

Optimal coin changing

1/20

Chittaranjan Mandal (IIT Kharagpur)

Section outline

Chain matrix multiplication

- Chain matrix multiplication
- Formulation for chain matrix multiplication
- Naive solution for chain

matrix multiplication

- DP formulation for chain matrix multiplication
- Bottom-up chain matrix multiplication
- DP solution for chain matrix multiplication

2/20

Example (Chain matrix multiplication)

- Let A_1 be a 10 \times 100 matrix
- Let A_2 be a 100 \times 5 matrix
- Let A_3 be a 5 \times 50 matrix
- Need to compute $A_1 \times A_2 \times A_3$

Example (Chain matrix multiplication)

- Let A_1 be a 10 \times 100 matrix
- Let A_2 be a 100 \times 5 matrix
- Let A_3 be a 5 \times 50 matrix
- Need to compute $A_1 \times A_2 \times A_3$
- Cost of $(A_1 \times A_2) \times A_3$: $(10 \times 100 \times 5) + (10 \times 5 \times 50) = 7,500$
- Cost of $A_1 \times (A_2 \times A_3)$: $(100 \times 5 \times 50) + (10 \times 100 \times 50) = 75,000$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example (Chain matrix multiplication)

- Let A_1 be a 10 \times 100 matrix
- Let A_2 be a 100 \times 5 matrix
- Let A_3 be a 5 \times 50 matrix
- Need to compute $A_1 \times A_2 \times A_3$
- Cost of $(A_1 \times A_2) \times A_3$: $(10 \times 100 \times 5) + (10 \times 5 \times 50) = 7,500$
- Cost of $A_1 \times (A_2 \times A_3)$: $(100 \times 5 \times 50) + (10 \times 100 \times 50) = 75,000$

Definition

Chain matrix multiplication Given *n* matrices, $A_1, \ldots, A_i, \ldots, A_n$, where for $1 \le i \le n$, A_i is a $p_{i-1} \times p_i$, matrix, parenthesise the product $A_1 \times \ldots \times A_i \times \ldots \times A_n$ so as to minimize the total cost of multiplication, assuming that the cost of multiplying a $p_i - 1 \times p_i$ matrix by a $p_i \times p_{i+1}$ matrix using the naive algorithm is $p_{i-1} \times p_i \times p_{i+1}$

- If there is just a single matrix, there is nothing to decide
- For n (n ≥ 2), we need to divide the problem into two parts suitably, in one of the n − 1 possible ways
- The sub-problems are solved optimally to get the requisite solution

4/20

- If there is just a single matrix, there is nothing to decide
- For n (n ≥ 2), we need to divide the problem into two parts suitably, in one of the n − 1 possible ways
- The sub-problems are solved optimally to get the requisite solution
- However, the quality of the solution is dependent on the point of division

4/20

- If there is just a single matrix, there is nothing to decide
- For n (n ≥ 2), we need to divide the problem into two parts suitably, in one of the n − 1 possible ways
- The sub-problems are solved optimally to get the requisite solution
- However, the quality of the solution is dependent on the point of division
- So, we need to consider all possible ways to divide the problem into two parts and retain the best choice
- The total number of possible solutions to be handled is huge:

$$N_{n} = \begin{cases} 1 & n = 1 \\ \sum_{k=1}^{n-1} N_{k} N_{n-k} & n > 1 \end{cases}$$

Chittaranjan Mandal (IIT Kharagpur)

4/20

- If there is just a single matrix, there is nothing to decide
- For n (n ≥ 2), we need to divide the problem into two parts suitably, in one of the n − 1 possible ways
- The sub-problems are solved optimally to get the requisite solution
- However, the quality of the solution is dependent on the point of division
- So, we need to consider all possible ways to divide the problem into two parts and retain the best choice
- The total number of possible solutions to be handled is huge:

$$N_{n} = \begin{cases} 1 & n = 1 \\ \sum_{k=1}^{n-1} N_{k} N_{n-k} & n > 1 \end{cases} \equiv C_{n-1} = \begin{cases} 1 & n = 0 \\ \sum_{k=0}^{n-2} C_{k} C_{n-k} & n \ge 1 \end{cases}$$

• $(n-1)^{\text{th}}$ Catalan number, $C_{n-1} \in \Omega\left(\frac{4^n}{n^2}\right)$

Naive solution for chain matrix multiplication

chnMatMulSim(int p[x-1 .. y]) { // dimensions int n=y-x+1; If (n==1) return 0; // single matrix of for L = 2 to n { // lengths of subchains for i = x to n-L+1 { // starts of subchains 4 5 j = i+L-1; // ends of subchains 6 $c = \infty$; // init to find min cost 7 for k = i to $j - 1 \{ // check all splits \}$ 8 q = chnMatMulSim(p[i-1,k] +chnMatMulSim[k,j] + p[i-1]×p[k]×p[j]; 9 if (q < c) c = q; // check for lower cost 10 } 1 } 12 F 13 return c; < ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Analysis of naive method

$$T(n) = \begin{cases} 0 & n = 1\\ \sum_{k=1}^{n-1} (T(k) + T(n-k) + c) & n > 1 \\ = 2 \sum_{k=1}^{n-1} T(k) + (n-1)c & n > 1 \\ (n+1) = 2 \sum_{k=1}^{n} T(k) + nc & n > 1 \\ = 2 \sum_{k=1}^{n-1} T(k) + (n-1)c + 2T(n) + c & n > 1 \\ = 3T(n) + c & n > 1 \\ T(n) = 3T(n-1) + c & n > 1 \\ = \frac{1}{2} (3^{n-1} - 1) c & n > 1 \end{cases}$$

Thus, the naive method works in exponential time.

Chittaranjan Mandal (IIT Kharagpur)

Т

э

Key observation:

7/20

э

- Key observation: Occurrence of common sub-problems
- To solve for $\prod_{i=1}^{5} A_i$, need to consider $A_1 \times A_2$ while solving for $\prod_{i=1}^{4} A_i$ and also $\prod_{i=1}^{3} A_i$
- May other sub-problems are also repeated
- Considerable savings possible by reusing solutions to earlier identified sub-problems (memoization), thereby avoiding solving those again and again

DP formulation for chain matrix multiplication

- Key observation: Occurrence of common sub-problems
- To solve for $\prod_{i=1}^{5} A_i$, need to consider $A_1 \times A_2$ while solving for $\prod_{i=1}^{4} A_i$ and also $\prod_{i=1}^{3} A_i$
- May other sub-problems are also repeated
- Considerable savings possible by reusing solutions to earlier identified sub-problems (memoization), thereby avoiding solving those again and again
- Problems can be solved bottom-up to obtain required solution

Example (Efficient computation of $A_1 \times A_2 \times \ldots \times A_7$ **)**

 A_5

Bottom-up chain matrix multiplication

 A_3

Example (Efficient computation of $A_1 \times A_2 \times \ldots \times A_7$ **)**

Chittaranjan Mandal (IIT Kharagpur)

 A_2

 A_1

Algorithms

A₄

 A_6

Example (Efficient computation of $A_1 \times A_2 \times \ldots \times A_7$ **)**

$(A_1 \times A_2)$ $(A_2 \times A_3)$ $(A_3 \times A_4)$ $(A_4 \times A_5)$ $(A_5 \times A_6)$ $(A_6 \times A_7)$

<i>A</i> ₁	A ₂	<i>A</i> ₃	A_4	A_5	A_6	<i>A</i> ₇
Chittaranjan Ma	ndal (IIT Kharagpur)		Algorithms		August 26, 2021	8/20

 A_5

Bottom-up chain matrix multiplication

 A_3

Example (Efficient computation of $A_1 \times A_2 \times \ldots \times A_7$ **)**

$\begin{pmatrix} \prod_{i=1}^{3} A_i \end{pmatrix} \begin{pmatrix} \prod_{i=2}^{4} A_i \end{pmatrix} \begin{pmatrix} \prod_{i=3}^{5} A_i \end{pmatrix} \begin{pmatrix} \prod_{i=4}^{6} A_i \end{pmatrix} \begin{pmatrix} \prod_{i=5}^{7} A_i \end{pmatrix} \\ (A_1 \times A_2) (A_2 \times A_3) (A_3 \times A_4) (A_4 \times A_5) (A_5 \times A_6) (A_6 \times A_7)$

A₄

Chittaranjan Mandal (IIT Kharagpur)

 A_2

A₁

 A_6

Example (Efficient computation of $A_1 \times A_2 \times \ldots \times A_7$ **)**

$$\begin{pmatrix} \begin{pmatrix} 4\\i=1 \end{pmatrix} & \begin{pmatrix} 5\\i=2 \end{pmatrix} & \begin{pmatrix} 6\\i=3 \end{pmatrix} & \begin{pmatrix} 7\\i=4 \end{pmatrix} \\ \begin{pmatrix} 1\\i=4 \end{pmatrix} & \begin{pmatrix} 4\\i=2 \end{pmatrix} & \begin{pmatrix} 5\\i=3 \end{pmatrix} & \begin{pmatrix} 6\\i=3 \end{pmatrix} & \begin{pmatrix} 7\\i=4 \end{pmatrix} & \begin{pmatrix} 7\\i=5 \end{pmatrix} \\ (A_1 \times A_2) & (A_2 \times A_3) & (A_3 \times A_4) & (A_4 \times A_5) & (A_5 \times A_6) & (A_6 \times A_7) \\ A_1 & A_2 & A_3 & A_4 & A_5 & A_6 & A_7 \\ \end{pmatrix}$$

Chittaranjan Mandal (IIT Kharagpur)

Example (Efficient computation of $A_1 \times A_2 \times \ldots \times A_7$ **)**

Example (Efficient computation of $A_1 \times A_2 \times \ldots \times A_7$ **)**

Chittaranjan Mandal (IIT Kharagpur)

Example (Efficient computation of $A_1 \times A_2 \times \ldots \times A_7$ **)**

Chittaranjan Mandal (IIT Kharagpur)

Example (Upper triangular DP matrix for $A_1 \times A_2 \times \ldots \times A_7$ **)**

Example (Upper triangular DP matrix for $A_1 \times A_2 \times \ldots \times A_7$ **)**

August 26, 2021

Example (Upper triangular DP matrix for $A_1 \times A_2 \times \ldots \times A_7$ **)**

 A_1 $(A_1 \times A_2)$

 A_2 $(A_2 \times A_3)$

 A_3 $(A_3 \times A_4)$

 A_4 $(A_4 \times A_5)$

 A_5 $(A_5 \times A_6)$

 A_6 $(A_6 \times A_7)$

Example (Upper triangular DP matrix for $A_1 \times A_2 \times \ldots \times A_7$ **)**

 A_1 $(A_1 \times A_2)$ $\left(\prod_{i=1}^3 A_i\right)$ A_2 $(A_2 \times A_3) \left(\prod_{i=2}^4 A_i\right)$ $A_3 \qquad (A_3 \times A_4) \left(\prod_{i=2}^5 A_i\right)$ $A_4 \qquad (A_4 \times A_5) \left(\prod_{i=1}^6 A_i\right)$ A_5 $(A_5 \times A_6) \left(\prod_{i=1}^7 A_i\right)$ $A_6 \qquad (A_6 \times A_7)$

Example (Upper triangular DP matrix for $A_1 \times A_2 \times \ldots \times A_7$ **)**

$$\begin{array}{lll} A_{1} & (A_{1} \times A_{2}) \left(\prod_{i=1}^{3} A_{i}\right) \left(\prod_{i=1}^{4} A_{i}\right) \\ & A_{2} & (A_{2} \times A_{3}) \left(\prod_{i=2}^{4} A_{i}\right) \left(\prod_{i=2}^{5} A_{i}\right) \\ & A_{3} & (A_{3} \times A_{4}) \left(\prod_{i=3}^{5} A_{i}\right) \left(\prod_{i=3}^{6} A_{i}\right) \\ & A_{4} & (A_{4} \times A_{5}) \left(\prod_{i=4}^{6} A_{i}\right) \left(\prod_{i=4}^{7} A_{i}\right) \\ & A_{5} & (A_{5} \times A_{6}) \left(\prod_{i=5}^{7} A_{i}\right) \\ & A_{6} & (A_{6} \times A_{7}) \end{array}$$

Example (Upper triangular DP matrix for $A_1 \times A_2 \times \ldots \times A_7$ **)**

$$\begin{array}{lll} A_{1} & (A_{1} \times A_{2}) \left(\prod_{i=1}^{3} A_{i}\right) \left(\prod_{i=1}^{4} A_{i}\right) \left(\prod_{i=1}^{5} A_{i}\right) \\ & A_{2} & (A_{2} \times A_{3}) \left(\prod_{i=2}^{4} A_{i}\right) \left(\prod_{i=2}^{5} A_{i}\right) \left(\prod_{i=2}^{6} A_{i}\right) \\ & A_{3} & (A_{3} \times A_{4}) \left(\prod_{i=3}^{5} A_{i}\right) \left(\prod_{i=3}^{6} A_{i}\right) \left(\prod_{i=3}^{7} A_{i}\right) \\ & A_{4} & (A_{4} \times A_{5}) \left(\prod_{i=4}^{6} A_{i}\right) \left(\prod_{i=4}^{7} A_{i}\right) \\ & A_{5} & (A_{5} \times A_{6}) \left(\prod_{i=5}^{7} A_{i}\right) \\ & A_{6} & (A_{6} \times A_{7}) \end{array}$$

August 26, 2021 9/20

Example (Upper triangular DP matrix for $A_1 \times A_2 \times \ldots \times A_7$ **)**

$$\begin{array}{rcl} A_{1} & (A_{1} \times A_{2}) \left(\prod_{i=1}^{3} A_{i}\right) \left(\prod_{i=1}^{4} A_{i}\right) \left(\prod_{i=1}^{5} A_{i}\right) \left(\prod_{i=1}^{6} A_{i}\right) \\ A_{2} & (A_{2} \times A_{3}) \left(\prod_{i=2}^{4} A_{i}\right) \left(\prod_{i=2}^{5} A_{i}\right) \left(\prod_{i=2}^{6} A_{i}\right) \left(\prod_{i=2}^{7} A_{i}\right) \\ A_{3} & (A_{3} \times A_{4}) \left(\prod_{i=3}^{5} A_{i}\right) \left(\prod_{i=3}^{6} A_{i}\right) \left(\prod_{i=3}^{7} A_{i}\right) \\ A_{4} & (A_{4} \times A_{5}) \left(\prod_{i=4}^{6} A_{i}\right) \left(\prod_{i=4}^{7} A_{i}\right) \\ A_{5} & (A_{5} \times A_{6}) \left(\prod_{i=5}^{7} A_{i}\right) \\ A_{6} & (A_{6} \times A_{7}) \end{array}$$

A₇

Example (Upper triangular DP matrix for $A_1 \times A_2 \times \ldots \times A_7$ **)**

$$\begin{array}{ccc} A_{1} & (A_{1} \times A_{2}) \left(\prod_{i=1}^{3} A_{i}\right) \left(\prod_{i=1}^{4} A_{i}\right) \left(\prod_{i=1}^{5} A_{i}\right) \left(\prod_{i=1}^{6} A_{i}\right) \left(\prod_{i=1}^{7} A_{i}\right) \\ A_{2} & (A_{2} \times A_{3}) \left(\prod_{i=2}^{4} A_{i}\right) \left(\prod_{i=2}^{5} A_{i}\right) \left(\prod_{i=2}^{6} A_{i}\right) \left(\prod_{i=2}^{7} A_{i}\right) \\ A_{3} & (A_{3} \times A_{4}) \left(\prod_{i=3}^{5} A_{i}\right) \left(\prod_{i=3}^{6} A_{i}\right) \left(\prod_{i=3}^{7} A_{i}\right) \\ A_{4} & (A_{4} \times A_{5}) \left(\prod_{i=4}^{6} A_{i}\right) \left(\prod_{i=4}^{7} A_{i}\right) \\ A_{5} & (A_{5} \times A_{6}) \left(\prod_{i=5}^{7} A_{i}\right) \\ A_{6} & (A_{6} \times A_{7}) \end{array}$$

August 26, 2021

 A_7

9/20

DP solution for chain matrix multiplication

chainMatMul(int p[0 .. n], int n) { // dimensions 1 int s[1 .. n - 1, 2 .. n]; // split positions for i = 1 to n m[i, i] = 0; // single matrix of for L = 2 to n { // lengths of subchains 4 for i = 1 to n-L+1 { // starts of subchains j = i+L-1; // ends of subchains $m[i, j] = \infty; // init to find min cost$ for k = i to $j - 1 \{ // check all splits \}$ $q = m[i,k] + m[k+1,j] + p[i-1] \times p[k] \times p[j];$ if (q < m[i, j]) { // check for lower cost</pre> m[i, j] = q; // found, so updates[i, j] = k; // record split for min cost 15 } return m[1, n] and s; < ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimal chain matrix multiplication

3

}

Optimal chain matrix multiplication

- Space requirement with DP: $O(n^2)$
- Time requirement with DP: $O(n^3)$ DP solution scheme encounters $\frac{n}{2}$ sub-problems each of size $\frac{n}{2}$ and requiring evaluation of $\frac{n}{2}$ – 1 parenthesisations
- Time requirement with naive (non DP) approach: $\Theta(3^{n-1})$
- Better algorithms are also available

}

э

Section outline

Dynamic Programming

• Algorithm design paradigms

- DP examples
- Fibonacci number computation

ヨトィヨト

Algorithm design paradigms

Divide-and-conquer (DC) Break up a problem into two or more sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form a solution to original problem

Dynamic programming (DP) Break up a problem into a series of sub-problems and use the solutions to build solutions to larger and larger sub-problems

13/20

Algorithm design paradigms

Divide-and-conquer (DC) Break up a problem into two or more sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form a solution to original problem

Dynamic programming (DP) Break up a problem into a series of sub-problems and use the solutions to build solutions to larger and larger sub-problems

- Difference between DC and DP can be confusing
- DP makes repeated use of the solutions of sub-problems
- Sub-problems identified for DP are usually overlapping, leading to identification of common smaller sub-problems later
- DP often exhibits *optimal substructure* where an optimal solution is constructed from the optimal solution of its sub-problems

DP examples

- Fibonacci number computation
- Chain Matrix Multiplication
- Coin changing
- Minimum edit distance
- Longest common subsequence
- All shortest paths (Floyd-Warshall)
- Box stacking
- Bridge building

B b

Fibonacci number computation

•
$$F_n = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ F_{n-2} + F_{n-1} & n > 1 \end{cases}$$

Direct coding of this recurrence requires exponential execution time

• But,
$$F_{n-1} = F_{n-3} + F_{n-2}$$

- If solutions of sub-problems computed earlier are reused, then the computation takes *O*(*n*) additions
- Otherwise, sub-problems are solved repeatedly, wasting time
- Naive algorithm takes exponential time
- Further optimisations yield O(lg n) algorithm

$$F_{2k} = F_k [2F_{k+1} - F_k] F_{2k+1} = F_{k+1}^2 + F_k^2$$

Section outline

Optimal coin changing

Coin changing problem

- Formulation for coin changing
- DP solution for coin change

16/20

B b

Coin changing problem

Definition

Coin change problem

- Coin denominations can be modeled by a set of n distinct positive integer values, arranged in increasing order as $w_1 = 1$ through w_n
- Given a positive integral amount W, find non-negative integers $\{x_1, x_2, \ldots, x_n\}$ such that

•
$$\sum_{i=1}^{n} x_i w_i = W$$

• $\sum_{i=1}^{n} x_i$ is minimised

Each x_i represents the number of coins of denomination w_i used

Coin change problem

- Sometimes the greedy method of picking coins of largest denomiation works
- Coin systems for which the greedy method works are called *canonical coin systems*
- The greedy algorithm does not work arbitrary coin systems

18/20

B N 4 B N

Coin change problem

- Sometimes the greedy method of picking coins of largest denomiation works
- Coin systems for which the greedy method works are called *canonical coin systems*
- The greedy algorithm does not work arbitrary coin systems
- Consider forming coin change of 6 units in the coin system: $\{1,3,4\}$
- The greedy method would yield {4,1,1}, however, the optimal change for this system is {3,3}

3

- Consider a denomination $w_j \leq W$
- If we know how make the change optimally for amount W w_j, then we can make change for W by including a coin of denomination w_j

- Consider a denomination $w_j \leq W$
- If we know how make the change optimally for amount W w_j, then we can make change for W by including a coin of denomination w_j
- Let C(W, w) be the function that returns the change count, given the vector of denominations w

•
$$C(0, _{-}) = 0$$

19/20

A B > A B >

- Consider a denomination $w_j \leq W$
- If we know how make the change optimally for amount W w_j, then we can make change for W by including a coin of denomination w_j
- Let C(W, w) be the function that returns the change count, given the vector of denominations w

• To get optimal change for amount W, we consider all possibilities

•
$$C(W, \overrightarrow{w}) = \min_{w_j \leq W} C(W - w_j, \overrightarrow{w}) + 1$$

- Consider a denomination $w_j \leq W$
- If we know how make the change optimally for amount W w_j, then we can make change for W by including a coin of denomination w_j
- Let C(W, w) be the function that returns the change count, given the vector of denominations w

• To get optimal change for amount W, we consider all possibilities

•
$$C(W, \overrightarrow{w}) = \min_{w_j \leq W} C(W - w_j, \overrightarrow{w}) + 1$$

• This function may not be defined for certain amounts

• If
$$\overrightarrow{w} = \{2,3\}, C(1, \overrightarrow{w})$$
 is not defined

• We will not have this problem if $1 \in \overrightarrow{w}$

- Consider a denomination $w_j \leq W$
- If we know how make the change optimally for amount W w_j, then we can make change for W by including a coin of denomination w_j
- Let $C(W, \vec{w})$ be the function that returns the change count, given the vector of denominations \vec{w}

•
$$C(0, _{-}) = 0$$

• To get optimal change for amount W, we consider all possibilities

•
$$C(W, \overrightarrow{w}) = \min_{w_j \leq W} C(W - w_j, \overrightarrow{w}) + 1$$

• This function may not be defined for certain amounts

• If
$$\overrightarrow{w} = \{2,3\}$$
, $C(1, \overrightarrow{w})$ is not defined

- We will not have this problem if $1 \in \overrightarrow{w}$
- A direct coding of this recursive formulation will lead to an exponential time solution
- But, we can efficiently form the solution bottom-up in O(|w|W) time

Algorithms

19/20

<pre>change(w[], k, W) // coins of k denominations in w</pre>
0 C[0] \leftarrow 0 // initialisation for p=0
2 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
3 for i \leftarrow 0 to k-1
5 if w[i] \leq p then // don't overpay
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
<pre> min ← 1 + C[p - w[i]] </pre>
3 coin \leftarrow w[i]
0 D[p] \leftarrow coin // best coin to pick for W
0 C[p] \leftarrow min
return C and S
Working of change ({1,2,5}, 3 , 14)
p: 0
C[p]: 0
D[p]: 0

 C[0] ~ 0 // initialisation for p=0 for p ~ 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
i for i \leftarrow 0 to k-1
<pre>if w[i] ≤ p then // don't overpay</pre>
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
$0 \min \leftarrow 1 + C[p - w[i]]$
3 coin ← w[i]
0 D[p] \leftarrow coin // best coin to pick for W
0 C[p] \leftarrow min
🛈 return C and S
Working of change ($\{1, 2, 5\}$, 3, 14)
p: 0 1
C[p]: 0 1

<pre>change(w[], k, W) // coins of k denominations in w</pre>
0 C[0] \leftarrow 0 // initialisation for p=0
2 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
• for i \leftarrow 0 to k-1
<pre>if w[i] ≤ p then // don't overpay</pre>
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
<pre> min ← 1 + C[p - w[i]] </pre>
3 coin \leftarrow w[i]
9 D[p] \leftarrow coin // best coin to pick for W
0 C[p] \leftarrow min
1 return C and S
Working of change ($\{1, 2, 5\}$, 3, 14)
p: 0 1 2
C[p]: 0 1 1 .
D[p]: 0 1 2

• C[0] \leftarrow 0 // initialisation for p=0	
2 for p \leftarrow 1 to W // do coin changes bottom-up	
3 min $\leftarrow \infty$	
3 for i \leftarrow 0 to k-1	
<pre>if w[i] ≤ p then // don't overpay</pre>	
<pre>// decide whether w[i] is a good choice</pre>	
if 1 + C[p - w[i]] < min then	
0 min \leftarrow 1 + C[p - w[i]]	
3 coin \leftarrow w[i]	
0 D[p] \leftarrow coin // best coin to pick for W	
0 C[p] \leftarrow min	
return C and S	
Working of change ($\{1, 2, 5\}$, 3, 14)	
p: 0 1 2 3	
C[p]: 0 1 1 2	
D[p]: 0 1 2 1	

<pre>change(w[], k, W) // coins of k denominations in w</pre>
0 C[0] \leftarrow 0 // initialisation for p=0
2 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
0 for i \leftarrow 0 to k-1
<pre>if w[i] ≤ p then // don't overpay</pre>
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
<pre> min ← 1 + C[p - w[i]] </pre>
0 coin \leftarrow w[i]
0 D[p] \leftarrow coin // best coin to pick for W
0 C[p] \leftarrow min
return C and S
Working of change ($\{1, 2, 5\}$, 3, 14)
p: 0 1 2 3 4
C[p]: 0 1 1 2 2
D[p]: 0 1 2 1 2

<pre>change(w[], k, W) // coins of k denominations in w</pre>
0 C[0] \leftarrow 0 // initialisation for p=0
2 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
3 for i \leftarrow 0 to k-1
if w[i] \leq p then // don't overpay
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
<pre> min ← 1 + C[p - w[i]] </pre>
3 coin \leftarrow w[i]
0 D[p] \leftarrow coin // best coin to pick for W
0 C[p] \leftarrow min
return C and S
Working of change ($\{1, 2, 5\}$, 3, 14)
p: 0 1 2 3 4 5
C[p]: 0 1 1 2 2 1 6
D[p]: 0 1 2 1 2 5

<pre>change(w[], k, W) // coins of k denominations in w</pre>
0 C[0] \leftarrow 0 // initialisation for p=0
2 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
0 for i \leftarrow 0 to k-1
if w[i] \leq p then // don't overpay
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
0 min \leftarrow 1 + C[p - w[i]]
3 coin \leftarrow w[i]
D [p] \leftarrow coin // best coin to pick for W
0 C[p] \leftarrow min
<pre>0 return C and S</pre>
Working of change ($\{1, 2, 5\}$, 3, 14)
p: 0 1 2 3 4 5 6
C[p]: 0 1 1 2 2 1 2
D[p]: 0 1 2 1 2 5 5 .

<pre>change(w[], k, W) // coins of k denominations in w</pre>
0 C[0] \leftarrow 0 // initialisation for p=0
2 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
3 for i \leftarrow 0 to k-1
<pre>if w[i] ≤ p then // don't overpay</pre>
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
$\textcircled{0} \qquad \texttt{min} \leftarrow \texttt{1} + \texttt{C}[\texttt{p} - \texttt{w}[\texttt{i}]]$
0 coin \leftarrow w[i]
0 D[p] \leftarrow coin // best coin to pick for W
0 C[p] \leftarrow min
<pre>0 return C and S</pre>
Working of change ($\{1, 2, 5\}$, 3, 14)
p: 0 1 2 3 4 5 6 7
C[p]: 0 1 1 2 2 1 2 2
D[p]: 0 1 2 1 2 5 5 2

<pre>change(w[], k, W) // coins of k denominations in w</pre>
0 C[0] \leftarrow 0 // initialisation for p=0
3 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
0 for i \leftarrow 0 to k-1
if w[i] \leq p then // don't overpay
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
$\textcircled{0} \qquad \texttt{min} \leftarrow \texttt{1} + \texttt{C}[\texttt{p} - \texttt{w}[\texttt{i}]]$
3 coin \leftarrow w[i]
0 D[p] \leftarrow coin // best coin to pick for W
0 $C[p] \leftarrow min$
return C and S
Working of change ($\{1, 2, 5\}$, 3, 14)
p: 0 1 2 3 4 5 6 7 8
C[p]: 0 1 1 2 2 1 2 3
D[p]: 0 1 2 1 2 5 5 2 1

<pre>change(w[], k, W) // coins of k denominations in w</pre>
0 C[0] \leftarrow 0 // initialisation for p=0
3 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
• for i \leftarrow 0 to k-1
<pre>if w[i] ≤ p then // don't overpay</pre>
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
<pre> min ← 1 + C[p - w[i]] </pre>
3 coin \leftarrow w[i]
$ 0 \qquad \texttt{D[p]} \leftarrow \texttt{coin} \texttt{ // best coin to pick for } W $
0 C[p] \leftarrow min
return C and S
Working of change ($\{1, 2, 5\}$, 3, 14)
p: 0 1 2 3 4 5 6 7 8 9
C[p]: 0 1 1 2 2 1 2 3 3
D[p]: 0 1 2 1 2 5 5 2 1 2

<pre>change(w[], k, W) // coins of k denominations in w</pre>
0 C[0] \leftarrow 0 // initialisation for p=0
2 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
3 for i \leftarrow 0 to k-1
if w[i] \leq p then // don't overpay
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
<pre> min ← 1 + C[p - w[i]] </pre>
0 coin \leftarrow w[i]
0 D[p] \leftarrow coin // best coin to pick for W
0 C[p] \leftarrow min
return C and S
Working of change ({1,2,5}, 3 , 14)
p: 0 1 2 3 4 5 6 7 8 9 10
C[p]: 0 1 1 2 2 1 2 3 3 2
D[p]: 0 1 2 1 2 5 5 2 1 2 5

<pre>change(w[], k, W) // coins of k denominations in w</pre>
0 C[0] \leftarrow 0 // initialisation for p=0
2 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
3 for i \leftarrow 0 to k-1
if w[i] \leq p then // don't overpay
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
<pre> min ← 1 + C[p - w[i]] </pre>
3 coin \leftarrow w[i]
0 D[p] \leftarrow coin // best coin to pick for W
0 C[p] \leftarrow min
return C and S
Working of change ($\{1, 2, 5\}$, 3, 14)
p: 0 1 2 3 4 5 6 7 8 9 10 11
C[p]: 0 1 1 2 2 1 2 3 3 2 3
D[p]: 0 1 2 1 2 5 5 2 1 2 5 1

<pre>change(w[], k, W) // coins of k denominations in w C[0]</pre>
2 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
• for i \leftarrow 0 to k-1
if w[i] \leq p then // don't overpay
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
$0 \min \leftarrow 1 + C[p - w[i]]$
3 coin \leftarrow w[i]
9 D[p] \leftarrow coin // best coin to pick for W
0 C[p] \leftarrow min
return C and S
Working of change ({1,2,5}, 3, 14)
p: 0 1 2 3 4 5 6 7 8 9 10 11 12
C[p]: 0 1 1 2 2 1 2 3 3 2 3 3
D[p]: 0 1 2 1 2 5 5 2 1 2 5 1 2

<pre>change(w[], k, W) // coins of k denominations in w</pre>
0 C[0] \leftarrow 0 // initialisation for p=0
2 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
3 for i \leftarrow 0 to k-1
if w[i] \leq p then // don't overpay
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
<pre> min ← 1 + C[p - w[i]] </pre>
3 coin \leftarrow w[i]
$ 0 \qquad \texttt{D[p]} \leftarrow \texttt{coin} \texttt{// best coin to pick for } W $
0 C[p] \leftarrow min
return C and S
Working of change ($\{1, 2, 5\}$, 3, 14)
p: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
C[p]: 0 1 1 2 2 1 2 3 3 2 3 3 4
D[p]: 0 1 2 1 2 5 5 2 1 2 5 1 2 1 2

<pre>change(w[], k, W) // coins of k denominations in w C[0]</pre>
2 for p \leftarrow 1 to W // do coin changes bottom-up
3 min $\leftarrow \infty$
0 for i \leftarrow 0 to k-1
if w[i] \leq p then // don't overpay
<pre>// decide whether w[i] is a good choice</pre>
if 1 + C[p - w[i]] < min then
$oldsymbol{0}$ min \leftarrow 1 + C[p - w[i]]
0 coin \leftarrow w[i]
0 D[p] \leftarrow coin // best coin to pick for W
0 C [p] \leftarrow min Time complexity of DP solution: Linear
return C and S in W, exponential in number of bits of W
Working of change ({1,2,5}, 3, 14)
p: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
C[p]: 0 1 1 2 2 1 2 3 3 2 3 3 4 4
D[p]: 0 1 2 1 2 5 5 2 1 2 5 1 2 1 2