Table of Contents

Chittaranjan Mandal (IIT Kharagpur)

September 3, 2015

1 / 19

Э

Section outline

Disjoint sets

- Notion of disjoint sets
- Kruskal's algorithm with DSUF
- Disjoint set data structure
- The findSet operation
- The unionSet operation
- Size guided unionSet operation
- Rank guided unionSet operation
- Properties of linking by rank
- Union with path compression
- Grouping of ranks by the iterated logarithm
- Disbursing credits to drive findSet
- Amortised costing of find with path compression
- Complexity of Kruskal's algorithm with DSUF

Notion of disjoint sets

- Consider a universe $U = \{S_1, S_2, \dots, S_n\}$
- Always $S_i, S_j \in U \Rightarrow S_i \cap S_j = \phi$
- If union of $S_i \in U$ and $S_j \in U$ is carried out, U is updated as $U \leftarrow (U \setminus \{S_1, S_2\}) \cup \{S_1 \cup S_2\}$
- This ensures that all members of U are still disjoint
- A set S in U may be identified by some x ∈ S, the cannonical element
 Eg. S = {a, b, c} may be identified by a
- Operations on disjoint sets (DSUF) are as follows:
 makeSet(x) creates singleton set {x} and adds it to U
 unionSet(x, y) Let x ∈ S_i and y ∈ S_j; U ← (U \ {S_i, S_j}) ∪ {S_i ∪ S_j}
 findSet(x) returns y, x, y ∈ S and y is the cannonical member of S
- The sets S_i are a partition of $\bigcup_i S_i$ and are induced equivalent classes
- DSUF data structure introduced by Bernard A Gallaer and Michael J Fisher in 1964

Kruskal's algorithm with DSUF

- build a min heap H of the edges
- 2 initialise $T \leftarrow \phi$; edge count $c \leftarrow 0$
- **3** foreach $v \in V$ makeSet(v)
- while (c < |V| 1) do
- Sector cost edge $e = \langle v_i, v_j \rangle \in H$
- If (findSet(v_i)≠findSet(v_j))
 - // no cycle formed by adding e to T
- 2 add e to T; $c \leftarrow c + 1$
 - unionSet(*v_i, v_j*)
 - // track the two components joining

FOCS

one

8

4 E 5 4 E 5

3

Disjoint set data structure

- Array dsuf[] holds the index of the parent element: pl = dsuf[xl]
- For the cannonical element: dsuf[xI] == xI

Example (Tree representation of sets)

- *U* = {{*a*, *d*, *e*}, {*b*, *f*}, {*c*}} may be represented as shown
- Elements in a set form chains leading to the representative element of the set
- The cannonical element of a set points to itself
- This structure may be implemented through arrays

Disjoint set data structure

Disjoint set data structure

- Array dsuf[] holds the index of the parent element: pl = dsuf[xl]
- For the cannonical element: dsuf[xl] == xl

Example (Tree representation of sets)

- *U* = {{*a*, *d*, *e*}, {*b*, *f*}, {*c*}} may be represented as shown
- Elements in a set form chains leading to the representative element of the set
- The cannonical element of a set points to itself
- This structure may be implemented through arrays

The findSet operation

- Worst case running time is determined by length of the longest chain
- Chains can grow long, making findSet() inefficient
- Long chain can be collapsed during a search

A 30 b

6/19

The findSet operation

- Worst case running time is determined by length of the longest chain
- Chains can grow long, making findSet() inefficient
- Long chain can be collapsed during a search

4 E b

The unionSet operation

The unionSet operation

э

Option-2

The unionSet operation

Chittaranjan Mandal (IIT Kharagpur)

Option-1

FOCS

September 3, 2015

<ロ> <同> <同> < 同> < 同>

7 / 19

э

unionSet by size

unionSet(xl, yl, dsuf[])

- pxl = findSet(xl, dsuf)
- pyl = findSet(yl, dsuf)
- if (dsuf[pxi].sz > dsuf[pyi].sz)
- dsuf[pyl].p = pxl
- dsuf[pxi].sz += dsuf[pyl].sz

else

(3)

- dsuf[pxl].p = pyl
 - dsuf[pyl].sz += dsuf[pxl].sz

Max height for unionSet by size

If $r \in S$ is the cannonical member, unionSet by size ensures that $|S| \ge 2^{t}$

Chittaranjan Mandal (IIT Kharagpur)

э

unionSet by size

unionSet(xl, yl, dsuf[])

- pxl = findSet(xl, dsuf)
- pyl = findSet(yl, dsuf)
- if (dsuf[pxi].sz > dsuf[pyi].sz)
- dsuf[pyl].p = pxl
- dsuf[pxi].sz += dsuf[pyl].sz

else

dsuf[pxl].p = pyl

dsuf[pyl].sz += dsuf[pxl].sz

Max height for unionSet by size

If $r \in S$ is the cannonical member, unionSet by size ensures that $|S| \ge 2^{h_r}$

unionSet by size

unionSet(xI, yI, dsuf[])

- pxl = findSet(xl, dsuf)
- pyl = findSet(yl, dsuf)
- if (dsuf[pxi].sz > dsuf[pyi].sz)
- dsuf[pyl].p = pxl
- dsuf[pxi].sz += dsuf[pyl].sz
- 🧿 else
- dsuf[pxl].p = pyl
- dsuf[pyl].sz += dsuf[pxl].sz

Max height for unionSet by size

If $r \in S$ is the cannonical member, unionSet by size ensures that $|S| \ge 2^{h_r}$

Proof.

Inductive hypothesis: Let a tree formed by up to *i* links satisfy $|S| > 2^{h_r}$

Fime bound for unionSet by size

unionSet by size

unionSet(xI, yI, dsuf[])

- pxl = findSet(xl, dsuf)
- pyl = findSet(yl, dsuf)
- if (dsuf[pxi].sz > dsuf[pyi].sz)
- dsuf[pyl].p = pxl
- dsuf[pxi].sz += dsuf[pyl].sz
- 🧿 else
- dsuf[pxl].p = pyl
- dsuf[pyl].sz += dsuf[pxl].sz

Max height for unionSet by size

If $r \in S$ is the cannonical member, unionSet by size ensures that $|S| \ge 2^{h_r}$

Proof.

Inductive hypothesis: Let a tree formed by up to *i* links satisfy $|S| > 2^{h_r}$ **Base case:** Tree for singleton set has $|\{r\}| = 1$ and $h_r = 0$, thus $|\{r\}| > 2^{h_r}$

Fime bound for unionSet by size

unionSet by size

unionSet(xI, yI, dsuf[])

- pxl = findSet(xl, dsuf)
- pyl = findSet(yl, dsuf)
- if (dsuf[pxi].sz > dsuf[pyi].sz)
- dsuf[pyl].p = pxl
- dsuf[pxi].sz += dsuf[pyl].sz
- 🧿 else
- dsuf[pxl].p = pyl
- dsuf[pyl].sz += dsuf[pxl].sz

Max height for unionSet by size

If $r \in S$ is the cannonical member, unionSet by size ensures that $|S| \ge 2^{h_r}$

Proof.

Inductive hypothesis: Let a tree formed by up to *i* links satisfy $|S| > 2^{h_r}$ **Base case:** Tree for singleton set has $|\{r\}| = 1$ and $h_r = 0$, thus $|\{r\}| > 2^{h_r}$ **Inductive step:** Trees for S_1 and S_2 with cannonical elements r and s and heights h_r and h_s , respectively are linked; $S_1 > S_2$ to form S with height $h_r'; |S| = |S_1| + |S_2|$

Fime bound for unionSet by size

unionSet by size

unionSet(xI, yI, dsuf[])

- pxl = findSet(xl, dsuf)
- pyl = findSet(yl, dsuf)
- if (dsuf[pxi].sz > dsuf[pyi].sz)
- dsuf[pyl].p = pxl
- dsuf[pxi].sz += dsuf[pyl].sz
- 🧿 else
- dsuf[pxl].p = pyl
- dsuf[pyl].sz += dsuf[pxl].sz

Max height for unionSet by size

If $r \in S$ is the cannonical member, unionSet by size ensures that $|S| \ge 2^{h_r}$

Proof.

Inductive hypothesis: Let a tree formed by up to *i* links satisfy $|S| > 2^{h_r}$ **Base case:** Tree for singleton set has $|\{r\}| = 1$ and $h_r = 0$, thus $|\{r\}| > 2^{h_r}$ **Inductive step:** Trees for S_1 and S_2 with cannonical elements r and s and heights h_r and h_s , respectively are linked; $S_1 > S_2$ to form S with height $h'_r; |S| = |S_1| + |S_2|$ **Case 1** ($h_r > h_s$): Now $h'_r = h_r$ $|S| > |S_1| > 2^{h_r} = 2^{h'_r}$

Fime bound for unionSet by size

unionSet by size

unionSet(xI, yI, dsuf[])

- pxl = findSet(xl, dsuf)
- pyl = findSet(yl, dsuf)
- if (dsuf[pxi].sz > dsuf[pyi].sz)
- dsuf[pyl].p = pxl
- dsuf[pxi].sz += dsuf[pyl].sz
- 🧿 else
- dsuf[pxl].p = pyl
- dsuf[pyl].sz += dsuf[pxl].sz

Max height for unionSet by size

If $r \in S$ is the cannonical member, unionSet by size ensures that $|S| \ge 2^{h_r}$

Proof.

Inductive hypothesis: Let a tree formed by up to *i* links satisfy $|S| > 2^{h_r}$ **Base case:** Tree for singleton set has $|\{r\}| = 1$ and $h_r = 0$, thus $|\{r\}| > 2^{h_r}$ **Inductive step:** Trees for S_1 and S_2 with cannonical elements r and s and heights h_r and h_s , respectively are linked; $S_1 > S_2$ to form S with height $h'_r; |S| = |S_1| + |S_2|$ **Case 1** $(h_r > h_s)$: Now $h'_r = h_r$ $|S| > |S_1| > 2^{h_r} = 2^{h'_r}$ **Case 2 (** $h_r < h_s$ **):** Now $h'_r = h_s + 1$ $|S| = |S_1| + |S_2| > |S_2| > 2^{h_s}$

Fime bound for unionSet by size

unionSet by size

unionSet(xI, yI, dsuf[])

- pxl = findSet(xl, dsuf)
- pyl = findSet(yl, dsuf)
- if (dsuf[pxi].sz > dsuf[pyi].sz)
- dsuf[pyl].p = pxl
- dsuf[pxi].sz += dsuf[pyl].sz
- 🧿 else
- dsuf[pxl].p = pyl
- dsuf[pyl].sz += dsuf[pxl].sz

Max height for unionSet by size

If $r \in S$ is the cannonical member, unionSet by size ensures that $|S| \ge 2^{h_r}$

Proof.

Inductive hypothesis: Let a tree formed by up to *i* links satisfy $|S| > 2^{h_r}$ **Base case:** Tree for singleton set has $|\{r\}| = 1$ and $h_r = 0$, thus $|\{r\}| > 2^{h_r}$ **Inductive step:** Trees for S_1 and S_2 with cannonical elements r and s and heights h_r and h_s , respectively are linked; $S_1 > S_2$ to form S with height $h'_r; |S| = |S_1| + |S_2|$ **Case 1** $(h_r > h_s)$: Now $h'_r = h_r$ $|S| > |S_1| > 2^{h_r} = 2^{h'_r}$ **Case 2 (** $h_r \le h_s$ **):** Now $h'_r = h_s + 1$ $|S| = |S_1| + |S_2| > 2|S_2| > 2 \cdot 2^{h_s}$

Fime bound for unionSet by size

unionSet by size

unionSet(xI, yI, dsuf[])

- pxl = findSet(xl, dsuf)
- pyl = findSet(yl, dsuf)
- if (dsuf[pxi].sz > dsuf[pyi].sz)
- dsuf[pyl].p = pxl
- dsuf[pxi].sz += dsuf[pyl].sz
- 🧿 else
- dsuf[pxl].p = pyl
- dsuf[pyl].sz += dsuf[pxl].sz

Max height for unionSet by size

If $r \in S$ is the cannonical member, unionSet by size ensures that $|S| \ge 2^{h_r}$

Proof.

Inductive hypothesis: Let a tree formed by up to *i* links satisfy $|S| > 2^{h_r}$ **Base case:** Tree for singleton set has $|\{r\}| = 1$ and $h_r = 0$, thus $|\{r\}| > 2^{h_r}$ **Inductive step:** Trees for S_1 and S_2 with cannonical elements r and s and heights h_r and h_s , respectively are linked; $S_1 > S_2$ to form S with height $h'_r; |S| = |S_1| + |S_2|$ **Case 1** ($h_r > h_s$): Now $h'_r = h_r$ $|S| > |S_1| > 2^{h_r} = 2^{h'_r}$ **Case 2 (** $h_r \le h_s$ **):** Now $h'_r = h_s + 1$ $|S| = |S_1| + |S_2| > 2|S_2| = 2^{h_s+1} = 2^{h'_r}$

Fime bound for unionSet by size

unionSet by size

unionSet(xI, yI, dsuf[])

- pxl = findSet(xl, dsuf)
- pyl = findSet(yl, dsuf)
- if (dsuf[pxi].sz > dsuf[pyi].sz)
- dsuf[pyl].p = pxl
- dsuf[pxi].sz += dsuf[pyl].sz
- 🧿 else
- dsuf[pxl].p = pyl
- dsuf[pyl].sz += dsuf[pxl].sz

Max height for unionSet by size

If $r \in S$ is the cannonical member, unionSet by size ensures that $|S| \ge 2^{h_r}$

Proof.

Inductive hypothesis: Let a tree formed by up to *i* links satisfy $|S| > 2^{h_r}$ **Base case:** Tree for singleton set has $|\{r\}| = 1$ and $h_r = 0$, thus $|\{r\}| > 2^{h_r}$ **Inductive step:** Trees for S_1 and S_2 with cannonical elements r and s and heights h_r and h_s , respectively are linked; $S_1 > S_2$ to form S with height $h'_r; |S| = |S_1| + |S_2|$ **Case 1** ($h_r > h_s$): Now $h'_r = h_r$ $|S| > |S_1| > 2^{h_r} = 2^{h'_r}$ **Case 2 (** $h_r \le h_s$ **):** Now $h'_r = h_s + 1$ $|S| = |S_1| + |S_2| > 2|S_2| = 2^{h_s+1} = 2^{h'_r}$

Time bound for unionSet by size

Rank guided unionSet operation

- For now let rank(x)=height(x)
- For a single node tree, rank(x)=0
- Rank changes only through union

makeSet for union by rank

makeSet(xl, dsuf[])

- dsuf[xl].p = xl
- dsuf[xl].rk = 0

Example (unionSet(a, f, ...) by rank)

unionSet by rank

- unionSet(xl, yl, dsuf[])
- pxl = findSet(xl, dsuf)
- 2 pyl = findSet(yl, dsuf)
- if (dsuf[pxi].rk>dsuf[pyi].rk)
- dsuf[pyl].p = pxl
- elsif (dsuf[pxi].rk<dsuf[pyi].rk)</p>

- dsuf[pxl].p = pyl
- 🗿 else
- dsuf[pyl].p = pxl
- dsuf[pxl].rk += 1

Rank guided unionSet operation

- For now let rank(x)=height(x)
- For a single node tree, rank(x)=0
- Rank changes only through union

makeSet for union by rank

makeSet(xl, dsuf[])

- dsuf[xl].p = xl
- dsuf[xl].rk = 0

Example (unionSet(a, f, ...) by rank)

unionSet by rank

- unionSet(xl, yl, dsuf[])
- pxl = findSet(xl, dsuf)
- 2 pyl = findSet(yl, dsuf)
- if (dsuf[pxi].rk>dsuf[pyi].rk)
- dsuf[pyl].p = pxl
- elsif (dsuf[pxi].rk<dsuf[pyi].rk)</p>
- dsuf[pxl].p = pyl
- 🗿 else
- dsuf[pyl].p = pxl
- dsuf[pxl].rk += 1

<回><モン<モン<

- If x is not a root node, then rank(x) < rank(parent(x))
 A node of rank k is created only by merging two root nodes of rank k 1
- If x is not a root node, then rank(x) will never change again Rank changes only for root nodes; a non-root node never becomes a root
- If parent(x) changes, then rank(parent(x)) strictly increases Only a root node can link to the root node of another tree; if x is a root node, before linking parent(x) = x; after x is linked to a new root r due to union by rank, we have rank(r) > rank(x)
- If root node of tree for set S has rank k, |S| ≥ 2^k (inductive hypothesis)
 Base case: satisfied for a singleton node tree with rank k = 0
 Inductive step: A root node of rank k + 1 is created only by linking a root node of rank k to another
 - By inductive hypothesis, each subtree has at least 2^k nodes
 - Resulting tree has at least $2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$ nodes

10/19

- If x is not a root node, then rank(x) < rank(parent(x))
 A node of rank k is created only by merging two root nodes of rank k 1
- If x is not a root node, then rank(x) will never change again Rank changes only for root nodes; a non-root node never becomes a root
- If parent(x) changes, then rank(parent(x)) strictly increases Only a root node can link to the root node of another tree; if x is a root node, before linking parent(x) = x; after x is linked to a new root r due to union by rank, we have rank(r) > rank(x)
- If root node of tree for set S has rank k, |S| ≥ 2^k (inductive hypothesis)
 Base case: satisfied for a singleton node tree with rank k = 0
 Inductive step: A root node of rank k + 1 is created only by linking a root node of rank k to another
 - By inductive hypothesis, each subtree has at least 2^k nodes
 - Resulting tree has at least $2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$ nodes

- If x is not a root node, then rank(x) < rank(parent(x))
 A node of rank k is created only by merging two root nodes of rank k 1
- If x is not a root node, then rank(x) will never change again Rank changes only for root nodes; a non-root node never becomes a root
- If parent(x) changes, then rank(parent(x)) strictly increases Only a root node can link to the root node of another tree; if x is a root node, before linking parent(x) = x; after x is linked to a new root r due to union by rank, we have rank(r) > rank(x)
- If root node of tree for set S has rank k, |S| ≥ 2^k (inductive hypothesis)
 Base case: satisfied for a singleton node tree with rank k = 0
 Inductive step: A root node of rank k + 1 is created only by linking a root node of rank k to another
 - By inductive hypothesis, each subtree has at least 2^k nodes
 - Resulting tree has at least $2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$ nodes

- If x is not a root node, then rank(x) < rank(parent(x))
 A node of rank k is created only by merging two root nodes of rank k 1
- If x is not a root node, then rank(x) will never change again Rank changes only for root nodes; a non-root node never becomes a root
- If parent(x) changes, then rank(parent(x)) strictly increases Only a root node can link to the root node of another tree; if x is a root node, before linking parent(x) = x; after x is linked to a new root r due to union by rank, we have rank(r) > rank(x)
- If root node of tree for set S has rank k, $|S| \ge 2^k$ (inductive hypothesis)

Base case: satisfied for a singleton node tree with rank k = 0

Inductive step: A root node of rank k + 1 is created only by linking a root node of rank k to another

- By inductive hypothesis, each subtree has at least 2^k nodes
- Resulting tree has at least $2^k + 2^k = 2$ $2^k = 2^{k+1}$ nodes

5 For $r \ge 0, r \in \mathbb{Z}$, there are at most $n_r = |S|/2^r$ nodes with rank r in T_S

- Claim is trivially satisfied for rank r = 0
- Let it be satisfied for rank r = k
- **(1)** A tree with root node of rank (k + 1) is formed in two ways:
 - **Case-A** linking the root of a tree with with rank k to the root of a tree with rank k, whose rank increases to k + 1
 - **Case-B** linking the root of a tree with with rank $\leq k$ to the root of a tree with rank k + 1

Properties of linking by rank (contd.)

Case-A Trees for sets S_1 and S_2 of same rank k are linked

- For rank r < k, T_{S_1} and T_{S_2} satisfy $n_r^{(1)} < |S_1|/2^r$ and $n_r^{(2)} < |S_1|/2^r$
- For the composite tree, for r < k, $n_r = n_r^{(1)} + n_r^{(2)}$; $|S| = |S_1| + |S_2|$

③ ∴
$$n_r \leq |S_1|/2^r + |S_2|/2^r = |S|/2^r$$

- **1** For r = k, $n_k = 1$ satisfies $n_k < |S_1|/2^k < |S|/2^k$
- **(b)** For r = k + 1, root node of rank (k + 1) $(n_{k+1} = 1)$ has at least 2^{k+1} descendants [property-4]
- \odot : $|S| > 2^{k+1}$ and $|S|/2^{k+1} > 1$

Case-B: Trees S_2 of ranks k + 1 and S_1 of rank k' < k are linked Assume that the tree for set S_2 is initially formed through Case-A

3 For rank r < k, T_{S_r} and T_{S_r} satisfy $n_r^{(1)} < |S_1|/2^r$ and $n_r^{(2)} < |S_1|/2^r$

- For the composite tree, for r < k, $n_r = n_r^{(1)} + n_r^{(2)}$; $|S| = |S_1| + |S_2|$
- **1** For r = k + 1, $n_{k+1} = 1$ satisfies $n_{k+1} \le |S_2|/2^{k+1} \le |S|/2^{k+1}$
- **W** The reasoning for this case continues to apply to trees of rank k + 1fromed subsequently through this case ・ロン ・雪 と ・ ヨ と ・

3

Union with path compression

Path compression mechanism findSet(xI, dsuf[]) pl = dsuf[xl] 2 if $(pl \neq xl)$ dsuf[xi]=findSet(pI) 3 return dsuf[xl] Example (Path compression) а b e d

Union with path compression

- dsuf[xi]=findSet(pl)
- return dsuf[xl]

Example (Path compression)

Properties of linking by rank and path compression

- The highest rank of a node in a tree of a set S is at most [lg |S|] Follows from property-4
- With path compression ranks do not change though nodes may loose height
- In general, $height(x) \le rank(x)$ but they are not necessarily equal
- The rank of the parent of a node may increase a node may be linked to a parent of a higher rank
- If the parent changes, the rank of the new parent is strictly greater

э.

Grouping of ranks by the iterated logarithm

$$\lg^* n = \left\{ egin{array}{cc} 0 & ext{if } n \leq 1 \ 1 + \lg^*(\lg n) & ext{otherwise} \end{array}
ight.$$

Group G_k has integers in the range $(k+1)..2^k$

п	lg* <i>n</i>	Grp
1	0	G_0
2	1	G_1
[3, 4]	2	G ₂
[5, 16]	3	G_4
[17, 65536]	4	G_{16}
[65537, 2 ⁶⁵⁵³⁶]	5	$G_{2^{16}}$

15/19

Grouping of ranks by the iterated logarithm

$$\lg^* n = \left\{ egin{array}{cc} 0 & ext{if } n \leq 1 \ 1 + \lg^*(\lg n) & ext{otherwise} \end{array}
ight.$$

Group G_k has integers in the range $(k+1)..2^k$

n	lg* <i>n</i>	Grp
1	0	G_0
2	1	G_1
[3, 4]	2	G ₂
[5, 16]	3	G_4
[17, 65536]	4	G_{16}
[65537, 2 ⁶⁵⁵³⁶]	5	$G_{2^{16}}$

We have $\lg^* n \le 5$ unless *n* exceeds the number of atoms in the universe – a "reasonable" assumption for an upper bound on the size of the sets we consider!

Every non-zero rank falls within one of the first lg* n groups, assuming that the sets are of "reasonable" size Note that the rank of a root node for a set S is between 0 and [lg |S|] [property-6]

16/19

Disbursing credits to drive findSet

If a node ceases to be the root and its rank is in the interval of G_k it gets 2^k credits

Costing credits disbursed

Number of credits disbursed to all nodes is $|S| \lg^* |S|$

Proof.

- By property-5, the number of nodes with ranks in G_k (the subrange $[(k + 1)..2^k]$) is at most $\frac{|S|}{2^{k+1}} + \frac{|S|}{2^{k+2}} + ... + \frac{|S|}{2^{2^k}} \le \frac{|S|}{2^k}$
- Thus, nodes in group G_k need at most |S| credits in total @ 2^k credits per node
- As there are at most lg* |S| groups [property-12], at most
 |S| lg* |S| credits get disbursed

Amortised costing of find with path compression

Example (Showing group of rank and credits received)

- Each node in G_k has enough credits to move up to the node of highest rank in G_k – done only once over m finds
- Such link traversals within G_k are supported by disbursed credits
- Crossings from G_k to G_{k+1} (at most $\lg^* n$) charged to each find
- Total cost of *m* finds: $O((m + n)(\lg^* n))$
- Unions involve two finds and a linking (re-ordered)

18/19

Complexity of Kruskal's algorithm with DSUF

- create a min heap H of the edges
- 2 initialise $T \leftarrow \phi$; edge count $c \leftarrow 0$
- foreach $v \in V$ makeSet(v)
- while (c < |V| − 1) do
 </p>
- extract min cost edge $e = \langle v_i, v_j \rangle \in H$
- if (findSet(v_i)≠findSet(v_j))
 // no cycle formed by adding e to T
 - add *e* to *T*; $c \leftarrow c + 1$
- 3 unionSet(v_i, v_j)

// track the two components joining

done

7

- L1 takes O(|E|) time
- L3 takes O(|V|) time
- L5 takes
 O(|E| lg |E|) ≡
 O(|E| lg |V|) time overall
- L6 and L8 takes
 O(|E| lg* |V|) time
 overall using DSUF

э.