternative cells, leading to secondary clustering
Unlike in linear probing, once two sequences meet, they do not
continue lock-step
Table coverage is an issue

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 19 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Example of hashing with quadratic probing

Example of hashing with quadratic probing

Example (Hashing keys in a table of size 10)

Table size: 10
H : K ! K + {2 mod 10
89 ! 89 mod 10 = 9
18 ! 18 mod 10 = 8
49 ! 49 mod 10 = 9;
(9 + 12) mod 10 = 0
58 ! 58 mod 10 = 8;
(8 + 12) mod 10 = 9; (8 + 22)

mod 10 = 2
69 ! 69 mod 10 = 9;
(9 + 22) mod 10 = 3

0: 49
1:
2: 58
3: 69
4:
5:
6:
7:
8: 18
9: 89

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 20 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Table coverage

Table coverage

Consider the sequence: z{ = z0 + a{+ b{2 mod n, where n is the
table size
Does this sequence cover all the entries in the table?

Editor: Naive program for the quadratic sequence
main(int argc, char **argv)f // called with a b n
#define h(a,b,n,x) ((a + b*x)*x % n)
int a = atoi(argv[1]);
int b = atoi(argv[2]);
int n = atoi(argv[3]);
int i;

printf("a=%d, b=%d, n=%d\n", a, b, n);
for (i=0;i<n;i++) printf("%d->%d, ", i, h(a,b,n,i));
g

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 21 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Table coverage

Some examples of quadratic sequences

Editor: Sample quadratic sequence
$./quadHashPT 3 7 10
a=3, b=7, n=10
0: 0, 1: 0, 2: 4, 3: 2, 4: 4, 5: 0, 6: 0, 7: 4, 8: 2, 9: 4

Editor: Sample quadratic sequence
$./quadHashPT 3 7 9
a=3, b=7, n=9
0: 0, 1: 1, 2: 7, 3: 0, 4: 7, 5: 1, 6: 0, 7: 4, 8: 4

Editor: Sample quadratic sequence
$./quadHashPT 3 7 8
a=3, b=7, n=8
0: 0, 1: 2, 2: 2, 3: 0, 4: 4, 5: 6, 6: 6, 7: 4

Termination condition becomes difficult/inefficient with such sequences
Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 22 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Period of a quadratic sequence

Period of a quadratic sequence

Repetition is not too simple
For z{ = z0 + a{+ b{2 mod n, consider whether there exists
integers { and | such that
z{ = z| and 0 � { < | < n [by subtraction]

) z{ = z| � (|� {)(a + b({+ |)) � 0 mod n

When n is prime, its residues of 0;1; : : : ;n � 1 form a field , where
a + bx � 0 mod n has a unique solution b�1(n � a) mod n (= w
say) for any a and b (b �= 0 mod n)
For any {, repetition starts at | satisfying {+ | � w mod n and
0 � { < | < n

) At most dn
2e table slots are examined until repetition sets in

A free slot is not found even if available – can this be avoided?

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 23 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Period of a quadratic sequence

Period of a quadratic sequence

Repetition is not too simple
For z{ = z0 + a{+ b{2 mod n, consider whether there exists
integers { and | such that
z{ = z| and 0 � { < | < n [by subtraction]

) z{ = z| � (|� {)(a + b({+ |)) � 0 mod n
When n is prime, its residues of 0;1; : : : ;n � 1 form a field , where
a + bx � 0 mod n has a unique solution b�1(n � a) mod n (= w
say) for any a and b (b �= 0 mod n)
For any {, repetition starts at | satisfying {+ | � w mod n and
0 � { < | < n

) At most dn
2e table slots are examined until repetition sets in

A free slot is not found even if available – can this be avoided?

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 23 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Period of a quadratic sequence

Period of a quadratic sequence

Repetition is not too simple
For z{ = z0 + a{+ b{2 mod n, consider whether there exists
integers { and | such that
z{ = z| and 0 � { < | < n [by subtraction]

) z{ = z| � (|� {)(a + b({+ |)) � 0 mod n
When n is prime, its residues of 0;1; : : : ;n � 1 form a field , where
a + bx � 0 mod n has a unique solution b�1(n � a) mod n (= w
say) for any a and b (b �= 0 mod n)
For any {, repetition starts at | satisfying {+ | � w mod n and
0 � { < | < n

) At most dn
2e table slots are examined until repetition sets in

A free slot is not found even if available – can this be avoided?

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 23 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Quadratic sequence with full table coverage

Quadratic sequence with full table coverage

We want to avoid a + b({+ |) � 0 mod n having a solution
Need coefficients a and b for which { and |, 0 � { < | < n don’t
exist to satisfy a + b({+ |) � 0 mod n

Let n =
Q

{2Z p{
�{ , �{ � 1, 9�{ > 1 and each p{ is prime,

Let B =
Q

{2Z p{ (st p{jn), A 2 Z, (A;B) = 1 // gcd(A;B) = 1
Let a = A, b = BC, C 2 Z and m = a + b({+ |)
Let d = (m;n),)d =

Q
{2Z p{

�{ , �{ � 0 // for d to divide n (d jn)
If d 6= 1, 9�{ � 1) p{ j d ^ p{ j B // p{ divides d and B
d = (m;n)) d j m) p{ j m, but does p{ j A + BC({+ |)?
No! as (A;B) = 1,) (m;n) = 1

) ({� |)m � 0 mod n or ({� |)m = kn, 0 � { < | < n has no
solution

) Full table coverage is ensured
Example: z{ = z0 + (2a+ 1){+ 2b{2 mod 2k // NB (2a+ 1;2) = 1
C may be chosen as some H2(K) 6= 0 (encompassing the benefit
of double hashing) to reduce secondary clustering

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 24 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Quadratic sequence with full table coverage

Quadratic sequence with full table coverage

We want to avoid a + b({+ |) � 0 mod n having a solution
Need coefficients a and b for which { and |, 0 � { < | < n don’t
exist to satisfy a + b({+ |) � 0 mod n
Let n =

Q
{2Z p{

�{ , �{ � 1, 9�{ > 1 and each p{ is prime,
Let B =

Q
{2Z p{ (st p{jn), A 2 Z, (A;B) = 1 // gcd(A;B) = 1

Let a = A, b = BC, C 2 Z and m = a + b({+ |)

Let d = (m;n),)d =
Q

{2Z p{
�{ , �{ � 0 // for d to divide n (d jn)

If d 6= 1, 9�{ � 1) p{ j d ^ p{ j B // p{ divides d and B
d = (m;n)) d j m) p{ j m, but does p{ j A + BC({+ |)?
No! as (A;B) = 1,) (m;n) = 1

) ({� |)m � 0 mod n or ({� |)m = kn, 0 � { < | < n has no
solution

) Full table coverage is ensured
Example: z{ = z0 + (2a+ 1){+ 2b{2 mod 2k // NB (2a+ 1;2) = 1
C may be chosen as some H2(K) 6= 0 (encompassing the benefit
of double hashing) to reduce secondary clustering

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 24 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Quadratic sequence with full table coverage

Quadratic sequence with full table coverage

We want to avoid a + b({+ |) � 0 mod n having a solution
Need coefficients a and b for which { and |, 0 � { < | < n don’t
exist to satisfy a + b({+ |) � 0 mod n
Let n =

Q
{2Z p{

�{ , �{ � 1, 9�{ > 1 and each p{ is prime,
Let B =

Q
{2Z p{ (st p{jn), A 2 Z, (A;B) = 1 // gcd(A;B) = 1

Let a = A, b = BC, C 2 Z and m = a + b({+ |)
Let d = (m;n),)d =

Q
{2Z p{

�{ , �{ � 0 // for d to divide n (d jn)

If d 6= 1, 9�{ � 1) p{ j d ^ p{ j B // p{ divides d and B
d = (m;n)) d j m) p{ j m, but does p{ j A + BC({+ |)?
No! as (A;B) = 1,) (m;n) = 1

) ({� |)m � 0 mod n or ({� |)m = kn, 0 � { < | < n has no
solution

) Full table coverage is ensured
Example: z{ = z0 + (2a+ 1){+ 2b{2 mod 2k // NB (2a+ 1;2) = 1
C may be chosen as some H2(K) 6= 0 (encompassing the benefit
of double hashing) to reduce secondary clustering

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 24 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Quadratic sequence with full table coverage

Quadratic sequence with full table coverage

We want to avoid a + b({+ |) � 0 mod n having a solution
Need coefficients a and b for which { and |, 0 � { < | < n don’t
exist to satisfy a + b({+ |) � 0 mod n
Let n =

Q
{2Z p{

�{ , �{ � 1, 9�{ > 1 and each p{ is prime,
Let B =

Q
{2Z p{ (st p{jn), A 2 Z, (A;B) = 1 // gcd(A;B) = 1

Let a = A, b = BC, C 2 Z and m = a + b({+ |)
Let d = (m;n),)d =

Q
{2Z p{

�{ , �{ � 0 // for d to divide n (d jn)
If d 6= 1, 9�{ � 1) p{ j d ^ p{ j B // p{ divides d and B

d = (m;n)) d j m) p{ j m, but does p{ j A + BC({+ |)?
No! as (A;B) = 1,) (m;n) = 1

) ({� |)m � 0 mod n or ({� |)m = kn, 0 � { < | < n has no
solution

) Full table coverage is ensured
Example: z{ = z0 + (2a+ 1){+ 2b{2 mod 2k // NB (2a+ 1;2) = 1
C may be chosen as some H2(K) 6= 0 (encompassing the benefit
of double hashing) to reduce secondary clustering

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 24 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Quadratic sequence with full table coverage

Quadratic sequence with full table coverage

We want to avoid a + b({+ |) � 0 mod n having a solution
Need coefficients a and b for which { and |, 0 � { < | < n don’t
exist to satisfy a + b({+ |) � 0 mod n
Let n =

Q
{2Z p{

�{ , �{ � 1, 9�{ > 1 and each p{ is prime,
Let B =

Q
{2Z p{ (st p{jn), A 2 Z, (A;B) = 1 // gcd(A;B) = 1

Let a = A, b = BC, C 2 Z and m = a + b({+ |)
Let d = (m;n),)d =

Q
{2Z p{

�{ , �{ � 0 // for d to divide n (d jn)
If d 6= 1, 9�{ � 1) p{ j d ^ p{ j B // p{ divides d and B
d = (m;n)) d j m) p{ j m, but does p{ j A + BC({+ |)?

No! as (A;B) = 1,) (m;n) = 1
) ({� |)m � 0 mod n or ({� |)m = kn, 0 � { < | < n has no

solution
) Full table coverage is ensured

Example: z{ = z0 + (2a+ 1){+ 2b{2 mod 2k // NB (2a+ 1;2) = 1
C may be chosen as some H2(K) 6= 0 (encompassing the benefit
of double hashing) to reduce secondary clustering

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 24 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Quadratic sequence with full table coverage

Quadratic sequence with full table coverage

We want to avoid a + b({+ |) � 0 mod n having a solution
Need coefficients a and b for which { and |, 0 � { < | < n don’t
exist to satisfy a + b({+ |) � 0 mod n
Let n =

Q
{2Z p{

�{ , �{ � 1, 9�{ > 1 and each p{ is prime,
Let B =

Q
{2Z p{ (st p{jn), A 2 Z, (A;B) = 1 // gcd(A;B) = 1

Let a = A, b = BC, C 2 Z and m = a + b({+ |)
Let d = (m;n),)d =

Q
{2Z p{

�{ , �{ � 0 // for d to divide n (d jn)
If d 6= 1, 9�{ � 1) p{ j d ^ p{ j B // p{ divides d and B
d = (m;n)) d j m) p{ j m, but does p{ j A + BC({+ |)?
No! as (A;B) = 1,) (m;n) = 1

) ({� |)m � 0 mod n or ({� |)m = kn, 0 � { < | < n has no
solution

) Full table coverage is ensured

Example: z{ = z0 + (2a+ 1){+ 2b{2 mod 2k // NB (2a+ 1;2) = 1
C may be chosen as some H2(K) 6= 0 (encompassing the benefit
of double hashing) to reduce secondary clustering

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 24 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Quadratic sequence with full table coverage

Quadratic sequence with full table coverage

We want to avoid a + b({+ |) � 0 mod n having a solution
Need coefficients a and b for which { and |, 0 � { < | < n don’t
exist to satisfy a + b({+ |) � 0 mod n
Let n =

Q
{2Z p{

�{ , �{ � 1, 9�{ > 1 and each p{ is prime,
Let B =

Q
{2Z p{ (st p{jn), A 2 Z, (A;B) = 1 // gcd(A;B) = 1

Let a = A, b = BC, C 2 Z and m = a + b({+ |)
Let d = (m;n),)d =

Q
{2Z p{

�{ , �{ � 0 // for d to divide n (d jn)
If d 6= 1, 9�{ � 1) p{ j d ^ p{ j B // p{ divides d and B
d = (m;n)) d j m) p{ j m, but does p{ j A + BC({+ |)?
No! as (A;B) = 1,) (m;n) = 1

) ({� |)m � 0 mod n or ({� |)m = kn, 0 � { < | < n has no
solution

) Full table coverage is ensured
Example: z{ = z0 + (2a+ 1){+ 2b{2 mod 2k // NB (2a+ 1;2) = 1
C may be chosen as some H2(K) 6= 0 (encompassing the benefit
of double hashing) to reduce secondary clustering

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 24 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Example of an aperiodic quadratic sequence

Example of an aperiodic quadratic sequence
Editor: Naive program for an aperiodic quadratic sequence

main(int argc, char **argv)f
#define h(a,b,n,x) (((2*a+1) + 2*b*x)*x % n)
int a = atoi(argv[1]);
int b = atoi(argv[2]);
int k = atoi(argv[3]);
int i, n;
for (n=1, i=0; i<k; i++) n*=2;

printf("a=%d, b=%d, n=%d\n", a, b, n);
for (i=0;i<d;i++) printf("%d->%d, ", i, h(a,b,d,i));
g

Editor: Generated aperiodic quadratic sequence

$./quadHashFT 3 7 3
a=3, b=7, n=8
0: 0, 1: 5, 2: 6, 3: 3, 4: 4, 5: 1, 6: 2, 7: 7

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 25 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Faster computation of quadratic probing sequence

Faster computation of quadratic probing sequence

Computation of the quadratic probing sequence z{ = z0 + a{+ b{2 is
simplified using the method of finite differences

z0 = H(K)

�z = z{+1 � z{ = 2b{+ (a + b)
1 Let R = a + b and Q = 2b; also z0 = k H(K), | R
2 If position k is empty or contains K , the search is complete
3 Otherwise, repeat earlier step setting

k k + |; | |+ Q mod n, where n is the table size
until the starting position is revisited (for full table coverage)

Let H(K) = K mod n; n = 10;K = 49;a = 3;b = 5; Q = 2b = 10

z0 = k = 9; | R = 8

z1 = k k + | = 9 + 8 � 7 mod n; | |+ Q = 8 + 10 � 8 mod n

z2 = k k + | = 7 + 8 � 5 mod n; | |+ Q = 8 + 10 � 8 mod n

z3 = k k + | = 5 + 8 � 3 mod n; | |+ Q = 8 + 10 � 8 mod n

Equivalent to linear probing! as 2b � 0 mod n

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 26 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Hashing with quadratic probing Faster computation of quadratic probing sequence

Faster computation of quadratic probing sequence

Computation of the quadratic probing sequence z{ = z0 + a{+ b{2 is
simplified using the method of finite differences

z0 = H(K)

�z = z{+1 � z{ = 2b{+ (a + b)
1 Let R = a + b and Q = 2b; also z0 = k H(K), | R
2 If position k is empty or contains K , the search is complete
3 Otherwise, repeat earlier step setting

k k + |; | |+ Q mod n, where n is the table size
until the starting position is revisited (for full table coverage)

Let H(K) = K mod n; n = 10;K = 49;a = 3;b = 5; Q = 2b = 10

z0 = k = 9; | R = 8

z1 = k k + | = 9 + 8 � 7 mod n; | |+ Q = 8 + 10 � 8 mod n

z2 = k k + | = 7 + 8 � 5 mod n; | |+ Q = 8 + 10 � 8 mod n

z3 = k k + | = 5 + 8 � 3 mod n; | |+ Q = 8 + 10 � 8 mod n

Equivalent to linear probing! as 2b � 0 mod n
Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 26 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Analysis of open addressing

Section outline

7 Analysis of open addressing

Expected time for
unsuccessful search
Average time for successful
search

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 27 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Analysis of open addressing Expected time for unsuccessful search

Expected time for unsuccessful search

Table size is taken as n and number of entries is m

Uniformity Each hash value of the probing sequence h{(x), { � 0 is
equally likely to be any integer in the set f0;1;2; : : : ;n � 1g
Pr[T [h0(x)]] is occupied = m

n

Independence After the first probe, on failure, the remaining probe
sequence h{(x), { � 1 is equally likely to be any integer in the set
f0;1;2; : : : ;n � 1g n fh0(x)g

E[T (m;n)] =
�

1 + m
n E[T (m � 1;n � 1)];m > 0; h0(x) and beyond

1;m = 0; failure in empty table

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 28 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Analysis of open addressing Expected time for unsuccessful search

Expected time for unsuccessful search

Table size is taken as n and number of entries is m

Uniformity Each hash value of the probing sequence h{(x), { � 0 is
equally likely to be any integer in the set f0;1;2; : : : ;n � 1g
Pr[T [h0(x)]] is occupied = m

n

Independence After the first probe, on failure, the remaining probe
sequence h{(x), { � 1 is equally likely to be any integer in the set
f0;1;2; : : : ;n � 1g n fh0(x)g

E[T (m;n)] =
�

1 + m
n E[T (m � 1;n � 1)];m > 0; h0(x) and beyond

1;m = 0; failure in empty table

A unit cost of probing the cell in question is always incurred –
irrespective of whether there are elements in the table or not

The term E[T (m � 1;n � 1)] is added with the probability of m
n when the

cell probed is not empty

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 28 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Analysis of open addressing Expected time for unsuccessful search

Expected time for unsuccessful search
Table size is taken as n and number of entries is m

Uniformity Each hash value of the probing sequence h{(x), { � 0 is
equally likely to be any integer in the set f0;1;2; : : : ;n � 1g
Pr[T [h0(x)]] is occupied = m

n

Independence After the first probe, on failure, the remaining probe
sequence h{(x), { � 1 is equally likely to be any integer in the set
f0;1;2; : : : ;n � 1g n fh0(x)g

E[T (m;n)] =
�

1 + m
n E[T (m � 1;n � 1)];m > 0; h0(x) and beyond

1;m = 0; failure in empty table

Assuming E[T (m;n)] � n
n�m , inductively [T (m � 1;n � 1)) T (m;n)]

E[T (m;n)] = 1 + m
n E[T (m � 1;n � 1)] � 1 + m

n
(n�1)

(n�1)�(m�1)
� 1 + m

n
n

n�m = n
n�m = 1

1�m
n
= 1

1��
2 O(1)

Expected time for an unsuccessful search is O(1), unless hash table is
almost full; same for insertion

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 28 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Analysis of open addressing Average time for successful search

Average time for successful search

Average search time T m;n for a successful search may be
determined by averaging over all entries
Successful search has the same probe sequence as when the
element was inserted (an unsuccessful search)
The search time for entry { is the load factor at the time of

inserting that element:
1

1� {
n

T m;n =
1
m

{=m�1P

{=0

1
1� {

n

) T m;n =
1
m

{=m�1P

{=0

n
n � {

) T m;n =
n
m

{=m�1P

{=0

1
n � {

=
n
m

nP

{=n�m+1

1
{
=

1
�
(Hn � Hn�m)

1
�

nP

{=n�m+1

1
{
�

1
�

nR

n�m

dx
x

=
1
�

ln
n

n �m
=

1
�

ln
1

1� �

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 29 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables

Section outline

8 Handling filled-up tables
Rehashing
Costing of rehashing

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 30 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Rehashing

Rehashing

When hash table has too many items, searches take longer and
insertions may fail
Load factor � of a hash table of size n with m elements is m

n

Unless multiple items are present in the same table entry, as in
chaining, 0 � � � 1
New table of double size may be used to store older items and
make place for newer items
Older items cannot be just copied, but need to be hashed to the
new table – rehashing
Rehashing is often triggered once the load factor reaches 0.75
Other triggers could be failure to insert or the table becoming full

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 31 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Costing of rehashing

Simplified algorithm:

1 Let n = 1 be the initial table size

2 Keep inserting until total
elements m > n

3 Double n, create table of size 2n

4 Move elements to new table

5 Continue inserting as before

Worst case cost of insert: O(m)

Not frequent, average cost?

ci =

�
i if ({� 1) = 2k

1 otherwise

Example (Cost of rehashing)

Op n c{
I(1) 1 1

Ins(2) 2 1 + 1
Ins(3) 4 1 + 2
Ins(4) 4 1
Ins(5) 8 1 + 4
Ins(6) 8 1
Ins(7) 8 1
Ins(8) 8 1
Ins(9) 16 1 + 8

Total 24

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 32 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Costing of rehashing

Simplified algorithm:

1 Let n = 1 be the initial table size

2 Keep inserting until total
elements m > n

3 Double n, create table of size 2n

4 Move elements to new table

5 Continue inserting as before

Worst case cost of insert: O(m)

Not frequent, average cost?

ci =

�
i if ({� 1) = 2k

1 otherwise

Example (Cost of rehashing)

Op n c{
I(1) 1 1

Ins(2) 2 1 + 1
Ins(3) 4 1 + 2
Ins(4) 4 1
Ins(5) 8 1 + 4
Ins(6) 8 1
Ins(7) 8 1
Ins(8) 8 1
Ins(9) 16 1 + 8

Total 24

1

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 32 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Costing of rehashing

Simplified algorithm:

1 Let n = 1 be the initial table size

2 Keep inserting until total
elements m > n

3 Double n, create table of size 2n

4 Move elements to new table

5 Continue inserting as before

Worst case cost of insert: O(m)

Not frequent, average cost?

ci =

�
i if ({� 1) = 2k

1 otherwise

Example (Cost of rehashing)

Op n c{
I(1) 1 1
Ins(2) 2 1 + 1

Ins(3) 4 1 + 2
Ins(4) 4 1
Ins(5) 8 1 + 4
Ins(6) 8 1
Ins(7) 8 1
Ins(8) 8 1
Ins(9) 16 1 + 8

Total 24

1
2

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 32 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Costing of rehashing

Simplified algorithm:

1 Let n = 1 be the initial table size

2 Keep inserting until total
elements m > n

3 Double n, create table of size 2n

4 Move elements to new table

5 Continue inserting as before

Worst case cost of insert: O(m)

Not frequent, average cost?

ci =

�
i if ({� 1) = 2k

1 otherwise

Example (Cost of rehashing)

Op n c{
I(1) 1 1
Ins(2) 2 1 + 1
Ins(3) 4 1 + 2

Ins(4) 4 1
Ins(5) 8 1 + 4
Ins(6) 8 1
Ins(7) 8 1
Ins(8) 8 1
Ins(9) 16 1 + 8

Total 24

1
2
3

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 32 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Costing of rehashing

Simplified algorithm:

1 Let n = 1 be the initial table size

2 Keep inserting until total
elements m > n

3 Double n, create table of size 2n

4 Move elements to new table

5 Continue inserting as before

Worst case cost of insert: O(m)

Not frequent, average cost?

ci =

�
i if ({� 1) = 2k

1 otherwise

Example (Cost of rehashing)

Op n c{
I(1) 1 1
Ins(2) 2 1 + 1
Ins(3) 4 1 + 2
Ins(4) 4 1

Ins(5) 8 1 + 4
Ins(6) 8 1
Ins(7) 8 1
Ins(8) 8 1
Ins(9) 16 1 + 8

Total 24

1
2
3
4

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 32 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Costing of rehashing

Simplified algorithm:

1 Let n = 1 be the initial table size

2 Keep inserting until total
elements m > n

3 Double n, create table of size 2n

4 Move elements to new table

5 Continue inserting as before

Worst case cost of insert: O(m)

Not frequent, average cost?

ci =

�
i if ({� 1) = 2k

1 otherwise

Example (Cost of rehashing)

Op n c{
I(1) 1 1
Ins(2) 2 1 + 1
Ins(3) 4 1 + 2
Ins(4) 4 1
Ins(5) 8 1 + 4

Ins(6) 8 1
Ins(7) 8 1
Ins(8) 8 1
Ins(9) 16 1 + 8

Total 24

1
2
3
4
5

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 32 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Costing of rehashing

Simplified algorithm:

1 Let n = 1 be the initial table size

2 Keep inserting until total
elements m > n

3 Double n, create table of size 2n

4 Move elements to new table

5 Continue inserting as before

Worst case cost of insert: O(m)

Not frequent, average cost?

ci =

�
i if ({� 1) = 2k

1 otherwise

Example (Cost of rehashing)

Op n c{
I(1) 1 1
Ins(2) 2 1 + 1
Ins(3) 4 1 + 2
Ins(4) 4 1
Ins(5) 8 1 + 4
Ins(6) 8 1

Ins(7) 8 1
Ins(8) 8 1
Ins(9) 16 1 + 8

Total 24

1
2
3
4
5
6

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 32 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Costing of rehashing

Simplified algorithm:

1 Let n = 1 be the initial table size

2 Keep inserting until total
elements m > n

3 Double n, create table of size 2n

4 Move elements to new table

5 Continue inserting as before

Worst case cost of insert: O(m)

Not frequent, average cost?

ci =

�
i if ({� 1) = 2k

1 otherwise

Example (Cost of rehashing)

Op n c{
I(1) 1 1
Ins(2) 2 1 + 1
Ins(3) 4 1 + 2
Ins(4) 4 1
Ins(5) 8 1 + 4
Ins(6) 8 1
Ins(7) 8 1

Ins(8) 8 1
Ins(9) 16 1 + 8

Total 24

1
2
3
4
5
6
7

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 32 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Costing of rehashing

Simplified algorithm:

1 Let n = 1 be the initial table size

2 Keep inserting until total
elements m > n

3 Double n, create table of size 2n

4 Move elements to new table

5 Continue inserting as before

Worst case cost of insert: O(m)

Not frequent, average cost?

ci =

�
i if ({� 1) = 2k

1 otherwise

Example (Cost of rehashing)

Op n c{
I(1) 1 1
Ins(2) 2 1 + 1
Ins(3) 4 1 + 2
Ins(4) 4 1
Ins(5) 8 1 + 4
Ins(6) 8 1
Ins(7) 8 1
Ins(8) 8 1

Ins(9) 16 1 + 8
Total 24

1
2
3
4
5
6
7
8

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 32 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Costing of rehashing

Simplified algorithm:

1 Let n = 1 be the initial table size

2 Keep inserting until total
elements m > n

3 Double n, create table of size 2n

4 Move elements to new table

5 Continue inserting as before

Worst case cost of insert: O(m)

Not frequent, average cost?

ci =

�
i if ({� 1) = 2k

1 otherwise

Example (Cost of rehashing)

Op n c{
I(1) 1 1
Ins(2) 2 1 + 1
Ins(3) 4 1 + 2
Ins(4) 4 1
Ins(5) 8 1 + 4
Ins(6) 8 1
Ins(7) 8 1
Ins(8) 8 1
Ins(9) 16 1 + 8

Total 24

1
2
3
4
5
6
7
8
9

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 32 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Costing of rehashing

Simplified algorithm:

1 Let n = 1 be the initial table size

2 Keep inserting until total
elements m > n

3 Double n, create table of size 2n

4 Move elements to new table

5 Continue inserting as before

Worst case cost of insert: O(m)

Not frequent, average cost?

ci =

�
i if ({� 1) = 2k

1 otherwise

Example (Cost of rehashing)

Op n c{
I(1) 1 1
Ins(2) 2 1 + 1
Ins(3) 4 1 + 2
Ins(4) 4 1
Ins(5) 8 1 + 4
Ins(6) 8 1
Ins(7) 8 1
Ins(8) 8 1
Ins(9) 16 1 + 8

Total 24

1
2
3
4
5
6
7
8
9

Average cost: 24
9 = 8

3

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 32 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Cost of rehashing (contd.)

Aggregate analysis

Cost of n insertions:
nP

{=1
c{ � n +

lg nP
|=0

2| = n + (2n � 1) < 3n

Average cost of insertion: 3n�1
n < n

The cost of insertion amortised over all the insert operations is
asymptotically a fixed value: O(1)

– similar to inserting in a hash table of fixed size!

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 33 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Cost of rehashing (contd.)

Aggregate analysis

Cost of n insertions:
nP

{=1
c{ � n +

lg nP
|=0

2| = n + (2n � 1) < 3n

Average cost of insertion: 3n�1
n < n

The cost of insertion amortised over all the insert operations is
asymptotically a fixed value: O(1)
– similar to inserting in a hash table of fixed size!

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 33 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Cost of rehashing (contd.)
Aggregate analysis

Cost of n insertions:
nP

{=1
c{ � n +

lg nP
|=0

2| =

n + (2n � 1) < 3n
Average cost of insertion:
3n�1

n < n
The cost of insertion
amortised over all the
insert operations is
asymptotically a fixed
value: O(1)
– similar to inserting in a
hash table of fixed size!

Accounting analysis

Charge 3 units for each insertion
1 Use 1 unit for inserting this item
2 Save 2 units for later use

When table is doubled from 2n to 4n:
1 n elements, each with a saving of 2

units were added since the previous
doubling from n to 2n

2 2 2 2
2 Total saving of 2n units just enough

to move the 2n elements, exhausing
all savings

All above operations are achieved by
charging a fixed amount (3 units) per
insert; thus, amortised cost is O(1)

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 33 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Cost of rehashing (contd.)
Aggregate analysis

Cost of n insertions:
nP

{=1
c{ � n +

lg nP
|=0

2| =

n + (2n � 1) < 3n
Average cost of insertion:
3n�1

n < n
The cost of insertion
amortised over all the
insert operations is
asymptotically a fixed
value: O(1)
– similar to inserting in a
hash table of fixed size!

Accounting analysis

Charge 3 units for each insertion
1 Use 1 unit for inserting this item
2 Save 2 units for later use

When table is doubled from 2n to 4n:
1 n elements, each with a saving of 2

units were added since the previous
doubling from n to 2n

2 2 2 2
2 Total saving of 2n units just enough

to move the 2n elements, exhausing
all savings

All above operations are achieved by
charging a fixed amount (3 units) per
insert; thus, amortised cost is O(1)

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 33 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Handling filled-up tables Costing of rehashing

Cost of rehashing (contd.)
Aggregate analysis

Cost of n insertions:
nP

{=1
c{ � n +

lg nP
|=0

2| =

n + (2n � 1) < 3n
Average cost of insertion:
3n�1

n < n
The cost of insertion
amortised over all the
insert operations is
asymptotically a fixed
value: O(1)
– similar to inserting in a
hash table of fixed size!

Accounting analysis

Charge 3 units for each insertion
1 Use 1 unit for inserting this item
2 Save 2 units for later use

When table is doubled from 2n to 4n:
1 n elements, each with a saving of 2

units were added since the previous
doubling from n to 2n

2 2 2 2
2 Total saving of 2n units just enough

to move the 2n elements, exhausing
all savings

All above operations are achieved by
charging a fixed amount (3 units) per
insert; thus, amortised cost is O(1)

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 33 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Commutative rings and fields

Section outline

9 Commutative rings and
fields

Rings
Commutative ring with
identity
Field

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 34 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Commutative rings and fields Rings

Rings

Definition (Ring)
A ring is a set R with two binary operations addition (denoted +) and
multiplication (denoted �). These operations satisfy the following
axioms:

1 Addition is associative: If a;b; c 2 R, then a+(b+ c) = (a+b)+ c
2 There is an identity for addition, denoted 0. It satisfies

0 + a = a and a + 0 = a for all a 2 R
3 Every element of R has an additive inverse; that is, if a 2 R, there

is an element �a 2 R which satisfies
a + (�a) = 0 and (�a) + a = 0

4 Addition is commutative: If a;b 2 R, then a + b = b + a
5 Multiplication is associative: If a;b; c 2 R, then a � (b �c) = (a �b) �c
6 Multiplication distributes over addition: If a;b; c 2 R, then

a � (b + c) = a � b + a � c
Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 35 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Commutative rings and fields Commutative ring with identity

Commutative ring with identity

Definition (Commutative ring)
A ring R is commutative if the multiplication is commutative: For all
a;b 2 R, a � b = b � a

Definition (Ring with identity)
A ring R is a ring with identity if there is an identity for multiplication.
There is an element 1 2 R such that
1 � a = a and a � 1 = a for all a 2 R

Definition (Commutative ring with identity)
A commutative ring which has an identity element is called a
commutative ring with identity.

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 36 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Commutative rings and fields Field

Field

Definition (Multiplicative inverse)
Let R be a ring with identity, and let x 2 R. The multiplicative inverse of
x is an element x�1 2 R which satisifies x � x�1 = 1 and x�1 � x = 1

Definition (Field)
A field F is a commutative ring with identity in which 1 6= 0 and every
non-zero element has a multiplicative inverse.

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 37 / 38

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Commutative rings and fields Field

Examples

Example (Commutative rings)
The integers Z
The rational numbers Q
The real numbers R

Example (Integers modulo n)
Let n � 2 be an integer, the integers modulo n is the set
Zn = f0;1;2; : : : ;n � 1g called the residues of n
Z2 = f0;1g and Z6 = f0;1;2;3;4;5g
Zn becomes a commutative ring with identity under the operations
of addition modulo n and multiplication modulo n
Zn is a field if and only if n is prime

Chittaranjan Mandal (IIT Kharagpur) Algorithms April 4, 2017 38 / 38

	Hashing
	Introduction to hashing
	Hash functions
	Deletion from a hash table

	Hashing with chaining
	Method and example
	Analysis of hashing with chaining

	Hashing with linear probing
	Linear probing method
	Hashing with linear probing example

	Clustering
	Primary and secondary clustering
	Clustering problem with linear problem

	Double hashing
	Method of double hashing
	Example of double hashing

	Hashing with quadratic probing
	Method and advantage over linear probing
	Example of hashing with quadratic probing
	Table coverage
	Period of a quadratic sequence
	Quadratic sequence with full table coverage
	Example of an aperiodic quadratic sequence
	Faster computation of quadratic probing sequence

	Analysis of open addressing
	Expected time for unsuccessful search
	Average time for successful search

	Handling filled-up tables
	Rehashing
	Costing of rehashing

	Commutative rings and fields
	Rings
	Commutative ring with identity
	Field

	resultado2:
	hours: 20
	minutes: 05
	seconds: 38
	cronohours: 00
	cronominutes: 00
	crseconds: 00
	day: 15
	month: 12
	year: 2022
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00

