Contents

9 Dynamic Programming

0 Chain matrix multiplication e Optimal coin changing

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 1/20

Chain matrix multiplication

Section outline

matrix multiplication
@ DP formulation for chain

o Chain matrix multiplication matrix multiplication
@ Chain matrix multiplication @ Bottom-up chain matrix
@ Formulation for chain matrix multiplication
multiplication @ DP solution for chain matrix
@ Naive solution for chain multiplication

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 2/20

Chain matrix multiplication Chain matrix multiplication

Chain matrix multiplication

Example (Chain matrix multiplication)
@ Let Ay be a 10 x 100 matrix
@ Let A> be a 100 x 5 matrix
@ Let A3 be a5 x 50 matrix
@ Need to compute A; x As x Az

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 3/20

Chain matrix multiplication Chain matrix multiplication

Chain matrix multiplication

Example (Chain matrix multiplication)
@ Let Ay be a 10 x 100 matrix
@ Let A> be a 100 x 5 matrix
@ Let A3 be a5 x 50 matrix
@ Need to compute A; x As x Az
@ Costof (A1 x Az) x Az: (10 x 100 x 5) + (10 x 5 x 50) = 7,500
@ Costof Ay x (A2 x Az): (100 x5 x50)+ (10 x 100 x 50) = 75,000)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 3/20

Chain matrix multiplication Chain matrix multiplication

Chain matrix multiplication

Example (Chain matrix multiplication)
@ Let Ay be a 10 x 100 matrix
@ Let A> be a 100 x 5 matrix
@ Let A3 be a5 x 50 matrix
@ Need to compute A; x As x Az
@ Cost of (A1 x A2) x Az: (10 x 100 x 5) + (10 x 5 x 50) = 7,500
@ Costof Ay x (A2 x Az): (100 x5 x50)+ (10 x 100 x 50) = 75,000/

Definition

Chain matrix multiplication Given n matrices, A+, ..., A,, ..., An, Where
for1 <:<n, A isap,_ 1 x p,, matrix, parenthesise the product

Ai x...x A, x...x A,so as to minimize the total cost of
multiplication, assuming that the cost of multiplying a p:—1 x p, matrix
by a p, x p,+1 matrix using the naive algorithm is p,_1 x p, X p,+1

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 3/20

Chain matrix multiplication Formulation for chain matrix multiplication

Formulation for chain matrix multiplication

@ If there is just a single matrix, there is nothing to decide

@ For n(n > 2), we need to divide the problem into two parts
suitably, in one of the n — 1 possible ways

@ The sub-problems are solved optimally to get the requisite solution

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 4/20

Chain matrix multiplication Formulation for chain matrix multiplication

Formulation for chain matrix multiplication

@ If there is just a single matrix, there is nothing to decide

@ For n(n > 2), we need to divide the problem into two parts
suitably, in one of the n — 1 possible ways

@ The sub-problems are solved optimally to get the requisite solution

@ However, the quality of the solution is dependent on the point of
division

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 4/20

Chain matrix multiplication Formulation for chain matrix multiplication

Formulation for chain matrix multiplication

@ If there is just a single matrix, there is nothing to decide

@ For n(n > 2), we need to divide the problem into two parts
suitably, in one of the n — 1 possible ways

@ The sub-problems are solved optimally to get the requisite solution
@ However, the quality of the solution is dependent on the point of
division
@ So, we need to consider all possible ways to divide the problem
into two parts and retain the best choice
@ The total number of possible solutions to be handled is huge:
1 n=1

— n—1
Np = Nan_k n>1
k=1

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 4/20

Chain matrix multiplication Formulation for chain matrix multiplication

Formulation for chain matrix multiplication

@ If there is just a single matrix, there is nothing to decide

@ For n(n > 2), we need to divide the problem into two parts
suitably, in one of the n — 1 possible ways

@ The sub-problems are solved optimally to get the requisite solution

@ However, the quality of the solution is dependent on the point of
division

@ So, we need to consider all possible ways to divide the problem
into two parts and retain the best choice

@ The total number of possible solutions to be handled is huge:
1 n=1 1 n=20

— n—1 — — n-2
k=1 k=0
@ (n— 1) Catalan number, C,_1 € Q (:g) &

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 4/20

Chain matrix multiplication Naive solution for chain matrix multiplication

Naive solution for chain matrix multiplication

chnMatMulSim(int p[x-1 .. y]) { // dimensions
@ int n=y-x+1;

©Q if (n==1) return 0; // single matrix

© for L = 2 to n { // lengths of subchains

Q@ for i = x to n-L+1 { // starts of subchains

Q j = i+L-1; // ends of subchains

Q ¢ = 00; // init to find min cost

Q for k =i to j -1 { // check all splits

Q q = chnMatMulSim(p[i-1,k] +
chnMatMulSiml[k, j] + p[i-1]xpl[k]lXxp[3jl];

Q if (g < ¢) ¢ = q; // check for lower cost

(10} }

@

@}

@® return c; @

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 5/20

Chain matrix multiplication Naive solution for chain matrix multiplication

Analysis of naive method

0 n=1
T(n) = {"f(T(kHT(nk)Jrc) n>1

k=1
n—1
= 2 T(k)+(n—-1)c n>1
k=1
n
T(n+1) = 2> T(k)+nc n>1
=
= 2) T(k)+(n—1)c+2T(n)+c n>1
k=1
T(n)
= 3T(n)+c n>1
T(n) = 3T(n—1)+c n>1
F(@" T -1)c
Thus, the naive method works in exponential time. @

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 6/20

Chain matrix multiplication DP formulation for chain matrix multiplication

DP formulation for chain matrix multiplication

@ Key observation:

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7120

Chain matrix multiplication DP formulation for chain matrix multiplication

DP formulation for chain matrix multiplication

@ Key observation: Occurrence of common sub-problems

5 4
@ To solve for [] A,, need to consider Ay x Az while solving for [] A,

1=1 1=1

3
and also [] A,

=1

@ May other sub-problems are also repeated

@ Considerable savings possible by reusing solutions to earlier
identified sub-problems (memoization), thereby avoiding solving
those again and again

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7120

Chain matrix multiplication DP formulation for chain matrix multiplication

DP formulation for chain matrix multiplication

@ Key observation: Occurrence of common sub-problems

5 4
@ To solve for [] A,, need to consider Ay x Az while solving for [] A,

1=1 1=1

3
and also [] A,
=1

@ May other sub-problems are also repeated

@ Considerable savings possible by reusing solutions to earlier
identified sub-problems (memoization), thereby avoiding solving
those again and again

@ Problems can be solved bottom-up to obtain required solution

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7120

Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A; x A; x ... x A7)

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 8/20

Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A; x A; x ... x A7)

A Ay As A As As A

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 8/20

Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A; x A; x ... x A7)

(A1 X A2) (A2 X A3) (A3 X A4) (A4 X A5) (A5 X As) (Ae X A7)

A1 A2 A3 A4 A5 A6 A;

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 8/20

Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A1 x A> x ... X A7)

(a) (114) (a) (f4) (A4)

(A1 X A2) (A2 X A3) (A3 X A4) (A4 X A5) (A5 X AG) (As X A7)

A1 A2 A3 A4 A5 A6 A

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 8/20

Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A1 x A> x ... X A7)

(14) (1a) (4) (14)
(a) (114) (a) (f4) (A4)

(A1 X Ag) (A2 X A3) (A3 X A4) (A4 X A5) (A5 X AG) (As X A7)

A1 A2 A3 A4 A5 A6 A

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 8/20

Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A1 x A> x ... X A7)

(12) (11a) (04)

(1) (La) (14) (14)

i—a4

(fia) (1) (7a) (1) (B2)

(A1 X Ag) (A2 X A3) (A3 X A4) (A4 X A5) (A5 X AG) (As X A7)

A1 A2 A3 A4 A5 A6 A;

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 8/20

Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A1 x A> x ... X A7)

(12) (f14)
(12) (11a) (04)

(14) (1a) (4) (14)
(a) (114) (a) (f4) (A4)

(A1 X Ag) (A2 X A3) (A3 X A4) (A4 X A5) (A5 X AG) (As X A7)

<

A1 A2 A3 A4 A5 A6 A;

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021

8/20

Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A1 x A> x ... X A7)

fi)
(1) (B14) (1) (fia)
(fia) (1a) (Ba) (54) (Ba)

(A1 X Ag) (A2 X A3) (A3 X A4) (A4 X A5) (A5 X AG) (As X A7)

A1 A2 A3 A4 A5 A6 A

v

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021

8/20

Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 9/20

Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

Aq

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

As

As

A7

August 26, 2021

9/20

Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

A (A1 x Ap)
Ao (Ao x Ag)
As (A3 x As)
Ay (Ag x As)
As (As x As)

As (As x A7)

A7
Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 9/20

Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

3
A (A% A) <,-H1 Az)
Ao (Ao x Ag) <11j12 A,)
5
A (As x A) <11_13 AZ>
Ay (A4 x As) (iliAz>
7
fs (s) (114)

As (As x A7)

A7
Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 9/20

Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

e (i) (4

o e (i) (1
As (As x Ag) < 151 AZ> <f[3 AZ>

o e (i) (1)
fs (A= ae) (114)

As (As x A7)

A7
Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 9/20

Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)

Example (Upper triangular DP matrix for A} x Ax x ... x A7)

o e (i) (i) (i)

o e (i) (fin) (fin)
o e (jin) (fin) (i)
As (As x Ag) (;1_215 AZ>
As (Ag x A7)
A7

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

August 26, 2021

9/20

Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

o e (fin) (fin) (fin) (112

e () (i) (84) (i)
o e () (1) (1)
e () (i)

n s (114)
As (Ag x A7)

A7

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 9/20

Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

7
fia)
w texa) (1a) (114) (14) (f14)
A o) (14) (f1a) (14)
A (As x As) @4 AZ> @4 AZ>
As (As x Ag) ([7[5 AZ>
As (As x A7)
A7

Chittaranjan Mandal (lIT Kharagpur)

Algorithms August 26, 2021

9/20

Chain matrix multiplication DP solution for chain matrix multiplication

DP solution for chain matrix multiplication

chainMatMul (int p[0 .. n], int n) { // dimensions
Q@ int s[1 .. n-1, 2 .. nl]; // split positions
Q for i =1 to nm[i, i] = 0; // single matrix
= 2 ton { // lengths of subchains
for i = 1 to n-L+1 { // starts of subchains
j = i+L-1; // ends of subchains
m[i, j] = oo; // init to find min cost
for k =i to j -1 { // check all splits
q = m[i k] + m[k+1,3] + pli-11xplk]lxp[il;
if (q < m[i, jl) { // check for lower cost
m[i, j] q;// found, so update
s[i, 3] k; // record split for min cost
}
}
}

&
H
o
H
B

}
return m[1l, n] and s; §§

0666666000000

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 10/20

DP solution for chain matrix multiplication
Optimal chain matrix multiplication

matMuOptl (i, Jj) {

@ if (i == j) return A[i]; // base case

Q else {

Q@ k = s[i, jl; // split position for Ajx...x A

Q X = matMulOpt (i, k); // X = A x...x Ak

Q@ Y =matMulopt(k + 1, j); // Y =Aix...xA
Q@ return XxY;

Q)

}

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 11/20

Chain matrix multiplication DP solution for chain matrix multiplication

Optimal chain matrix multiplication

matMuOptl (i, Jj) {

@ if (i == j) return A[i]; // base case

Q else {

Q@ k = s[i, jl; // split position for Ajx...x A

Q X = matMulOpt (i, k); // X = A x...x Ak

Q@ Y =matMulopt(k + 1, j); // Y =Aix...xA
Q@ return XxY;

Q)

}

@ Space requirement with DP: O(n?)

@ Time requirement with DP: O(n®) — DP solution scheme
encounters 3 sub-problems each of size J and requiring
evaluation of — 1 parenthesisations

e Time requirement with naive (non DP) approach: © (3"1) &
@ Better algorithms are also available

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 11/20

Dynamic Programming

Section outline

@ DP examples
@ Fibonacci number

e Dynamic Programming computation
@ Algorithm design paradigms

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 12/20

Algorithm design paradigms

Divide-and-conquer (DC) Break up a problem into two or more
sub-problems, solve each sub-problem independently,
and combine solution to sub-problems to form a solution
to original problem

Dynamic programming (DP) Break up a problem into a series of
sub-problems and use the solutions to build solutions to
larger and larger sub-problems

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 13/20

Dynamic Programming Algorithm design paradigms

Algorithm design paradigms

Divide-and-conquer (DC) Break up a problem into two or more
sub-problems, solve each sub-problem independently,
and combine solution to sub-problems to form a solution
to original problem

Dynamic programming (DP) Break up a problem into a series of
sub-problems and use the solutions to build solutions to
larger and larger sub-problems

@ Difference between DC and DP can be confusing

@ DP makes repeated use of the solutions of sub-problems

@ Sub-problems identified for DP are usually overlapping, leading to
identification of common smaller sub-problems later

@ DP often exhibits optimal substructure where an optimal solution
is constructed from the optimal solution of its sub-problems @

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 13/20

Dynamic Programming DP examples

DP examples

@ Fibonacci number computation

@ Chain Matrix Multiplication

@ Coin changing

@ Minimum edit distance

@ Longest common subsequence

@ All shortest paths (Floyd-Warshall)
@ Box stacking

@ Bridge building

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 14/20

Dynamic Programming Fibonacci number computation

Fibonacci number computation

0 n=20
Fn=4 1 n=1

Fn2+Fny n>1
Direct coding of this recurrence requires exponential execution
time
But, Fn_1 = Fp3+ Fp2
If solutions of sub-problems computed earlier are reused, then the
computation takes O(n) additions
Otherwise, sub-problems are solved repeatedly, wasting time
Naive algorithm takes exponential time
Further optimisations yield O(lg n) algorithm

Fox = Fx[2Fk41 — Fi]
Foxy1 = FE 4+ FF &

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 15/20

Optimal coin changing

Section outline

@ Formulation for coin
))] changing
© oOptimal coin changing @ DP solution for coin change
@ Coin changing problem

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 16/20

Optimal coin changing Coin changing problem

Coin changing problem

Definition
Coin change problem
@ Coin denominations can be modeled by a set of n distinct positive
integer values, arranged in increasing order as wy = 1 through wj

@ Given a positive integral amount W, find non-negative integers
{X1,X2,...,Xn} such that

n

(1) Z XiW; = w
i=1
n

@ > x; is minimised
i=1

@ Each x; represents the number of coins of denomination w; used

V.

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 17/20

Optimal coin changing Coin changing problem

Coin change problem

@ Sometimes the greedy method of picking coins of largest
denomiation works

@ Coin systems for which the greedy method works are called
canonical coin systems

@ The greedy algorithm does not work arbitrary coin systems

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 18/20

Optimal coin changing Coin changing problem

Coin change problem

@ Sometimes the greedy method of picking coins of largest
denomiation works

@ Coin systems for which the greedy method works are called
canonical coin systems

@ The greedy algorithm does not work arbitrary coin systems

@ Consider forming coin change of 6 units in the coin system:
{1,3,4}

@ The greedy method would yield {4, 1,1}, however, the optimal
change for this system is {3, 3}

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 18/20

Optimal coin changing Formulation for coin changing

Formulation for coin changing

@ Consider a denomination w; < W

@ If we know how make the change optimally for amount W — w;, then we
can make change for W by including a coin of denomination w;

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 19/20

Optimal coin changing Formulation for coin changing

Formulation for coin changing

@ Consider a denomination w; < W

@ If we know how make the change optimally for amount W — w;, then we
can make change for W by including a coin of denomination w;

@ Let C(W, W) be the function that returns the change count, given the
vector of denominations W

@ C(0,)=0

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 19/20

Optimal coin changing Formulation for coin changing

Formulation for coin changing

@ Consider a denomination w; < W

@ If we know how make the change optimally for amount W — w;, then we
can make change for W by including a coin of denomination w;

@ Let C(W, W) be the function that returns the change count, given the
vector of denominations W

@ C(0,)=0
@ To get optimal change for amount W, we consider all possibilities
@ C(W, W)= min C(W—w;, W)+1

w<W

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 19/20

Optimal coin changing Formulation for coin changing

Formulation for coin changing

Consider a denomination w; < W

If we know how make the change optimally for amount W — w;, then we
can make change for W by including a coin of denomination w;

Let C(W, W) be the function that returns the change count, given the
vector of denominations W

C(0,))=0
To get optimal change for amount W, we consider all possibilities
C(W, W) = min C(W — wj, W)+ 1
w<W
This function may not be defined for certain amounts
If W = {2,3}, C(1, W) is not defined
We will not have this problem if 1 w

@

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 19/20

Optimal coin changing Formulation for coin changing

Formulation for coin changing

Consider a denomination w; < W

If we know how make the change optimally for amount W — w;, then we
can make change for W by including a coin of denomination w;

Let C(W, W) be the function that returns the change count, given the
vector of denominations W

C(0,))=0
To get optimal change for amount W, we consider all possibilities
C(W, W) = min C(W — wj, W)+ 1

w<W

This function may not be defined for certain amounts
If W = {2,3}, C(1, W) is not defined
We will not have this problem if 1 w

A direct coding of this recursive formulation will lead to an exponential
time solution

But, we can efficiently form the solution bottom-up in-O(|w|W)-time

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 19/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] + 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min < oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice

Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
(1) return C and S
Working of change ({1,2,5}, 3, 14)

p: |0
Clpl: | O
Dlp]: | O @

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] + 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min < oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice

Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
(1) return C and S
Working of change ({1,2,5}, 3, 14)

p: |01
Clpl: |0 | 1
D[p]: | 0| 1 @

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] + 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min < oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice

Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
(1) return C and S
Working of change ({1,2,5}, 3, 14)

p: |0]1]2
Clpl: |0 |11
Dlpl: |0]1]2 @

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[],

k, W) // coins of k denominations in w

@ C[0] + 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min < oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice

Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
(1) return C and S
Working of change ({1,2,5}, 3, 14)

p: |0]|1[2]3
Clpl: 10112
Dpl: |O0|1]2]|1 @

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

August 26, 2021

20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[],

k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min < oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice

Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)

p: |0|1|2]3]|4
Clpl: 101122
Dpl: /0|1]2|1]|2 @

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

August 26, 2021

20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[],

k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p: |0[|1(2]3|4]5
Clpl: 101 (12|21
Dpl:|0|1]2|1]2]|5 @
Algorithms August 26, 2021 20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[],

k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p:|0|1(2]|3|4/5|6
Cpl: |01 (1]2]2]1]2
Dpl: /10|12 |1]|2|5]5 @
Algorithms August 26, 2021 20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p: |0|1(2]3|4|5|6|7
Clpl: 101 (1 |2|2]1]2]2
Dpl:|0|1]2|1]2|5]5]|2 @
Algorithms August 26, 2021 20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p: /10|12 3|4|5|6|7|8
Clpl: 101 (1 |2|2]1]2]2
Dpl:|0|1]2|1]|2|5]|5|2]|1 @
Algorithms August 26, 2021 20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p:|0(1(2|3|4/5|6|7|8|9
Clpl: 101 (1 |2|2]1]2]2 3
Dpl:|0|1]2|1]2|5]|5|2|1]2 @
Algorithms August 26, 2021 20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p: |0|1(2]3/4|5|6|7|8|9]10
Clpl: 101 (1 |2|2]1]2]2 3| 2
Dpl:/0|1]2|1]|2|5|5|2|1]2| 5 @
Algorithms August 26, 2021 20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p:|0|1(2|3|4|5|6|7|8|9]|10 | 11
Cpl: 101 (1 |2|2]1]2]2 3| 2| 3
Dpl: /0|12 |1]|2|5|5|2|1]2| 5| 1 @
Algorithms August 26, 2021 20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[],

k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p:|0|1(2]3|4|5|6|78|9]10 |11 |12
Cpl: 101 (1 |2|2]1]2]2 3| 2| 3| 3
Dpl:|0|1]2|1]|2|5|5|2|1]|2| 5| 1| 2 @
Algorithms August 26, 2021 20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p:/0|1(2|3|4|5|6|7|8|9|10 |11 |12 13
Cpl: 101 (1 |2|2]1]2]2 3| 2| 3| 3| 4
D[p]:01212552125121@
Algorithms August 26, 2021 20/20

Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

©60000 00000

C[0] « 0 // initialisation for p=0

for p <~ 1 to W // do coin changes bottom-up

min < oo
for i < 0 to k-1

C[p] ¢ min
return C and S
Working of change ({1,2,5

if w[i] < p then // don’'t overpay
// decide whether w[i] is a good choice

if 1 + C[p — w[i]] < min then

min < 1 + C[p — w[i]]

coin « wl[i]
D[p] < coin // best coin to pick for W
Time complexity of DP solution: Linear
in W, exponential in number of bits of W
14)

3,

p:

0

1

2

3

4

}
5

6

7

8

9

10

11

12

13

14

Clpl:

0

1

.1

2

1

2

2

3

3

2

3

3

4

Dlp]:

0

1

2

1

2
2

5

5

2

1

2

5

1

2

1

2

Chittaranjan Mandal (lIT Kharagpur)

Algorithms

August 26, 2021

20/20

	Chain matrix multiplication
	Chain matrix multiplication
	Formulation for chain matrix multiplication
	Naive solution for chain matrix multiplication
	DP formulation for chain matrix multiplication
	Bottom-up chain matrix multiplication
	DP solution for chain matrix multiplication

	Dynamic Programming
	Algorithm design paradigms
	DP examples
	Fibonacci number computation

	Optimal coin changing
	Coin changing problem
	Formulation for coin changing
	DP solution for coin change

	resultado2:
	hours: 20
	minutes: 07
	seconds: 16
	cronohours: 00
	cronominutes: 00
	crseconds: 03
	day: 15
	month: 12
	year: 2022
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00

