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Introduction to graphs

Section outline
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Introduction to graphs Simple graphs

Simple graphs
Definition (Graph)
A (simple, undirected) graph, G = (V ,E), consists of a non-empty set
V of vertices (or nodes), and a set E ⊆ V × V of (undirected) edges
(or arcs).

Every edge 〈u, v〉 ∈ E has two distinct vertices u and v (u 6= v ) as
endpoints and are said to be adjacent in G;

For an undirected graph, 〈u, v〉 ∈ E ⇒ 〈v ,u〉 ∈ E .
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Introduction to graphs Directed graphs

Directed graphs

Definition (Digraph)
A directed graph (digraph), G = (V ,E), consists of a non-empty set V
of vertices (or nodes), and a set E ⊆ V × V of directed edges (or
arcs).

Every edge 〈u, v〉 ∈ E has a start (tail) vertex u and an end (head)
vertex v .

A graph G = (V ,E) is a set V together with a binary symmetric
relation E on V .
A directed graph G = (V ,E) is a set V together with a binary
relation E on V .
A multigraph is permitted to have multiple edges between pairs of
vertices.
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Introduction to graphs Degree and neighbourhood of a vertex

Degree and neighbourhood of a vertex
Definition (Degree)
The degree of a vertex v in a undirected graph is the number of edges
incident with it. The degree of the vertex v is denoted by deg(v ).

Definition (Nbd)
The neighborhood (neighbor set) of a vertex v in a undirected graph,
denoted N(v) is the set of vertices adjacent to v .

Definition (In-degree/Out-degree)

The in-degree of a vertex v , denoted deg−(v), is the number of edges
directed into v . The out-degree of v , denoted deg+(v), is the number
of edges directed out of v .

Note that a self loop at a vertex contributes 1 to both in-degree and
out-degree.
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Introduction to graphs Subgraph of a graph

Subgraph of a graph

Definition (Subgraph)
A subgraph of a graph G(V ,E) is a graph H(W ,F ), where W ⊆ V and
F ⊆ E . A subgraph H of G is a proper subgraph of G if H 6= G.

Definition (Induced subgraph)
Let G(V ,E) be a graph. The subgraph induced by a subset W of the
vertex set V is the graph H(W ,F ), whose edge set F contains an
edge in E if and only if both endpoints are in W .
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Introduction to graphs Graph components

Graph components

Definition (Component of an undirected graph)

A connected component (or just component) of an undirected graph is a
subgraph in which any two vertices are connected to each other by paths,
and which is connected to no additional vertices in the supergraph.

Components partition a simple undirected graph and induce equivalence
classes of nodes that are reachable from each other

Components in a simple undirected graph are easily identified through
depth first traversal

This definition is not of much use in a digraph; there the notion of
strongly connected components is more relevant

Definition (Strongly connected component of a digraph)

A subgraph of a digraph is said to be strongly connected if every vertex is
reachable from every other vertex.
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Introduction to graphs Simple properties of graphs

Simple properties of graphs

(Handshaking Lemma): If G = (V ,E) is a undirected graph with m
edges, then:

∑
v∈V

deg(v) = 2m

An undirected graph has an even number of vertices of odd
degree.
For a directed graph G = (V ,E),
|E | =

∑
v∈V

deg−(v) =
∑

v∈V
deg+(v)

In every graph there are two vertices of the same degree
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Introduction to graphs Graph representation

Graph representation

Adjacency matrix
A[i , j] = A[j , i] = 1 if and only if there is an edge between
vi and vj
A is symmetric for (simple undirected) graphs
Not symmetric for digraphs
|V | × |V |2 enough to store adjacency information
Entries of A may also indicate weights, absence of edge
may be indicated by∞
Uneconomic for sparse graphs

Adjacency list
A vector L of V linked lists indicate the adjacencies of
each vertex
If vx is adjacent to {v1, v2, . . . , vk}, the linked list for L[vx ]
points to the linked list with entries {v1, v2, . . . , vk}
Uneconomic for dense graphs
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Depth first traversal of a graph

Section outline

2 Depth first traversal of a
graph

Simple DFTr using a stack
DFTr with stack for digraphs
and components
Cycle detection in a graph
Recursive DFTr with

pre/postorder labelling
Digraph edge classification
Properties of previst and
postvisit numbers
Topological sorting
Cycle detection and
topological sorting
Forming circuit equations
using fundamental cycles
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A

BCD

E

F

G

HI
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A

A

BCD

E

F

G

HI

AA
1
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

A

BCD

E

F

G

HI

AA
1

CC
2
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
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F
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F

G
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3
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

F
G

A

BCD

E

F

G

HI

AA
1
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2

FF
3

GG
4
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

F
G

H
I

D

A

BCD

E

F

G

HI

AA
1

CC
2

FF
3

GG
4

HH
5

II
6

DD
7

EE
8,9

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 11 / 69



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

F
G

H
I

A

BCD

E

F

G

HI

AA
1

CC
2

FF
3

GG
4

HH
5

II
6

EE
8,9

DD
7,10
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

F
G

H

A

BCD

E

F

G

HI

AA
1

CC
2

FF
3

GG
4

HH
5

EE
8,9

DD
7,10

II
6,11
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

F
G

H

A

BCD

E

F

G

HI

AA
1

CC
2

FF
3

GG
4

HH
5

EE
8,9

DD
7,10

II
6,11
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

F
G

H
B

A

BCD

E

F

G

HI

AA
1

CC
2

FF
3

GG
4

HH
5

EE
8,9

DD
7,10

II
6,11

BB
12
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

F
G

H
B

A

BCD

E

F

G

HI

AA
1

CC
2

FF
3

GG
4

HH
5

EE
8,9

DD
7,10

II
6,11

BB
12
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

F
G

H
B

A

BCD

E

F

G

HI

AA
1

CC
2

FF
3

GG
4

HH
5

EE
8,9

DD
7,10

II
6,11

BB
12
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

F
G

H
B

A

BCD

E

F

G

HI

AA
1

CC
2

FF
3

GG
4

HH
5

EE
8,9

DD
7,10

II
6,11

BB
12
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

F
G

H

A

BCD

E

F

G

HI

AA
1

CC
2

FF
3

GG
4

HH
5

EE
8,9

DD
7,10

II
6,11

BB
12,13
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

F
G

A

BCD

E

F

G

HI

AA
1

CC
2

FF
3

GG
4

EE
8,9

DD
7,10

II
6,11

BB
12,13

HH
5,14
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

F

A

BCD

E

F

G

HI

AA
1

CC
2

FF
3

EE
8,9

DD
7,10

II
6,11

BB
12,13

HH
5,14

GG
4,15
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A
C

A

BCD

E

F

G

HI

AA
1

CC
2

EE
8,9

DD
7,10

II
6,11

BB
12,13

HH
5,14

GG
4,15

FF
3,16
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A

A

BCD

E

F

G

HI

AA
1

EE
8,9

DD
7,10

II
6,11

BB
12,13

HH
5,14

GG
4,15

FF
3,16

CC
2,17
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Depth first traversal of a graph Simple DFTr using a stack

Simple DFTr using a stack

Starting at v of G(V ,E); using stack (or list) S

1 all nodes of G are initially marked unvisited

2 initialise d ← 1; initialise tree T to empty
3 mark v as in-stack; push v into S
4 pre-number v as d ; incr d
5 while (S is not empty) do
6 v ←top(S)
7 if v has an unvisited neighbour u
8 mark u as in-stack
9 push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S
14 post-number v as d ; incr d
15 done

S
:

A

BCD

E

F

G

HI

EE
8,9

DD
7,10

II
6,11

BB
12,13

HH
5,14

GG
4,15

FF
3,16

CC
2,17

AA
1,18
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Depth first traversal of a graph DFTr with stack for digraphs and components

DFTr with stack for digraphs and components
Starting at v of G(V ,E) (any node for a (simple undirected) graph); stack S (or a list S) is used

1 all nodes of G are initially marked unvisited

2 initialise c ← 0, d ← 1; initialise tree T to empty
3 repeat
4 mark v as in-stack; push v into S
5 pre-number v as d ; incr d
6 while (S is not empty) do
7 v ←top(S)
8 if v has an unvisited neighbour u
9 mark u as in-stack; push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S; post-number v as d ; incr d
14 done
15 incr(c); choose v as any unvisited vertex, if any
16 until (no vertex is unvisited)

T is the depth first
spanning tree of G, if
G is simple and
undirected

If G is a digraph, T
may have multiple
roots

For simple undirected
graphs, the numbering
of nodes so obtained
is the depth first
pre/post numbering

The repeat-until loop
is needed for digraphs
and (simple
undirected) graphs
with multiple
components whose
count is c, on
termination
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Depth first traversal of a graph DFTr with stack for digraphs and components

DFTr with stack for digraphs and components
Starting at v of G(V ,E) (any node for a (simple undirected) graph); stack S (or a list S) is used

1 all nodes of G are initially marked unvisited

2 initialise c ← 0, d ← 1; initialise tree T to empty
3 repeat
4 mark v as in-stack; push v into S
5 pre-number v as d ; incr d
6 while (S is not empty) do
7 v ←top(S)
8 if v has an unvisited neighbour u
9 mark u as in-stack; push u into S

10 add edge 〈v , u〉 to T
11 pre-number u as d ; incr d
12 else
13 mark v as visited; pop S; post-number v as d ; incr d
14 done
15 incr(c); choose v as any unvisited vertex, if any
16 until (no vertex is unvisited)

T is the depth first
spanning tree of G, if
G is simple and
undirected

If G is a digraph, T
may have multiple
roots

For simple undirected
graphs, the numbering
of nodes so obtained
is the depth first
pre/post numbering

The repeat-until loop
is needed for digraphs
and (simple
undirected) graphs
with multiple
components whose
count is c, on
termination
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Depth first traversal of a graph Cycle detection in a graph

Cycle detection in a graph

The depth first traversal of a graph can be used to identify
presence of possible cycles in graph
Augment line 13/13 of the algorithm, with:

if v has an in-stack neighbour u, mark edge 〈v ,u〉 as a back
edge

Every fundamental cycle in a graph is associated with a back edge
Any spanning tree of a (connected undirected) graph of |V |
vertices will have |V | − 1 edges
A (connected undirected) graph with |V | vertices and |E | edges
will have |E | − |V |+ 1 fundamental cycles
A set of fundamental cycles in a (connected undirected) graph is
detected by way of depth first traversal in O(|E |) time
Fundamental cycles may be composed to obtain other cycles
which are not directly identified by the traversal
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Depth first traversal of a graph Recursive DFTr with pre/postorder labelling

Recursive DFTr with pre/postorder labelling
Recursive DF traversal

DFTrav(v )
1 mark v
2 preVisit(v )
3 foreach vertex w adjacent to v
4 if w is unmarked
5 introduce edge 〈v ,w〉 in T
6 DFTrav(w)
7 postVisit(w)

DF traversal for a directed graph
DFTravAll(v )

1 initCount
2 forall vertices v
3 unmark v
4 forall vertices v
5 if v is unmarked
6 DFTrav(v )

Labelling functions

preVisit(v )
1 v .pre← count
2 count ← count + 1

postVisit(v )
1 v .post← count
2 count ← count + 1

initCount
1 count ← 0

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 14 / 69
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Depth first traversal of a graph Digraph edge classification

Digraph edge classification

Example (DF traversal of a digraph with pre and post numbering)

D E

B A F

C G

Start DF traversal at
vertex A
Continue traversal
from vertex D
Previst and postvisit
labels shown
Traversal is not
unique

D

11/14

E

12/13

B
2/5

A
1/10

F
6/9

C
3/4

G
7/8

→

× × ×

×

Tree edges those edges present in the DF traversal forest
Forward edges 〈u, v〉 where v is a proper descendent of u in the tree
Back edges 〈u, v〉 where v is an ancestor of u in the tree
Cross edges 〈u, v〉 where u, v are neither ancestors nor descendents

of one another
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Depth first traversal of a graph Digraph edge classification

Digraph edge classification

Example (DF traversal of a digraph with pre and post numbering)

D E

B A F

C G

Start DF traversal at
vertex A
Continue traversal
from vertex D
Previst and postvisit
labels shown
Traversal is not
unique

D

11/14

E

12/13

B
2/5

A
1/10

F
6/9

C
3/4

G
7/8

→

× × ×

×

Tree edges those edges present in the DF traversal forest

Forward edges 〈u, v〉 where v is a proper descendent of u in the tree
Back edges 〈u, v〉 where v is an ancestor of u in the tree
Cross edges 〈u, v〉 where u, v are neither ancestors nor descendents

of one another
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Depth first traversal of a graph Digraph edge classification

Digraph edge classification

Example (DF traversal of a digraph with pre and post numbering)

D E

B A F

C G

Start DF traversal at
vertex A
Continue traversal
from vertex D
Previst and postvisit
labels shown
Traversal is not
unique

D

11/14

E

12/13

B
2/5

A
1/10

F
6/9

C
3/4

G
7/8

→

× × ×

×

Tree edges those edges present in the DF traversal forest
Forward edges 〈u, v〉 where v is a proper descendent of u in the tree

Back edges 〈u, v〉 where v is an ancestor of u in the tree
Cross edges 〈u, v〉 where u, v are neither ancestors nor descendents

of one another
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Depth first traversal of a graph Digraph edge classification

Digraph edge classification

Example (DF traversal of a digraph with pre and post numbering)

D E

B A F

C G

Start DF traversal at
vertex A
Continue traversal
from vertex D
Previst and postvisit
labels shown
Traversal is not
unique

D

11/14

E

12/13

B
2/5

A
1/10

F
6/9

C
3/4

G
7/8

→

× × ×

×

Tree edges those edges present in the DF traversal forest
Forward edges 〈u, v〉 where v is a proper descendent of u in the tree
Back edges 〈u, v〉 where v is an ancestor of u in the tree

Cross edges 〈u, v〉 where u, v are neither ancestors nor descendents
of one another
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Depth first traversal of a graph Digraph edge classification

Digraph edge classification

Example (DF traversal of a digraph with pre and post numbering)

D E

B A F

C G

Start DF traversal at
vertex A
Continue traversal
from vertex D
Previst and postvisit
labels shown
Traversal is not
unique

D

11/14

E

12/13

B
2/5

A
1/10

F
6/9

C
3/4

G
7/8

→

× × ×

×

Tree edges those edges present in the DF traversal forest
Forward edges 〈u, v〉 where v is a proper descendent of u in the tree
Back edges 〈u, v〉 where v is an ancestor of u in the tree
Cross edges 〈u, v〉 where u, v are neither ancestors nor descendents

of one another
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Depth first traversal of a graph Properties of previst and postvisit numbers

Properties of pre/postvisit numbers
Theorem (Parenthesis structure of previsit and postvisit numbers)

Let G(V ,E) be a digraph, F any of its DF traversal forest and u, v ∈ V with
previsit and postvisit numbers as u.r ,u.s, v .r , v .s respectively:

u is a descendent of v in F if and only if [u.r ,u.s] is a subinterval of
[v .r , v .s], so that v .r < u.r < u.s < v .s

Example (DF traversal of a digraph with pre and post numbering)

D E

B A F

C G

Start DF traversal at
vertex A

Continue traversal
from vertex D

Previst and postvisit
labels shown

Traversal is not
unique

D

11/14

E

12/13

B
2/5

A
1/10

F
6/9

C
3/4

G
7/8

→

× × ×

×
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Depth first traversal of a graph Properties of previst and postvisit numbers

Properties of pre/postvisit numbers (contd.)
Theorem (Parenthesis structure of previsit and postvisit numbers)

u is unrelated to v in F if and only if [u.r ,u.s] and [v .r , v .s] are disjoint
intervals, so that u.s < v .r or v .s < u.r

u.r < v .r < u.s < v .s and v .r < u.r < v .s < u.s are not possible

Example (DF traversal of a digraph with pre and post numbering)

D E

B A F

C G

Start DF traversal at
vertex A

Continue traversal
from vertex D

Previst and postvisit
labels shown

Traversal is not
unique

D

11/14

E

12/13

B
2/5

A
1/10

F
6/9

C
3/4

G
7/8

→

× × ×

×

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 17 / 69
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Depth first traversal of a graph Properties of previst and postvisit numbers

Properties of pre/postvisit numbers (contd.)
Theorem (Parenthesis structure of previsit and postvisit numbers)

Tree edges, forward edges, and cross edges all go from a vertex of
higher postvisit number to a vertex of lower postvisit number

Back edges go from a vertex of lower postvisit number to a vertex
of higher postvisit number

Example (DF traversal of a digraph with pre and post numbering)

D E

B A F

C G

Start DF traversal at
vertex A

Continue traversal
from vertex D

Previst and postvisit
labels shown

Traversal is not
unique

D

11/14

E

12/13

B
2/5

A
1/10

F
6/9

C
3/4

G
7/8

→

× × ×

×

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 18 / 69
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Depth first traversal of a graph Topological sorting

Topological sorting

Definition (Topological sorting)
A topological sort or topological ordering of a directed graph is a linear
ordering of its vertices such that for every directed edge 〈u, v〉 from
vertex u to vertex v , u comes before v in the ordering.

Example (A graph and its topological sort)

D E

B A F

C G

D, E, A, B, F, G, C
D, A, B, E, F, G, C

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 19 / 69
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Depth first traversal of a graph Cycle detection and topological sorting

Cycle detection and topological sorting
Theorem (Parenthesis structure of previsit and postvisit numbers)

A digraph is acyclic if and only if it is free of back edges

Vertices ordered by their postvisit numbers form a reverse
topological sort

Example (DF traversal of a digraph with pre and post numbering)

D E

B A F

C G

Start DF traversal at
vertex A

Continue traversal
from vertex D

Previst and postvisit
labels shown

Traversal is not
unique

D

11/14

E

12/13

B
2/5

A
1/10

F
6/9

C
3/4

G
7/8

→

× × ×

×

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 20 / 69
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Depth first traversal of a graph Forming circuit equations using fundamental cycles

Forming circuit equations using fundamental
cycles

Equations from circuit

1 Develop a suitable data
structure to represent such a
circuit having only resistances
and voltage sources.

2 How can you identify the
fundamental cycles to form the
circuit equations using branch
currents?

3 Illustrate the working of your
scheme on this circuit.

1 kΩ 2 kΩ 4 kΩ

5 kΩ5 V 2 V 3 kΩ

10 kΩ

8 kΩ

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 21 / 69
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Depth first traversal of a graph Forming circuit equations using fundamental cycles

Forming circuit equations using fundamental
cycles (contd.)

Equations from circuit

1 Develop a suitable data
structure to represent such a
circuit having only resistances
and voltage sources.

2 How can you identify the
fundamental cycles to form the
circuit equations using branch
currents?

3 Illustrate the working of your
scheme on this circuit.

1 kΩ 2 kΩ 4 kΩ

5 kΩ5 V 2 V 3 kΩ

8 kΩ

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 22 / 69



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Breadth first traversal

Section outline

3 Breadth first traversal
Breadth first traversal of a

graph
Breadth first traversal with
numbering
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Breadth first traversal Breadth first traversal of a graph

Breadth first traversal of a graph
Start at any v ∈ G(V ,E)

1 mark all v ∈ V as unvisited
2 initialise tree T to empty
3 mark v as visited
4 enqueue v into S
5 while (S is not empty) do
6 u ←dequeue(S)
7 foreach unvisited v st
8 〈u, v〉 ∈ E
9 mark v as visited

10 enqueue v into S
11 add edge 〈u, v〉 to T
12 done

A

B

C

D

E

F

G

H

I

S:

Depth of a node in the BFS tree is
independent of the order in which
children of nodes are enqueued

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 24 / 69
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Breadth first traversal Breadth first traversal of a graph

Breadth first traversal of a graph
Start at any v ∈ G(V ,E)

1 mark all v ∈ V as unvisited
2 initialise tree T to empty
3 mark v as visited
4 enqueue v into S
5 while (S is not empty) do
6 u ←dequeue(S)
7 foreach unvisited v st
8 〈u, v〉 ∈ E
9 mark v as visited

10 enqueue v into S
11 add edge 〈u, v〉 to T
12 done

A

B

C

D

E

F

G

H

I

AA

S: A

Depth of a node in the BFS tree is
independent of the order in which
children of nodes are enqueued

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 24 / 69
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Breadth first traversal Breadth first traversal of a graph

Breadth first traversal of a graph
Start at any v ∈ G(V ,E)

1 mark all v ∈ V as unvisited
2 initialise tree T to empty
3 mark v as visited
4 enqueue v into S
5 while (S is not empty) do
6 u ←dequeue(S)
7 foreach unvisited v st
8 〈u, v〉 ∈ E
9 mark v as visited

10 enqueue v into S
11 add edge 〈u, v〉 to T
12 done

A

B

C

D

E

F

G

H

I

AA

BB

CC

DD

S: B C D

Depth of a node in the BFS tree is
independent of the order in which
children of nodes are enqueued

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 24 / 69
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Breadth first traversal Breadth first traversal of a graph

Breadth first traversal of a graph
Start at any v ∈ G(V ,E)

1 mark all v ∈ V as unvisited
2 initialise tree T to empty
3 mark v as visited
4 enqueue v into S
5 while (S is not empty) do
6 u ←dequeue(S)
7 foreach unvisited v st
8 〈u, v〉 ∈ E
9 mark v as visited

10 enqueue v into S
11 add edge 〈u, v〉 to T
12 done

A

B

C

D

E

F

G

H

I

AA

BB

CC

DD

FF

HH

S: C D F H

Depth of a node in the BFS tree is
independent of the order in which
children of nodes are enqueued

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 24 / 69
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Breadth first traversal Breadth first traversal of a graph

Breadth first traversal of a graph
Start at any v ∈ G(V ,E)

1 mark all v ∈ V as unvisited
2 initialise tree T to empty
3 mark v as visited
4 enqueue v into S
5 while (S is not empty) do
6 u ←dequeue(S)
7 foreach unvisited v st
8 〈u, v〉 ∈ E
9 mark v as visited

10 enqueue v into S
11 add edge 〈u, v〉 to T
12 done

A

B

C

D

E

F

G

H

I

AA

BB

CC

DD

FF

HH

EE

S: D F H E

Depth of a node in the BFS tree is
independent of the order in which
children of nodes are enqueued

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 24 / 69
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Breadth first traversal Breadth first traversal of a graph

Breadth first traversal of a graph
Start at any v ∈ G(V ,E)

1 mark all v ∈ V as unvisited
2 initialise tree T to empty
3 mark v as visited
4 enqueue v into S
5 while (S is not empty) do
6 u ←dequeue(S)
7 foreach unvisited v st
8 〈u, v〉 ∈ E
9 mark v as visited

10 enqueue v into S
11 add edge 〈u, v〉 to T
12 done

A

B

C

D

E

F

G

H

I

AA

BB

CC

DD

FF

HH

EE

II

S: F H E I

Depth of a node in the BFS tree is
independent of the order in which
children of nodes are enqueued

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 24 / 69
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Breadth first traversal Breadth first traversal of a graph

Breadth first traversal of a graph
Start at any v ∈ G(V ,E)

1 mark all v ∈ V as unvisited
2 initialise tree T to empty
3 mark v as visited
4 enqueue v into S
5 while (S is not empty) do
6 u ←dequeue(S)
7 foreach unvisited v st
8 〈u, v〉 ∈ E
9 mark v as visited

10 enqueue v into S
11 add edge 〈u, v〉 to T
12 done

A

B

C

D

E

F

G

H

I

AA

BB

CC

DD

FF

HH

EE

II

GG

S: H E I G

Depth of a node in the BFS tree is
independent of the order in which
children of nodes are enqueued

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 24 / 69
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Breadth first traversal Breadth first traversal of a graph

Breadth first traversal of a graph
Start at any v ∈ G(V ,E)

1 mark all v ∈ V as unvisited
2 initialise tree T to empty
3 mark v as visited
4 enqueue v into S
5 while (S is not empty) do
6 u ←dequeue(S)
7 foreach unvisited v st
8 〈u, v〉 ∈ E
9 mark v as visited

10 enqueue v into S
11 add edge 〈u, v〉 to T
12 done

A

B

C

D

E

F

G

H

I

AA

BB

CC

DD

FF

HH

EE

II

GG

S: E I G

Depth of a node in the BFS tree is
independent of the order in which
children of nodes are enqueued

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 24 / 69
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Breadth first traversal Breadth first traversal of a graph

Breadth first traversal of a graph
Start at any v ∈ G(V ,E)

1 mark all v ∈ V as unvisited
2 initialise tree T to empty
3 mark v as visited
4 enqueue v into S
5 while (S is not empty) do
6 u ←dequeue(S)
7 foreach unvisited v st
8 〈u, v〉 ∈ E
9 mark v as visited

10 enqueue v into S
11 add edge 〈u, v〉 to T
12 done

A

B

C

D

E

F

G

H

I

AA

BB

CC

DD

FF

HH

EE

II

GG

S: I G

Depth of a node in the BFS tree is
independent of the order in which
children of nodes are enqueued
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Breadth first traversal Breadth first traversal of a graph

Breadth first traversal of a graph
Start at any v ∈ G(V ,E)

1 mark all v ∈ V as unvisited
2 initialise tree T to empty
3 mark v as visited
4 enqueue v into S
5 while (S is not empty) do
6 u ←dequeue(S)
7 foreach unvisited v st
8 〈u, v〉 ∈ E
9 mark v as visited

10 enqueue v into S
11 add edge 〈u, v〉 to T
12 done

A

B

C

D

E

F

G

H

I

AA

BB

CC

DD

FF

HH

EE

II

GG

S: G

Depth of a node in the BFS tree is
independent of the order in which
children of nodes are enqueued
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Breadth first traversal Breadth first traversal of a graph

Breadth first traversal of a graph
Start at any v ∈ G(V ,E)

1 mark all v ∈ V as unvisited
2 initialise tree T to empty
3 mark v as visited
4 enqueue v into S
5 while (S is not empty) do
6 u ←dequeue(S)
7 foreach unvisited v st
8 〈u, v〉 ∈ E
9 mark v as visited

10 enqueue v into S
11 add edge 〈u, v〉 to T
12 done

A

B

C

D

E

F

G

H

I

AA

BB

CC

DD

FF

HH

EE

II

GG

S:

Depth of a node in the BFS tree is
independent of the order in which
children of nodes are enqueued
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Breadth first traversal Breadth first traversal of a graph

Breadth first traversal of a graph
Start at any v ∈ G(V ,E)

1 mark all v ∈ V as unvisited
2 initialise tree T to empty
3 mark v as visited
4 enqueue v into S
5 while (S is not empty) do
6 u ←dequeue(S)
7 foreach unvisited v st
8 〈u, v〉 ∈ E
9 mark v as visited

10 enqueue v into S
11 add edge 〈u, v〉 to T
12 done

A

B

C

D

E

F

G

H

I

AA

BB

CC

DD

FF

HH

EE

II

GG

S:

Depth of a node in the BFS tree is
independent of the order in which
children of nodes are enqueued

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 24 / 69
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Breadth first traversal Breadth first traversal with numbering

Breadth first traversal with numbering
Start at any v ∈ V ; queue S (or a list S) is used

1 mark all nodes of G as unvisited
2 initialise j ← 1, bj ← 1 ; initialise tree T to empty

3 repeat
4 mark v as visited; enqueue v into S // at the end
5 number v as bj ; incr bj

6 while (S is not empty) do
7 u ←dequeue(S) // remove u from front of S
8 foreach unvisited neighbour v of u
9 mark v as visited; enqueue v into S

// insert v at end of S
10 add edge 〈u, v〉 to T
11 number v as bj ; incr bj

12 done
13 incr(j); bj ← 1 ; choose unvisited vertex v , if any

14 until (no vertex is unvisited)

T is the breadth first
spanning tree of G, if G
is simple and undirected
If G is a digraph, T may
have multiple roots
For simple undirected
graphs, the numbering of
nodes so obtained is the
breadth first numbering
The repeat-until loop is
needed for graphs with
multiple components
works trivially for single
component undirected
graphs
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Breadth first traversal Breadth first traversal with numbering

Breadth first traversal with numbering
Start at any v ∈ V ; queue S (or a list S) is used

1 mark all nodes of G as unvisited
2 initialise j ← 1, bj ← 1 ; initialise tree T to empty

3 repeat
4 mark v as visited; enqueue v into S // at the end
5 number v as bj ; incr bj

6 while (S is not empty) do
7 u ←dequeue(S) // remove u from front of S
8 foreach unvisited neighbour v of u
9 mark v as visited; enqueue v into S

// insert v at end of S
10 add edge 〈u, v〉 to T
11 number v as bj ; incr bj

12 done
13 incr(j); bj ← 1 ; choose unvisited vertex v , if any

14 until (no vertex is unvisited)

T is the breadth first
spanning tree of G, if G
is simple and undirected
If G is a digraph, T may
have multiple roots
For simple undirected
graphs, the numbering of
nodes so obtained is the
breadth first numbering
The repeat-until loop is
needed for graphs with
multiple components
works trivially for single
component undirected
graphs
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Shortest paths from a given source

Section outline

4 Shortest paths from a given
source

Shortest paths in graphs
Dijkstra’s algorithm

Correctness proof of
Dijkstra’s algorithm
Complexity of Dijkstra’s
algorithm
Shortest distance between
each pair of vertices
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Shortest paths from a given source Shortest paths in graphs

Shortest paths in graphs

A graph may have positive and negative weights associated with
its edges
The length of a walk is the sum of the weights of the edges as
they appear in the walk
Presence of a circuit of negative weight creates a problem for
identifying shortest paths
If all edges of G(V ,E) have the same positive (unit) weight, the
breadth first traversal, starting from some vertex u ∈ V yields the
shortest paths from u to all other vertices
Different algorithm can be devised to find shortest paths with
edges having arbitrary weights, but free of circuits of negative
weight

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 27 / 69
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done

A

B

22

C
9

35

D

12
4

E

65

35

F

36

42

18

G
23

39

H
34

24

25

I
30

21

19
AA

0

Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 28 / 69
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done
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Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done
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Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done
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Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done
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Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 32 / 69



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done
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Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done
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Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done
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Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done
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Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done
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Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done
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Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done

A

B

22

C
9

35

D

12
4

E

65

35

F

36

42

18

G
23

39

H
34

24

25

I
30

21

19
AA

0

BB
22

CC
9

DD
12

FF
51

EE
47

II
42

HH
56

GG
63

Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done
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Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices
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Shortest paths from a given source Dijkstra’s algorithm

Dijkstra’s algorithm (contd.)

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
7 if (x is unvisited)
8 mark x as in-queue

9 enqueue 〈v , x , `+ w(v , x)〉 into QH

10 else // 〈 , x , q〉 is in-queue

11 if (q′[← `+ w(v , x)] < q) 〈,x , q〉 ← 〈v , x , q′〉
12 endfor
13 done
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Invariants:

1 in-queue vertices are on shortest paths along some visited vertices
2 visited vertices are on shortest paths along some visited vertices
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Shortest paths from a given source Correctness proof of Dijkstra’s algorithm

Correctness proof of Dijkstra’s algorithm
Dijkstra’s algorithm satisfies the stated invariants.

Invariants are satisfied after the first node v is picked
Let claim hold for vertices X = {v = x1, x2, . . . , xk} picked up in L4
The next vertex xk+1 picked up in L4 is the lowest cost in-queue
vertex; so invariant-2 is not violated

Let z be any vertex in QH after xk+1 is chosen; let z be at the end
of the edges 〈vz1 , z〉, 〈vz2 , z〉 , . . .,

〈
vzj , z

〉
so that the vertices in

Y =
{

vz1 , vz2 , . . . , vzj

}
⊆ X are all visited vertices; further, as

the edge costs are always non-negative, the cost of any
in-queue vertex is no less than the cost of any visited vertex
The distance of z from v gets updated (relaxed) in L11

∴ Distance of any vertex z in QH is the shortest from v through a
subset of the nodes in X ; so invariant-1 is not violated
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Shortest paths from a given source Correctness proof of Dijkstra’s algorithm

Correctness proof of Dijkstra’s algorithm
Dijkstra’s algorithm satisfies the stated invariants.

Invariants are satisfied after the first node v is picked
Let claim hold for vertices X = {v = x1, x2, . . . , xk} picked up in L4
The next vertex xk+1 picked up in L4 is the lowest cost in-queue
vertex; so invariant-2 is not violated
Let z be any vertex in QH after xk+1 is chosen; let z be at the end
of the edges 〈vz1 , z〉, 〈vz2 , z〉 , . . .,

〈
vzj , z

〉
so that the vertices in

Y =
{

vz1 , vz2 , . . . , vzj

}
⊆ X are all visited vertices; further, as

the edge costs are always non-negative, the cost of any
in-queue vertex is no less than the cost of any visited vertex
The distance of z from v gets updated (relaxed) in L11

∴ Distance of any vertex z in QH is the shortest from v through a
subset of the nodes in X ; so invariant-1 is not violated
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Shortest paths from a given source Correctness proof of Dijkstra’s algorithm

Correctness proof of Dijkstra’s algorithm (contd.)

Termination of the algorithm is evident as a vertex is dequeued
from QH in each iteration and marked visited

Note that such a vertex also gets added to the shortest path tree
as a successor to the vertex along which the shortest path to it
from v was identified

Exercise: Dijkstra’s algorithm with negative edge weights

Check how Dijkstra’s algorithm works when cost of edge 〈B,F 〉 is
-100 instead of 36
In particular, following the steps of the algorithm, check whether
any of the invariants get violated
Next, check whether, the restriction of non-negative edge weights
solves this problem
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Shortest paths from a given source Complexity of Dijkstra’s algorithm

Complexity of Dijkstra’s algorithm

Start at v of G(V ,E); priority queue QH (or a min-heap QH ) is
used; node markings: unvisited, visited, in-queue

1 all nodes of G are initially marked unvisited

2 set tree T to v ; enqueue 〈v , v , 0〉 into QH

3 while (QH is not empty) do

4 〈u, v , `〉 ←dequeue(QH ); mark v as visited
5 if (u 6= v ) add edge 〈u, v〉 to T ; label v with `

6 foreach neighbour x of v which is not visited
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Edge weights assumed
non-negative, except possibly
those having v as the head;

L4, requiring deletion from heap,
iterates |V | times, contributing
|V | lg |V |
L9 or L11 happens O(|E |)
times, contributing |E | lg |V | for
either key insertion or
decreasing key cost at O(lg |V |)
time (with binary heaps)

Overall time complexity is
O((|V |+ |E |) lg |V |) (with
binary heaps)

Fibonacci heaps allow insert key
and decrease key in O(1) time,
reducing the time complexity to
O(|V | lg |V |+ |E |)
T is the shortest path
(spanning) tree

Need to prove: Dijkstra’s algorithm finds minimal cost paths to the vertices in the ascending order
of their minimal distance from the start vertex
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Shortest paths from a given source Shortest distance between each pair of vertices

Shortest distance between each pair of vertices

Dijkstra’s algorithm can be run for each vertex in the graph
Running time will be O(|V |(|V |+ |E |) lg |V |) (with binary heaps),
O(|V |(|V | lg |V |+ |E |)) with Fibonacci heaps
Also, Dijkstra’s algorithm fails with negative edge weights
Another formulation builds the optimal solution through optimal
solution of overlapping sub-problems – dynamic programming
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All shortest paths (Floyd-Warshall)

Section outline

5 All shortest paths
(Floyd-Warshall)

Floyd-Warshall algorithm
Floyd-Warshall example
Distance between each pair
of vertices through another

vertex
General dynamic
programming step for
Floyd-Warshall algorithm
Floyd-Warshall’s algorithm
Widest path problem
Other FW problems
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All shortest paths (Floyd-Warshall) Floyd-Warshall algorithm

Floyd-Warshall algorithm
We are given a weighted digraph, edge weights may be negative

0 1
3

2

3

3
1

4
3

2 5

4 1

2

-2

Initially we know the shortest distance between each pair of
vertices going through 0 other vertices
If there is no edge between two vertices, the initial cost∞
The distance of a vertex from itself is 0
Otherwise, it is the usual directed edge cost between two vertices
These costs are denoted as d0

i,j

At this stage the predecessor of a vertex j in the path π0
i,j from vi to

vj is: if d0
i,j =∞ then π0

i,j = NIL, otherwise π0
i,j = i (for vi )
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All shortest paths (Floyd-Warshall) Floyd-Warshall example

Floyd-Warshall example

0 1
3

2

3

3
1

4
3

2 5

4 1

2

-2

E 0 1 2 3 4 5
0 〈0,0〉 〈3,0〉 〈∞, φ〉 〈∞, φ〉 〈2,0〉 〈∞, φ〉
1 〈3,1〉 〈0,1〉 〈3,1〉 〈∞, φ〉 〈∞, φ〉 〈−2,1〉
2 〈∞, φ〉 〈3,2〉 〈0,2〉 〈1,2〉 〈∞, φ〉 〈∞, φ〉
3 〈∞, φ〉 〈∞, φ〉 〈1,3〉 〈0,3〉 〈3,3〉 〈1,3〉
4 〈2,4〉 〈∞, φ〉 〈∞, φ〉 〈3,4〉 〈0,4〉 〈4,4〉
5 〈∞, φ〉 〈2,5〉 〈∞, φ〉 〈1,5〉 〈4,5〉 〈0,5〉
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All shortest paths (Floyd-Warshall)
Distance between each pair of vertices through another

vertex

Distance between each pair of vertices through
another vertex

Next, find the shortest distance between each pair of vertices
possibly going through vertex v1

If there is no improvement is going through v1, the direct edge (if
present) is used
After this step the resulting cost d1

i,j is that of possibly going
through v1

Thus, d1
i,j = min

(
d0

i,j ,d
0
i,1 + d0

1,j

)

With no improvement, path π1
i,j ← π0

i,j (same as before)

For improvement through v1, in the path π1
i,j , vj will have the same

predecessor that it has in the path π0
1,j

So, in case of improvement through v1, π1
i,j ← π0

1,j
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vertex
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All shortest paths (Floyd-Warshall)
Distance between each pair of vertices through another

vertex

Floyd-Warshall example (contd.)

0 1
3

2

3

3
1

4
3

2 5

4 1

2

-2

0 0 1 2 3 4 5
0 〈0,0〉 〈3,0〉 〈∞, φ〉 〈∞, φ〉 〈2,0〉 〈∞, φ〉
1 〈3,1〉 〈0,1〉 〈3,1〉 〈∞, φ〉 〈5,0〉 〈−2,1〉
2 〈∞, φ〉 〈3,2〉 〈0,2〉 〈1,2〉 〈∞, φ〉 〈∞, φ〉
3 〈∞, φ〉 〈∞, φ〉 〈1,3〉 〈0,3〉 〈3,3〉 〈1,3〉
4 〈2,4〉 〈5,0〉 〈∞, φ〉 〈3,4〉 〈0,4〉 〈4,4〉
5 〈∞, φ〉 〈2,5〉 〈∞, φ〉 〈1,5〉 〈4,5〉 〈0,5〉
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All shortest paths (Floyd-Warshall)
General dynamic programming step for Floyd-Warshall

algorithm

General dynamic programming step for
Floyd-Warshall algorithm

In step k , we can find the shortest distance between each pair of
vertices possibly going through vk , using the paths possibly going
through vertices in {v1, . . . , vk−1}

For cost reduction going through vk , dk
i,j ← dk−1

i,k + dk−1
k ,j ,

otherwise, dk
i,j ← dk−1

i,j

That way, solutions of possibilities (sub-problems) of going through
vertices in {v1, . . . , vk−1} is used to compute the benefit of going
through vk – this is the essence of dynamic programming

Thus, new cost is min
(

dk−1
i,j ,dk−1

i,k + dk−1
k ,j

)
For improvement through vk , πk

i,j ← πk−1
k ,j , otherwise πk

i,j ← πk−1
i,j
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algorithm
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General dynamic programming step for
Floyd-Warshall algorithm
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All shortest paths (Floyd-Warshall)
General dynamic programming step for Floyd-Warshall

algorithm

Floyd-Warshall example (contd.)

0 1
3

2

3

3
1

4
3

2 5

4 1

2

-2

1 0 1 2 3 4 5
0 〈0,0〉 〈3,0〉 〈6,1〉 〈∞, φ〉 〈2,0〉 〈1,1〉
1 〈3,1〉 〈0,1〉 〈3,1〉 〈∞, φ〉 〈5,0〉 〈−2,1〉
2 〈6,1〉 〈3,2〉 〈0,2〉 〈1,2〉 〈8,0〉 〈1,1〉
3 〈∞, φ〉 〈∞, φ〉 〈1,3〉 〈0,3〉 〈3,3〉 〈1,3〉
4 〈2,4〉 〈5,0〉 〈8,1〉 〈3,4〉 〈0,4〉 〈3,1〉
5 〈5,1〉 〈2,5〉 〈5,1〉 〈1,5〉 〈4,5〉 〈0,5〉
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All shortest paths (Floyd-Warshall)
General dynamic programming step for Floyd-Warshall

algorithm

Floyd-Warshall example (contd.)

0 1
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4 1

2

-2

2 0 1 2 3 4 5
0 〈0,0〉 〈3,0〉 〈6,1〉 〈7,2〉 〈2,0〉 〈1,1〉
1 〈3,1〉 〈0,1〉 〈3,1〉 〈4,2〉 〈5,0〉 〈−2,1〉
2 〈6,1〉 〈3,2〉 〈0,2〉 〈1,2〉 〈8,0〉 〈1,1〉
3 〈7,1〉 〈4,2〉 〈1,3〉 〈0,3〉 〈3,3〉 〈1,3〉
4 〈2,4〉 〈5,0〉 〈8,1〉 〈3,4〉 〈0,4〉 〈3,1〉
5 〈5,1〉 〈2,5〉 〈5,1〉 〈1,5〉 〈4,5〉 〈0,5〉
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All shortest paths (Floyd-Warshall)
General dynamic programming step for Floyd-Warshall

algorithm

Floyd-Warshall example (contd.)

0 1
3

2

3

3
1
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3

2 5

4 1

2

-2

3 0 1 2 3 4 5
0 〈0,0〉 〈3,0〉 〈6,1〉 〈7,2〉 〈2,0〉 〈1,1〉
1 〈3,1〉 〈0,1〉 〈3,1〉 〈4,2〉 〈5,0〉 〈−2,1〉
2 〈6,1〉 〈3,2〉 〈0,2〉 〈1,2〉 〈4,3〉 〈1,1〉
3 〈7,1〉 〈4,2〉 〈1,3〉 〈0,3〉 〈3,3〉 〈1,3〉
4 〈2,4〉 〈5,0〉 〈4,3〉 〈3,4〉 〈0,4〉 〈3,1〉
5 〈5,1〉 〈2,5〉 〈2,3〉 〈1,5〉 〈4,5〉 〈0,5〉
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All shortest paths (Floyd-Warshall)
General dynamic programming step for Floyd-Warshall

algorithm

Floyd-Warshall example (contd.)

0 1
3

2

3

3
1

4
3

2 5

4 1

2

-2

4 0 1 2 3 4 5
0 〈0,0〉 〈3,0〉 〈6,1〉 〈5,4〉 〈2,0〉 〈1,1〉
1 〈3,1〉 〈0,1〉 〈3,1〉 〈4,2〉 〈5,0〉 〈−2,1〉
2 〈6,1〉 〈3,2〉 〈0,2〉 〈1,2〉 〈4,3〉 〈1,1〉
3 〈5,4〉 〈4,2〉 〈1,3〉 〈0,3〉 〈3,3〉 〈1,3〉
4 〈2,4〉 〈5,0〉 〈4,3〉 〈3,4〉 〈0,4〉 〈3,1〉
5 〈5,1〉 〈2,5〉 〈2,3〉 〈1,5〉 〈4,5〉 〈0,5〉
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All shortest paths (Floyd-Warshall)
General dynamic programming step for Floyd-Warshall

algorithm

Floyd-Warshall example (contd.)

0 1
3

2

3

3
1

4
3

2 5

4 1

2

-2

5 0 1 2 3 4 5
0 〈0,0〉 〈3,0〉 〈3,3〉 〈2,5〉 〈2,0〉 〈1,1〉
1 〈3,1〉 〈0,1〉 〈0,3〉 〈−1,5〉 〈2,5〉 〈−2,1〉
2 〈6,1〉 〈3,2〉 〈0,2〉 〈1,2〉 〈4,3〉 〈1,1〉
3 〈5,4〉 〈3,5〉 〈1,3〉 〈0,3〉 〈3,3〉 〈1,3〉
4 〈2,4〉 〈5,0〉 〈4,3〉 〈3,4〉 〈0,4〉 〈3,1〉
5 〈5,1〉 〈2,5〉 〈2,3〉 〈1,5〉 〈4,5〉 〈0,5〉
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All shortest paths (Floyd-Warshall)
General dynamic programming step for Floyd-Warshall

algorithm

Faulty Floyd-Warshall example with -ve cost cycle

0 1
3

2

3

3
1

4
3

2 5

4 1

1

-2

0 0 1 2 3 4 5
0 〈0,0〉 〈3,0〉 〈∞, φ〉 〈∞, φ〉 〈2,0〉 〈∞, φ〉
1 〈3,1〉 〈0,1〉 〈3,1〉 〈∞, φ〉 〈∞, φ〉 〈−2,1〉
2 〈∞, φ〉 〈3,2〉 〈0,2〉 〈1,2〉 〈∞, φ〉 〈∞, φ〉
3 〈∞, φ〉 〈∞, φ〉 〈1,3〉 〈0,3〉 〈3,3〉 〈1,3〉
4 〈2,4〉 〈∞, φ〉 〈∞, φ〉 〈3,4〉 〈0,4〉 〈4,4〉
5 〈∞, φ〉 〈1,5〉 〈∞, φ〉 〈1,5〉 〈4,5〉 〈0,5〉
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All shortest paths (Floyd-Warshall)
General dynamic programming step for Floyd-Warshall

algorithm

Faulty Floyd-Warshall example (contd.)

0 1
3

2

3

3
1

4
3

2 5

4 1

1

-2

6 0 1 2 3 4 5
0 〈0,0〉 〈2,5〉 〈3,3〉 〈2,5〉 〈2,0〉 〈0,1〉
1 〈2,1〉 〈−1,5〉 〈0,3〉 〈−1,5〉 〈2,5〉 〈−3,1〉
2 〈5,1〉 〈2,5〉 〈0,2〉 〈1,2〉 〈4,3〉 〈0,1〉
3 〈5,4〉 〈2,5〉 〈1,3〉 〈0,3〉 〈3,3〉 〈0,1〉
4 〈2,4〉 〈4,5〉 〈4,3〉 〈3,4〉 〈0,4〉 〈2,1〉
5 〈3,1〉 〈0,5〉 〈1,3〉 〈0,5〉 〈3,5〉 〈−2,1〉

Note the presence of negative cost entries in the diagonal elements
CM and PB (IIT Kharagpur) Algorithms February 2, 2023 58 / 69



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

All shortest paths (Floyd-Warshall) Floyd-Warshall’s algorithm

Floyd-Warshall’s algorithm

1 d0
i,j = Di,j if vj is adjacent to vi , otherwise∞

2 π0
i,j = i if vj is adjacent to vi , otherwise NIL

3 for k = 1 to n do
4 for i = 1 to n do
5 for j = 1 to n do
6 if

(
d
(
← dk−1

i,k + dk−1
k ,j

)
< dk−1

i,j

)
7 dk

i,j ← d ; πk
i,j ← πk−1

k ,j

8 else
9 dk

i,j ← dk−1
i,j ; πk

i,j ← πk−1
i,j

10 endfor
11 endfor
12 endfor

Time complexity:
Θ(n3)

Space complexity:
Θ(n2)

Works with negative
edge weights
dk

i,j < 0 in the
presence of
negative weight
cycles
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Floyd-Warshall’s algorithm

1 d0
i,j = Di,j if vj is adjacent to vi , otherwise∞

2 π0
i,j = i if vj is adjacent to vi , otherwise NIL

3 for k = 1 to n do
4 for i = 1 to n do
5 for j = 1 to n do
6 if

(
d
(
← dk−1

i,k + dk−1
k ,j

)
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i,j

)
7 dk

i,j ← d ; πk
i,j ← πk−1

k ,j

8 else
9 dk

i,j ← dk−1
i,j ; πk

i,j ← πk−1
i,j

10 endfor
11 endfor
12 endfor

Time complexity:
Θ(n3)

Space complexity:
Θ(n2)

Works with negative
edge weights
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i,j < 0 in the
presence of
negative weight
cycles

CM and PB (IIT Kharagpur) Algorithms February 2, 2023 59 / 69



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

All shortest paths (Floyd-Warshall) Widest path problem

Widest path problem

Definition (All widest
paths)

Finding a path
between all pairs of
vertices in a weighted
graph to maximise the
weight of the minimum
weight edge in the
path

Also known as the
bottleneck shortest
path problem or the
maximum capacity
path problem

1 d0
i,j = Di,j if 〈vi , vj〉 ∈ E , otherwise 0

2 π0
i,j = i if 〈vi , vj〉 ∈ E , otherwise NIL

3 for k = 1 to n do

4 for i = 1 to n do

5 for j = 1 to n do

6 if
(

d
(
← min

(
dk−1

i,k ,dk−1
k,j

))
> dk−1

i,j

)
7 dk

i,j ← d ; πk
i,j ← πk−1

k,j

8 else

9 dk
i,j ← dk−1

i,j ; πk
i,j ← πk−1

i,j

10 endfor

11 endfor

12 endfor
CM and PB (IIT Kharagpur) Algorithms February 2, 2023 60 / 69



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

All shortest paths (Floyd-Warshall) Other FW problems

Other FW problems

Definition (All narrowest paths)
Finding a path between all pairs of vertices in a weighted graph to
minimise the weight of the maximum weight edge in the path

Definition (All safest paths)
Given a graph with direct survival probabilities between vertices, find
the least dangerous path between pairs of vertices

Definition (All reachable paths)
Given a 0/1 weighted graph for direct connectivity between vertices,
find the reachable pairs of vertices
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Minimum cost spanning tree

Section outline

6 Minimum cost spanning tree
Spanning tree variety
Kruskal’s algorithm
Analysis of Kruskal’s
algorithm

Optimality of Kruskal’s
algorithm
Prim’s algorithm
Analysis of Prim’s algorithm
Optimality of Prim’s
algorithm
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Minimum cost spanning tree Spanning tree variety

Spanning tree variety

Some of the spanning trees seen so far:
Spanning tree from a depth first traversal
Spanning tree from a breadth first traversal
Shortest path spanning tree from Dijkstra’s single source shortest
paths algorithm

We now seek to find a spanning tree that minimises the sum total
of the edge costs – called the minimum cost spanning tree or just
minimum spanning tree (MST)
Kruskal’s, Prim’s, Boruvka’s and hybrid Boruvka-Prim algorithms
for building MSTs of connected undirect graphs are considered
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Minimum cost spanning tree Kruskal’s algorithm

Kruskal’s algorithm

1 create a min heap H of the edges

2 initialise T ← φ; edge count c ← 0

3 while (H 6= φ ∧ c < |V | − 1)

do

4 extract min cost edge e ∈ H

5 if (e does not cause

a cycle in T )

6 add e to T ; c ← c + 1

7 done

A

B

22

C
9

35

D

12
4

E

65

35

F

36

42

18

G
23

39

H
34

24

25

I
30

21

19
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Minimum cost spanning tree Kruskal’s algorithm

Kruskal’s algorithm

1 create a min heap H of the edges

2 initialise T ← φ; edge count c ← 0

3 while (H 6= φ ∧ c < |V | − 1)

do

4 extract min cost edge e ∈ H

5 if (e does not cause

a cycle in T )

6 add e to T ; c ← c + 1

7 done
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Minimum cost spanning tree Kruskal’s algorithm

Kruskal’s algorithm

1 create a min heap H of the edges

2 initialise T ← φ; edge count c ← 0

3 while (H 6= φ ∧ c < |V | − 1)

do

4 extract min cost edge e ∈ H

5 if (e does not cause

a cycle in T )

6 add e to T ; c ← c + 1
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Kruskal’s algorithm

1 create a min heap H of the edges

2 initialise T ← φ; edge count c ← 0

3 while (H 6= φ ∧ c < |V | − 1)
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Kruskal’s algorithm
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Kruskal’s algorithm

1 create a min heap H of the edges

2 initialise T ← φ; edge count c ← 0
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Kruskal’s algorithm

1 create a min heap H of the edges

2 initialise T ← φ; edge count c ← 0
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Minimum cost spanning tree Kruskal’s algorithm

Kruskal’s algorithm

1 create a min heap H of the edges

2 initialise T ← φ; edge count c ← 0

3 while (H 6= φ ∧ c < |V | − 1)
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Minimum cost spanning tree Analysis of Kruskal’s algorithm

Analysis of Kruskal’s algorithm

1 create a min heap H of the
edges

2 initialise T ← φ; edge count
c ← 0

3 while (H 6= φ ∧ c < |V | − 1)

do

4 extract min cost edge e ∈ H

5 if (e does not cause

a cycle in T )

6 add e to T ; c ← c + 1

7 done

Heap creation time is O(|E |) in L1

All edges may be removed from H in L4

Total time to execute L4 is O(|E | lg |E |)
(∈ O(|E | lg |V |) , as |E | ∈ O(|V |2))

Cycle creation may be checked (at L5)
by starting a DF traversal at one vertex
of the edge e and monitoring whether
the other end of e is reached

Each check will take O(|V | − 1) time

This may have to be done for each
edge leading to an aggregate cost of
O(|E |(|V | − 1)) time

Using DSUF, cycle checking is done in
O(|V | lg∗ |V |) ≈ O(|V |) time
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Minimum cost spanning tree Analysis of Kruskal’s algorithm

Analysis of Kruskal’s algorithm

1 create a min heap H of the
edges

2 initialise T ← φ; edge count
c ← 0

3 while (H 6= φ ∧ c < |V | − 1)

do

4 extract min cost edge e ∈ H

5 if (e does not cause

a cycle in T )

6 add e to T ; c ← c + 1

7 done

Heap creation time is O(|E |) in L1

All edges may be removed from H in L4

Total time to execute L4 is O(|E | lg |E |)
(∈ O(|E | lg |V |) , as |E | ∈ O(|V |2))

Cycle creation may be checked (at L5)
by starting a DF traversal at one vertex
of the edge e and monitoring whether
the other end of e is reached

Each check will take O(|V | − 1) time

This may have to be done for each
edge leading to an aggregate cost of
O(|E |(|V | − 1)) time

Using DSUF, cycle checking is done in
O(|V | lg∗ |V |) ≈ O(|V |) time
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Minimum cost spanning tree Optimality of Kruskal’s algorithm

Optimality of Kruskal’s algorithm
Let T be MST of G(V ,E) found by KMST, and assume (wrongly) that there
exists another minimum spanning tree S, such that W (S) < W (T )

1 Let ek be the least cost edge in T but not in S; {e1, . . . ,ek−1} ⊂ T ,S
2 Consider adding edge ek to S

This creates a cycle C in S, containing ek
Cycle C contains an edge e not in T

, otherwise T has cycle C
3 If we drop e and add ek in S we get a spanning tree S′ where

cost of ek <= cost of e, for otherwise, e would have been chosen in
preference to e in T by KMST without getting a cycle
S′ is now one edge closer to T than S

4 Now W (S′) <= W (S); above steps can be reiterated until S′ = T to
terminate with W (T ) = W (S′) <= W (S)

5 This contradicts our initial assumption, that there can be another MST S
with W (S) < W (T )

6 So, KMST finds an MST
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Minimum cost spanning tree Prim’s algorithm

Prim’s algorithm

1 initialise T ← v , v ∈ V ; edge count
ne ← 0, build H for all
x ∈ V , x 6= v ,C(x) =∞

2 while (ne < |V | − 1)

3 ∀x | 〈v , x〉 ∈ E , v ∈ T , x 6∈ T ,

possibly reduce C(x) in H

to w(〈v , x〉)
4 extract min cost vertex v ∈ H

(≡ 〈x , v〉 ∈ E , x ∈ T , v 6∈ T )

5 add 〈x , v〉 to T ; ne ← ne + 1

6 done
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Prim’s algorithm

1 initialise T ← v , v ∈ V ; edge count
ne ← 0, build H for all
x ∈ V , x 6= v ,C(x) =∞

2 while (ne < |V | − 1)

3 ∀x | 〈v , x〉 ∈ E , v ∈ T , x 6∈ T ,

possibly reduce C(x) in H

to w(〈v , x〉)
4 extract min cost vertex v ∈ H

(≡ 〈x , v〉 ∈ E , x ∈ T , v 6∈ T )

5 add 〈x , v〉 to T ; ne ← ne + 1

6 done
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Minimum cost spanning tree Analysis of Prim’s algorithm

Analysis of Prim’s algorithm

1 initialise T ← v , v ∈ V ; edge
count ne ← 0, build H for all
x ∈ V , x 6= v ,C(x) =∞

2 while (ne < |V | − 1)

3 ∀x | 〈v , x〉 ∈ E , v ∈ T , x 6∈ T ,

possibly reduce C(x) in H

to w(〈v , x〉)

4 extract min cost vertex v ∈ H

(≡ 〈x , v〉 ∈ E , x ∈ T , v 6∈ T )

5 add 〈x , v〉 to T ; ne ← ne + 1

6 done

Testing x 6∈ T in L3 done via
marking vertices added to T

Major contribution is from L3 (put
e into H, by way of decrease key
value) which can take
O(|E | lg |V |) time (binary heap)

L4 also done |V | − 1 times
contributes O(|V | lg |V |) time

Overall time complexity is
O(|V |+ |E |) lg |V | (binary heap)

Using a Fibonacci heap, the time
complexity is O(|E |+ |V | lg |V |)
as decrease key value in a
Fibonacci heap takes O(1) time
(amortised)
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Optimality of Prim’s algorithm

The optimality of Prim’s algorithm is proven by induction with the
induction hypothesis:
There is always an MST having each intermediate spanning tree
created by Prim’s algorithm

1 Let Ti be the intermediate spanning tree after adding edge 〈xi , vi〉
to T ; xi is a vertex in Ti−1

2 A graph can have several spanning trees of the minimum weight;
let Si be an MST tree such that Ti is a subgraph of Si ;

3 S1 definitely exists (base case is satisfied)
4 Let there be spanning trees S1 ⊇ T1, . . . ,Sk ⊇ Tk
5 Let Sk+1 not exist, so let S′k = Sk ∪ {〈xk+1, vk+1〉}, xk+1 ∈ Tk
6 S′k will have a cycle containing 〈u, v〉 6= 〈xk+1, vk+1〉, u ∈ Tk ,

v 6∈ Tk
7 Cost of edge 〈u, v〉 ≥ cost of edge 〈xk+1, vk+1〉, for otherwise

PMST would have selected 〈u, v〉 earlier to 〈xk+1, vk+1〉
8 Thus, W (S′k \ 〈u, v〉) ≤W (Sk ) so S′k ≡ Sk+1, contradicting claim

in proof:L-5; so, PMST finds an MSTCM and PB (IIT Kharagpur) Algorithms February 2, 2023 69 / 69
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