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Chain matrix multiplication

Section outline

matrix multiplication
@ DP formulation for chain

o Chain matrix multiplication matrix multiplication
@ Chain matrix multiplication @ Bottom-up chain matrix
@ Formulation for chain matrix multiplication
multiplication @ DP solution for chain matrix
@ Naive solution for chain multiplication
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Chain matrix multiplication Chain matrix multiplication

Chain matrix multiplication

Example (Chain matrix multiplication)
@ Let Ay be a 10 x 100 matrix
@ Let A> be a 100 x 5 matrix
@ Let A3 be a5 x 50 matrix
@ Need to compute A; x As x Az
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Chain matrix multiplication Chain matrix multiplication

Chain matrix multiplication

Example (Chain matrix multiplication)
@ Let Ay be a 10 x 100 matrix
@ Let A> be a 100 x 5 matrix
@ Let A3 be a5 x 50 matrix
@ Need to compute A; x As x Az
@ Costof (A1 x Az) x Az: (10 x 100 x 5) + (10 x 5 x 50) = 7,500
@ Costof Ay x (A2 x Az): (100 x5 x50)+ (10 x 100 x 50) = 75,000)
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Chain matrix multiplication Chain matrix multiplication

Chain matrix multiplication

Example (Chain matrix multiplication)
@ Let Ay be a 10 x 100 matrix
@ Let A> be a 100 x 5 matrix
@ Let A3 be a5 x 50 matrix
@ Need to compute A; x As x Az
@ Cost of (A1 x A2) x Az: (10 x 100 x 5) + (10 x 5 x 50) = 7,500
@ Costof Ay x (A2 x Az): (100 x5 x50)+ (10 x 100 x 50) = 75,000/

Definition

Chain matrix multiplication Given n matrices, A+, ..., A,, ..., An, Where
for1 <:<n, A isap,_ 1 x p,, matrix, parenthesise the product

Ai x...x A, x...x A,so as to minimize the total cost of
multiplication, assuming that the cost of multiplying a p:—1 x p, matrix
by a p, x p,+1 matrix using the naive algorithm is p,_1 x p, X p,+1
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Chain matrix multiplication Formulation for chain matrix multiplication

Formulation for chain matrix multiplication

@ If there is just a single matrix, there is nothing to decide

@ For n(n > 2), we need to divide the problem into two parts
suitably, in one of the n — 1 possible ways

@ The sub-problems are solved optimally to get the requisite solution
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Chain matrix multiplication Formulation for chain matrix multiplication

Formulation for chain matrix multiplication

@ If there is just a single matrix, there is nothing to decide

@ For n(n > 2), we need to divide the problem into two parts
suitably, in one of the n — 1 possible ways

@ The sub-problems are solved optimally to get the requisite solution

@ However, the quality of the solution is dependent on the point of
division
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Chain matrix multiplication Formulation for chain matrix multiplication

Formulation for chain matrix multiplication

@ If there is just a single matrix, there is nothing to decide

@ For n(n > 2), we need to divide the problem into two parts
suitably, in one of the n — 1 possible ways

@ The sub-problems are solved optimally to get the requisite solution
@ However, the quality of the solution is dependent on the point of
division
@ So, we need to consider all possible ways to divide the problem
into two parts and retain the best choice
@ The total number of possible solutions to be handled is huge:
1 n=1

— n—1
Np = Nan_k n>1
k=1
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Chain matrix multiplication Formulation for chain matrix multiplication

Formulation for chain matrix multiplication

@ If there is just a single matrix, there is nothing to decide

@ For n(n > 2), we need to divide the problem into two parts
suitably, in one of the n — 1 possible ways

@ The sub-problems are solved optimally to get the requisite solution

@ However, the quality of the solution is dependent on the point of
division

@ So, we need to consider all possible ways to divide the problem
into two parts and retain the best choice

@ The total number of possible solutions to be handled is huge:
1 n=1 1 n=20

— n—1 — — n-2
k=1 k=0
@ (n— 1) Catalan number, C,_1 € Q (:g) &
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Chain matrix multiplication Naive solution for chain matrix multiplication

Naive solution for chain matrix multiplication

chnMatMulSim(int p[x-1 .. y]) { // dimensions
@ int n=y-x+1;

©Q if (n==1) return 0; // single matrix

© for L = 2 to n { // lengths of subchains

Q@ for i = x to n-L+1 { // starts of subchains

Q j = i+L-1; // ends of subchains

Q ¢ = 00; // init to find min cost

Q for k =i to j -1 { // check all splits

Q q = chnMatMulSim(p[i-1,k] +
chnMatMulSiml[k, j] + p[i-1]xpl[k]lXxp[3jl];

Q if (g < ¢) ¢ = q; // check for lower cost

(10} }

@

@}

@® return c; @
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Chain matrix multiplication Naive solution for chain matrix multiplication

Analysis of naive method

0 n=1
T(n) = {"f(T(kHT(nk)Jrc) n>1

k=1
n—1
= 2 T(k)+(n—-1)c n>1
k=1
n
T(n+1) = 2> T(k)+nc n>1
=
= 2) T(k)+(n—1)c+2T(n)+c n>1
k=1
T(n)
= 3T(n)+c n>1
T(n) = 3T(n—1)+c n>1
F(@" T -1)c
Thus, the naive method works in exponential time. @
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Chain matrix multiplication DP formulation for chain matrix multiplication

DP formulation for chain matrix multiplication

@ Key observation:
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Chain matrix multiplication DP formulation for chain matrix multiplication

DP formulation for chain matrix multiplication

@ Key observation: Occurrence of common sub-problems

5 4
@ To solve for [] A,, need to consider Ay x Az while solving for [] A,

1=1 1=1

3
and also [] A,

=1

@ May other sub-problems are also repeated

@ Considerable savings possible by reusing solutions to earlier
identified sub-problems (memoization), thereby avoiding solving
those again and again
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Chain matrix multiplication DP formulation for chain matrix multiplication

DP formulation for chain matrix multiplication

@ Key observation: Occurrence of common sub-problems

5 4
@ To solve for [] A,, need to consider Ay x Az while solving for [] A,

1=1 1=1

3
and also [] A,
=1

@ May other sub-problems are also repeated

@ Considerable savings possible by reusing solutions to earlier
identified sub-problems (memoization), thereby avoiding solving
those again and again

@ Problems can be solved bottom-up to obtain required solution
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Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A; x A; x ... x A7)

v
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Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A; x A; x ... x A7)

A Ay As A As As A

v
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Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A; x A; x ... x A7)

(A1 X A2) (A2 X A3) (A3 X A4) (A4 X A5) (A5 X As) (Ae X A7)

A1 A2 A3 A4 A5 A6 A;

v
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Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A1 x A> x ... X A7)

(a) (114) (a) (f4) (A4)

(A1 X A2) (A2 X A3) (A3 X A4) (A4 X A5) (A5 X AG) (As X A7)

A1 A2 A3 A4 A5 A6 A

v
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Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A1 x A> x ... X A7)

(14) (1a) (4) (14)
(a) (114) (a) (f4) (A4)

(A1 X Ag) (A2 X A3) (A3 X A4) (A4 X A5) (A5 X AG) (As X A7)

A1 A2 A3 A4 A5 A6 A

v
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Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A1 x A> x ... X A7)

(12) (11a) (04)

(1) (La) (14) (14)

i—a4

(fia) (1) (7a) (1) (B2)

(A1 X Ag) (A2 X A3) (A3 X A4) (A4 X A5) (A5 X AG) (As X A7)

A1 A2 A3 A4 A5 A6 A;

v
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Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A1 x A> x ... X A7)

(12) (f14)
(12) (11a) (04)

(14) (1a) (4) (14)
(a) (114) (a) (f4) (A4)

(A1 X Ag) (A2 X A3) (A3 X A4) (A4 X A5) (A5 X AG) (As X A7)

<

A1 A2 A3 A4 A5 A6 A;

v
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Bottom-up chain matrix multiplication
Bottom-up chain matrix multiplication
Example (Efficient computation of A1 x A> x ... X A7)

fi)
(1) (B14) (1) (fia)
(fia) (1a) (Ba) (54) (Ba)

(A1 X Ag) (A2 X A3) (A3 X A4) (A4 X A5) (A5 X AG) (As X A7)

A1 A2 A3 A4 A5 A6 A

v
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Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)
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Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

Aq
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Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

A (A1 x Ap)
Ao (Ao x Ag)
As (A3 x As)
Ay (Ag x As)
As  (As x As)

As  (As x A7)

A7
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Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

3
A (A% A) <,-H1 Az)
Ao (Ao x Ag) <11j12 A,)
5
A (As x A) <11_13 AZ>
Ay (A4 x As) (iliAz>
7
fs (s ) (114)

As  (As x A7)

A7
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Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

e (i) (4

o e (i) (1
As  (As x Ag) < 151 AZ> <f[3 AZ>

o e (i) (1)
fs (A= ae) (114)

As  (As x A7)

A7
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Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)

Example (Upper triangular DP matrix for A} x Ax x ... x A7)

o e (i) (i) (i)

o e (i) (fin) (fin)
o e (jin) (fin) (i)
As (As x Ag) (;1_215 AZ>
As (Ag x A7)
A7
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Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

o e (fin) (fin) (fin) (112

e () (i) (84) (i)
o e () (1) (1)
e () (i)

n s (114)
As (Ag x A7)

A7
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Chain matrix multiplication Bottom-up chain matrix multiplication

Bottom-up chain matrix multiplication (contd.)
Example (Upper triangular DP matrix for A; x As x ... x A7)

7
fia)
w texa) (1a) (114) (14) (f14)
A o) (14) (f1a) (14)
A (As x As) @4 AZ> @4 AZ>
As  (As x Ag) ([7[5 AZ>
As  (As x A7)
A7
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Chain matrix multiplication DP solution for chain matrix multiplication

DP solution for chain matrix multiplication

chainMatMul (int p[0 .. n], int n) { // dimensions
Q@ int s[1 .. n-1, 2 .. nl]; // split positions
Q for i =1 to nm[i, i] = 0; // single matrix
= 2 ton { // lengths of subchains
for i = 1 to n-L+1 { // starts of subchains
j = i+L-1; // ends of subchains
m[i, j] = oo; // init to find min cost
for k =i to j -1 { // check all splits
q = m[i k] + m[k+1,3] + pli-11xplk]lxp[il;
if (q < m[i, jl) { // check for lower cost
m[i, j] q;// found, so update
s[i, 3] k; // record split for min cost
}
}
}

&
H
o
H
B

}
return m[1l, n] and s; §§

0666666000000
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DP solution for chain matrix multiplication
Optimal chain matrix multiplication

matMuOptl (i, Jj) {

@ if (i == j) return A[i]; // base case

Q else {

Q@ k = s[i, jl; // split position for Ajx...x A

Q X = matMulOpt (i, k); // X = A x...x Ak

Q@ Y =matMulopt(k + 1, j); // Y =Aix...xA
Q@ return XxY;

Q)

}
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Chain matrix multiplication DP solution for chain matrix multiplication

Optimal chain matrix multiplication

matMuOptl (i, Jj) {

@ if (i == j) return A[i]; // base case

Q else {

Q@ k = s[i, jl; // split position for Ajx...x A

Q X = matMulOpt (i, k); // X = A x...x Ak

Q@ Y =matMulopt(k + 1, j); // Y =Aix...xA
Q@ return XxY;

Q)

}

@ Space requirement with DP: O(n?)

@ Time requirement with DP: O(n®) — DP solution scheme
encounters 3 sub-problems each of size J and requiring
evaluation of  — 1 parenthesisations

e Time requirement with naive (non DP) approach: © (3"1) &
@ Better algorithms are also available
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Dynamic Programming

Section outline

@ DP examples
@ Fibonacci number

e Dynamic Programming computation
@ Algorithm design paradigms
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Algorithm design paradigms

Divide-and-conquer (DC) Break up a problem into two or more
sub-problems, solve each sub-problem independently,
and combine solution to sub-problems to form a solution
to original problem

Dynamic programming (DP) Break up a problem into a series of
sub-problems and use the solutions to build solutions to
larger and larger sub-problems
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Dynamic Programming Algorithm design paradigms

Algorithm design paradigms

Divide-and-conquer (DC) Break up a problem into two or more
sub-problems, solve each sub-problem independently,
and combine solution to sub-problems to form a solution
to original problem

Dynamic programming (DP) Break up a problem into a series of
sub-problems and use the solutions to build solutions to
larger and larger sub-problems

@ Difference between DC and DP can be confusing

@ DP makes repeated use of the solutions of sub-problems

@ Sub-problems identified for DP are usually overlapping, leading to
identification of common smaller sub-problems later

@ DP often exhibits optimal substructure where an optimal solution
is constructed from the optimal solution of its sub-problems @
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Dynamic Programming DP examples

DP examples

@ Fibonacci number computation

@ Chain Matrix Multiplication

@ Coin changing

@ Minimum edit distance

@ Longest common subsequence

@ All shortest paths (Floyd-Warshall)
@ Box stacking

@ Bridge building
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Dynamic Programming Fibonacci number computation

Fibonacci number computation

0 n=20
Fn=4 1 n=1

Fn2+Fny n>1
Direct coding of this recurrence requires exponential execution
time
But, Fn_1 = Fp3+ Fp2
If solutions of sub-problems computed earlier are reused, then the
computation takes O(n) additions
Otherwise, sub-problems are solved repeatedly, wasting time
Naive algorithm takes exponential time
Further optimisations yield O(lg n) algorithm

Fox = Fx[2Fk41 — Fi]
Foxy1 = FE 4+ FF &
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Optimal coin changing

Section outline

@ Formulation for coin
) ) ] changing
© oOptimal coin changing @ DP solution for coin change
@ Coin changing problem
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Optimal coin changing Coin changing problem

Coin changing problem

Definition
Coin change problem
@ Coin denominations can be modeled by a set of n distinct positive
integer values, arranged in increasing order as wy = 1 through wj

@ Given a positive integral amount W, find non-negative integers
{X1,X2,...,Xn} such that

n

(1) Z XiW; = w
i=1
n

@ > x; is minimised
i=1

@ Each x; represents the number of coins of denomination w; used

V.
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Optimal coin changing Coin changing problem

Coin change problem

@ Sometimes the greedy method of picking coins of largest
denomiation works

@ Coin systems for which the greedy method works are called
canonical coin systems

@ The greedy algorithm does not work arbitrary coin systems
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Optimal coin changing Coin changing problem

Coin change problem

@ Sometimes the greedy method of picking coins of largest
denomiation works

@ Coin systems for which the greedy method works are called
canonical coin systems

@ The greedy algorithm does not work arbitrary coin systems

@ Consider forming coin change of 6 units in the coin system:
{1,3,4}

@ The greedy method would yield {4, 1,1}, however, the optimal
change for this system is {3, 3}
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Optimal coin changing Formulation for coin changing

Formulation for coin changing

@ Consider a denomination w; < W

@ If we know how make the change optimally for amount W — w;, then we
can make change for W by including a coin of denomination w;
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Optimal coin changing Formulation for coin changing

Formulation for coin changing

@ Consider a denomination w; < W

@ If we know how make the change optimally for amount W — w;, then we
can make change for W by including a coin of denomination w;

@ Let C(W, W) be the function that returns the change count, given the
vector of denominations W

@ C(0,)=0

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 19/20



Optimal coin changing Formulation for coin changing

Formulation for coin changing

@ Consider a denomination w; < W

@ If we know how make the change optimally for amount W — w;, then we
can make change for W by including a coin of denomination w;

@ Let C(W, W) be the function that returns the change count, given the
vector of denominations W

@ C(0,)=0
@ To get optimal change for amount W, we consider all possibilities
@ C(W, W)= min C(W—w;, W)+1

w<W
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Optimal coin changing Formulation for coin changing

Formulation for coin changing

Consider a denomination w; < W

If we know how make the change optimally for amount W — w;, then we
can make change for W by including a coin of denomination w;

Let C(W, W) be the function that returns the change count, given the
vector of denominations W

C(0,))=0
To get optimal change for amount W, we consider all possibilities
C(W, W) = min C(W — wj, W)+ 1
w<W
This function may not be defined for certain amounts
If W = {2,3}, C(1, W) is not defined
We will not have this problem if 1 w

@
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Optimal coin changing Formulation for coin changing

Formulation for coin changing

Consider a denomination w; < W

If we know how make the change optimally for amount W — w;, then we
can make change for W by including a coin of denomination w;

Let C(W, W) be the function that returns the change count, given the
vector of denominations W

C(0,))=0
To get optimal change for amount W, we consider all possibilities
C(W, W) = min C(W — wj, W)+ 1

w<W

This function may not be defined for certain amounts
If W = {2,3}, C(1, W) is not defined
We will not have this problem if 1 w

A direct coding of this recursive formulation will lead to an exponential
time solution

But, we can efficiently form the solution bottom-up in-O(|w|W)-time
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] + 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min < oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice

Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
(1) return C and S
Working of change ({1,2,5}, 3, 14)

p: |0
Clpl: | O
Dlp]: | O @
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] + 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min < oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice

Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
(1) return C and S
Working of change ({1,2,5}, 3, 14)

p: |01
Clpl: |0 | 1
D[p]: | 0| 1 @
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] + 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min < oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice

Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
(1) return C and S
Working of change ({1,2,5}, 3, 14)

p: |0]1]2
Clpl: |0 |11
Dlpl: |0]1]2 @
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[],

k, W) // coins of k denominations in w

@ C[0] + 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min < oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice

Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
(1) return C and S
Working of change ({1,2,5}, 3, 14)

p: |0]|1[2]3
Clpl: 10112
Dpl: |O0|1]2]|1 @
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[],

k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min < oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice

Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)

p: |0|1|2]3]|4
Clpl: 101122
Dpl: /0|1 ]2|1]|2 @
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[],

k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p: |0[|1(2]3|4]5
Clpl: 101 (12|21
Dpl:|0|1]2|1]2]|5 @
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[],

k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p:|0|1(2]|3|4/5|6
Cpl: |01 (1]2]2]1]2
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p: |0|1(2]3|4|5|6|7
Clpl: 101 (1 |2|2]1]2]2
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p: /10|12 3|4|5|6|7|8
Clpl: 101 (1 |2|2]1]2]2
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p:|0(1(2|3|4/5|6|7|8|9
Clpl: 101 (1 |2|2]1]2]2 3
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p: |0|1(2]3/4|5|6|7|8|9]10
Clpl: 101 (1 |2|2]1]2]2 3| 2
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p:|0|1(2|3|4|5|6|7|8|9]|10 | 11
Cpl: 101 (1 |2|2]1]2]2 3| 2| 3
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[],

k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p:|0|1(2]3|4|5|6|78|9]10 |11 |12
Cpl: 101 (1 |2|2]1]2]2 3| 2| 3| 3
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

@ C[0] « 0 // initialisation for p=0
©@ forp + 1 to W // do coin changes bottom-up
Q min + oo
Q for i + 0 to k-1
Q if w[i] < p then // don’t overpay
// decide whether w[i] is a good choice
Q if 1 + C[p — w[i]] < min then
Q min < 1 + C[p — w[i]]
Q coin + w[i]
Q D[p] + coin // best coin to pick for W
(10) C[p] <+ min
@ return C and S
Working of change ({1,2,5}, 3, 14)
p:/0|1(2|3|4|5|6|7|8|9|10 |11 |12 13
Cpl: 101 (1 |2|2]1]2]2 3| 2| 3| 3| 4
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Optimal coin changing DP solution for coin change

DP solution for coin change

change (w[], k, W) // coins of k denominations in w

©60000 00000

C[0] « 0 // initialisation for p=0

for p <~ 1 to W // do coin changes bottom-up

min < oo
for i < 0 to k-1

C[p] ¢ min
return C and S
Working of change ({1,2,5

if w[i] < p then // don’'t overpay
// decide whether w[i] is a good choice

if 1 + C[p — w[i]] < min then

min < 1 + C[p — w[i]]

coin « wl[i]
D[p] < coin // best coin to pick for W
Time complexity of DP solution: Linear
in W, exponential in number of bits of W
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