
IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Table of Contents

1 Disjoint sets

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 1 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets

Section outline

1 Disjoint sets
Notion of disjoint sets
Kruskal’s algorithm with DSUF
Disjoint set data structure
The findSet operation
The unionSet operation
Size guided unionSet operation
Rank guided unionSet operation
Properties of linking by rank
Union with path compression
Grouping of ranks by the iterated logarithm
Disbursing credits to drive findSet
Amortised costing of find with path compression
Complexity of Kruskal’s algorithm with DSUF

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 2 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Notion of disjoint sets

Notion of disjoint sets

Consider a universe U = fS1;S2; : : : ;Sng

Always Si ;Sj 2 U) Si \ Sj = �

If union of Si 2 U and Sj 2 U is carried out, U is updated as
U (U n fS1;S2g) [fS1 [S2g

This ensures that all members of U are still disjoint

A set S in U may be identified by some x 2 S, the cannonical element

Eg. S = fa;b; cg may be identified by a

Operations on disjoint sets (DSUF) are as follows:
makeSet(x) creates singleton set fxg and adds it to U

unionSet(x ; y) Let x 2 Si and y 2 Sj ; U
�
U n fSi ;Sjg

�
[fSi [Sjg

findSet(x) returns y , x ; y 2 S and y is the cannonical member of S

The sets Si are a partition of
S

i Si and are induced equivalent classes

DSUF data structure introduced by Bernard A Gallaer and Michael J
Fisher in 1964

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 3 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Kruskal’s algorithm with DSUF

Kruskal’s algorithm with DSUF

1 build a min heap H of the edges
2 initialise T �; edge count c 0
3 foreach v 2 V makeSet(v)
4 while (c < jV j � 1) do

5 extract min cost edge e = hvi ; vji 2 H

6 if (findSet(vi) 6=findSet(vj))

// no cycle formed by adding e to T
7 add e to T ; c c + 1
8 unionSet(vi ; vj)

// track the two components joining
9 done

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 4 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Disjoint set data structure

Disjoint set data structure

Array dsuf[] holds the index of the parent element: pI = dsuf[xI]
For the cannonical element: dsuf[xI] == xI

Example (Tree representation of sets)

a

d e

b

f

g

c

aa bb cc ad ae bf bg

U = ffa;d ;eg; fb; fg; fcgg
may be represented as shown
Elements in a set form chains
leading to the representative
element of the set
The cannonical element of a
set points to itself
This structure may be
implemented through arrays

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 5 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Disjoint set data structure

Disjoint set data structure

Array dsuf[] holds the index of the parent element: pI = dsuf[xI]
For the cannonical element: dsuf[xI] == xI

Example (Tree representation of sets)

a

d e

b

f

g

c

aa bb cc ad ae bf bg

U = ffa;d ;eg; fb; fg; fcgg
may be represented as shown
Elements in a set form chains
leading to the representative
element of the set
The cannonical element of a
set points to itself
This structure may be
implemented through arrays

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 5 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets The findSet operation

The findSet operation

Basic mechanism
findSet(xI, dsuf[])

1 pI = dsuf[xI]
2 while (pI6=xI) do
3 xI=pI
4 pI=dsuf[xI]
5 done

a

d e

b

f

g

c

Worst case running time is determined by length of the longest
chain
Chains can grow long, making findSet() inefficient
Long chain can be collapsed during a search

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 6 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets The findSet operation

The findSet operation

Basic mechanism
findSet(xI, dsuf[])

1 pI = dsuf[xI]
2 while (pI6=xI) do
3 xI=pI
4 pI=dsuf[xI]
5 done

a

d e

b

f

g

c

Worst case running time is determined by length of the longest
chain
Chains can grow long, making findSet() inefficient
Long chain can be collapsed during a search

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 6 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets The unionSet operation

The unionSet operation

Basic mechanism
unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)
2 pyI = findSet(yI, dsuf)
3 dsuf[pxI]=pyI

Example (Two sets)

a

bcd

f

gh

i

Example (Union of sets)

a

bcd

f

gh

iOption-1

a

bcd

f

gh

iOption-2

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 7 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets The unionSet operation

The unionSet operation

Basic mechanism
unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)
2 pyI = findSet(yI, dsuf)
3 dsuf[pxI]=pyI

Example (Two sets)

a

bcd

f

gh

i

Example (Union of sets)

a

bcd

f

gh

iOption-1

a

bcd

f

gh

iOption-2

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 7 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets The unionSet operation

The unionSet operation

Basic mechanism
unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)
2 pyI = findSet(yI, dsuf)
3 dsuf[pxI]=pyI

Example (Two sets)

a

bcd

f

gh

i

Example (Union of sets)

a

bcd

f

gh

iOption-1

a

bcd

f

gh

iOption-2

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 7 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Size guided unionSet operation

Size guided unionSet operation
unionSet by size

unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)

2 pyI = findSet(yI, dsuf)

3 if (dsuf[pxi].sz > dsuf[pyi].sz)

4 dsuf[pyI].p = pxI

5 dsuf[pxi].sz += dsuf[pyI].sz

6 else

7 dsuf[pxI].p = pyI

8 dsuf[pyI].sz += dsuf[pxI].sz

Max height for unionSet by size

If r 2 S is the cannonical member,
unionSet by size ensures that jSj � 2hr

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 8 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Size guided unionSet operation

Size guided unionSet operation
unionSet by size

unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)

2 pyI = findSet(yI, dsuf)

3 if (dsuf[pxi].sz > dsuf[pyi].sz)

4 dsuf[pyI].p = pxI

5 dsuf[pxi].sz += dsuf[pyI].sz

6 else

7 dsuf[pxI].p = pyI

8 dsuf[pyI].sz += dsuf[pxI].sz

Max height for unionSet by size

If r 2 S is the cannonical member,
unionSet by size ensures that jSj � 2hr

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 8 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Size guided unionSet operation

Size guided unionSet operation
unionSet by size

unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)

2 pyI = findSet(yI, dsuf)

3 if (dsuf[pxi].sz > dsuf[pyi].sz)

4 dsuf[pyI].p = pxI

5 dsuf[pxi].sz += dsuf[pyI].sz

6 else

7 dsuf[pxI].p = pyI

8 dsuf[pyI].sz += dsuf[pxI].sz

Max height for unionSet by size

If r 2 S is the cannonical member,
unionSet by size ensures that jSj � 2hr

Proof.
Inductive hypothesis: Let a tree
formed by up to i links satisfy jSj � 2hr

Base case: Tree for singleton set has
jfrgj = 1 and hr = 0, thus jfrgj � 2hr

Inductive step: Trees for S1 and S2
with cannonical elements r and s and
heights hr and hs, respectively are
linked; S1 � S2 to form S with height
h0

r ; jSj = jS1j+ jS2j
Case 1 (hr > hs): Now h0

r = hr
jSj � jS1j � 2hr = 2h0

r

Case 2 (hr � hs): Now h0

r = hs + 1
jSj = jS1j+ jS2j � jS2j

Time bound for unionSet by size

Tree height for findSet or unionSet is
� blg jSjc – follows by corollary

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 8 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Size guided unionSet operation

Size guided unionSet operation
unionSet by size

unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)

2 pyI = findSet(yI, dsuf)

3 if (dsuf[pxi].sz > dsuf[pyi].sz)

4 dsuf[pyI].p = pxI

5 dsuf[pxi].sz += dsuf[pyI].sz

6 else

7 dsuf[pxI].p = pyI

8 dsuf[pyI].sz += dsuf[pxI].sz

Max height for unionSet by size

If r 2 S is the cannonical member,
unionSet by size ensures that jSj � 2hr

Proof.
Inductive hypothesis: Let a tree
formed by up to i links satisfy jSj � 2hr

Base case: Tree for singleton set has
jfrgj = 1 and hr = 0, thus jfrgj � 2hr

Inductive step: Trees for S1 and S2
with cannonical elements r and s and
heights hr and hs, respectively are
linked; S1 � S2 to form S with height
h0

r ; jSj = jS1j+ jS2j
Case 1 (hr > hs): Now h0

r = hr
jSj � jS1j � 2hr = 2h0

r

Case 2 (hr � hs): Now h0

r = hs + 1
jSj = jS1j+ jS2j � jS2j

Time bound for unionSet by size

Tree height for findSet or unionSet is
� blg jSjc – follows by corollary

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 8 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Size guided unionSet operation

Size guided unionSet operation
unionSet by size

unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)

2 pyI = findSet(yI, dsuf)

3 if (dsuf[pxi].sz > dsuf[pyi].sz)

4 dsuf[pyI].p = pxI

5 dsuf[pxi].sz += dsuf[pyI].sz

6 else

7 dsuf[pxI].p = pyI

8 dsuf[pyI].sz += dsuf[pxI].sz

Max height for unionSet by size

If r 2 S is the cannonical member,
unionSet by size ensures that jSj � 2hr

Proof.
Inductive hypothesis: Let a tree
formed by up to i links satisfy jSj � 2hr

Base case: Tree for singleton set has
jfrgj = 1 and hr = 0, thus jfrgj � 2hr

Inductive step: Trees for S1 and S2
with cannonical elements r and s and
heights hr and hs, respectively are
linked; S1 � S2 to form S with height
h0

r ; jSj = jS1j+ jS2j
Case 1 (hr > hs): Now h0

r = hr
jSj � jS1j � 2hr = 2h0

r

Case 2 (hr � hs): Now h0

r = hs + 1
jSj = jS1j+ jS2j � jS2j

Time bound for unionSet by size

Tree height for findSet or unionSet is
� blg jSjc – follows by corollary

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 8 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Size guided unionSet operation

Size guided unionSet operation
unionSet by size

unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)

2 pyI = findSet(yI, dsuf)

3 if (dsuf[pxi].sz > dsuf[pyi].sz)

4 dsuf[pyI].p = pxI

5 dsuf[pxi].sz += dsuf[pyI].sz

6 else

7 dsuf[pxI].p = pyI

8 dsuf[pyI].sz += dsuf[pxI].sz

Max height for unionSet by size

If r 2 S is the cannonical member,
unionSet by size ensures that jSj � 2hr

Proof.
Inductive hypothesis: Let a tree
formed by up to i links satisfy jSj � 2hr

Base case: Tree for singleton set has
jfrgj = 1 and hr = 0, thus jfrgj � 2hr

Inductive step: Trees for S1 and S2
with cannonical elements r and s and
heights hr and hs, respectively are
linked; S1 � S2 to form S with height
h0

r ; jSj = jS1j+ jS2j
Case 1 (hr > hs): Now h0

r = hr
jSj � jS1j � 2hr = 2h0

r

Case 2 (hr � hs): Now h0

r = hs + 1
jSj = jS1j+ jS2j � jS2j

Time bound for unionSet by size

Tree height for findSet or unionSet is
� blg jSjc – follows by corollary

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 8 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Size guided unionSet operation

Size guided unionSet operation
unionSet by size

unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)

2 pyI = findSet(yI, dsuf)

3 if (dsuf[pxi].sz > dsuf[pyi].sz)

4 dsuf[pyI].p = pxI

5 dsuf[pxi].sz += dsuf[pyI].sz

6 else

7 dsuf[pxI].p = pyI

8 dsuf[pyI].sz += dsuf[pxI].sz

Max height for unionSet by size

If r 2 S is the cannonical member,
unionSet by size ensures that jSj � 2hr

Proof.
Inductive hypothesis: Let a tree
formed by up to i links satisfy jSj � 2hr

Base case: Tree for singleton set has
jfrgj = 1 and hr = 0, thus jfrgj � 2hr

Inductive step: Trees for S1 and S2
with cannonical elements r and s and
heights hr and hs, respectively are
linked; S1 � S2 to form S with height
h0

r ; jSj = jS1j+ jS2j
Case 1 (hr > hs): Now h0

r = hr
jSj � jS1j � 2hr = 2h0

r

Case 2 (hr � hs): Now h0

r = hs + 1
jSj = jS1j+ jS2j � jS2j � 2hs

Time bound for unionSet by size

Tree height for findSet or unionSet is
� blg jSjc – follows by corollary

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 8 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Size guided unionSet operation

Size guided unionSet operation
unionSet by size

unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)

2 pyI = findSet(yI, dsuf)

3 if (dsuf[pxi].sz > dsuf[pyi].sz)

4 dsuf[pyI].p = pxI

5 dsuf[pxi].sz += dsuf[pyI].sz

6 else

7 dsuf[pxI].p = pyI

8 dsuf[pyI].sz += dsuf[pxI].sz

Max height for unionSet by size

If r 2 S is the cannonical member,
unionSet by size ensures that jSj � 2hr

Proof.
Inductive hypothesis: Let a tree
formed by up to i links satisfy jSj � 2hr

Base case: Tree for singleton set has
jfrgj = 1 and hr = 0, thus jfrgj � 2hr

Inductive step: Trees for S1 and S2
with cannonical elements r and s and
heights hr and hs, respectively are
linked; S1 � S2 to form S with height
h0

r ; jSj = jS1j+ jS2j
Case 1 (hr > hs): Now h0

r = hr
jSj � jS1j � 2hr = 2h0

r

Case 2 (hr � hs): Now h0

r = hs + 1
jSj = jS1j+ jS2j � 2jS2j � 2 � 2hs

Time bound for unionSet by size

Tree height for findSet or unionSet is
� blg jSjc – follows by corollary

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 8 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Size guided unionSet operation

Size guided unionSet operation
unionSet by size

unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)

2 pyI = findSet(yI, dsuf)

3 if (dsuf[pxi].sz > dsuf[pyi].sz)

4 dsuf[pyI].p = pxI

5 dsuf[pxi].sz += dsuf[pyI].sz

6 else

7 dsuf[pxI].p = pyI

8 dsuf[pyI].sz += dsuf[pxI].sz

Max height for unionSet by size

If r 2 S is the cannonical member,
unionSet by size ensures that jSj � 2hr

Proof.
Inductive hypothesis: Let a tree
formed by up to i links satisfy jSj � 2hr

Base case: Tree for singleton set has
jfrgj = 1 and hr = 0, thus jfrgj � 2hr

Inductive step: Trees for S1 and S2
with cannonical elements r and s and
heights hr and hs, respectively are
linked; S1 � S2 to form S with height
h0

r ; jSj = jS1j+ jS2j
Case 1 (hr > hs): Now h0

r = hr
jSj � jS1j � 2hr = 2h0

r

Case 2 (hr � hs): Now h0

r = hs + 1
jSj = jS1j+ jS2j � 2jS2j = 2hs+1 = 2h0

r

Time bound for unionSet by size

Tree height for findSet or unionSet is
� blg jSjc – follows by corollary

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 8 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Size guided unionSet operation

Size guided unionSet operation
unionSet by size

unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)

2 pyI = findSet(yI, dsuf)

3 if (dsuf[pxi].sz > dsuf[pyi].sz)

4 dsuf[pyI].p = pxI

5 dsuf[pxi].sz += dsuf[pyI].sz

6 else

7 dsuf[pxI].p = pyI

8 dsuf[pyI].sz += dsuf[pxI].sz

Max height for unionSet by size

If r 2 S is the cannonical member,
unionSet by size ensures that jSj � 2hr

Proof.
Inductive hypothesis: Let a tree
formed by up to i links satisfy jSj � 2hr

Base case: Tree for singleton set has
jfrgj = 1 and hr = 0, thus jfrgj � 2hr

Inductive step: Trees for S1 and S2
with cannonical elements r and s and
heights hr and hs, respectively are
linked; S1 � S2 to form S with height
h0

r ; jSj = jS1j+ jS2j
Case 1 (hr > hs): Now h0

r = hr
jSj � jS1j � 2hr = 2h0

r

Case 2 (hr � hs): Now h0

r = hs + 1
jSj = jS1j+ jS2j � 2jS2j = 2hs+1 = 2h0

r

Time bound for unionSet by size

Tree height for findSet or unionSet is
� blg jSjc – follows by corollary

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 8 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Rank guided unionSet operation

Rank guided unionSet operation
For now let rank(x)=height(x)

For a single node tree, rank(x)=0

Rank changes only through union
makeSet for union by rank

makeSet(xI, dsuf[])
1 dsuf[xI].p = xI

2 dsuf[xI].rk = 0

Example (unionSet(a, f, ...) by rank)

a rank=1

bcd

f rank=2

gh

i

unionSet by rank

unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)

2 pyI = findSet(yI, dsuf)

3 if (dsuf[pxi].rk>dsuf[pyi].rk)

4 dsuf[pyI].p = pxI

5 elsif (dsuf[pxi].rk<dsuf[pyi].rk)

6 dsuf[pxI].p = pyI

7 else

8 dsuf[pyI].p = pxI

9 dsuf[pxI].rk += 1

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 9 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Rank guided unionSet operation

Rank guided unionSet operation
For now let rank(x)=height(x)

For a single node tree, rank(x)=0

Rank changes only through union
makeSet for union by rank

makeSet(xI, dsuf[])
1 dsuf[xI].p = xI

2 dsuf[xI].rk = 0

Example (unionSet(a, f, ...) by rank)

a

bcd

f rank=2

gh

i

union by rank

unionSet by rank

unionSet(xI, yI, dsuf[])

1 pxI = findSet(xI, dsuf)

2 pyI = findSet(yI, dsuf)

3 if (dsuf[pxi].rk>dsuf[pyi].rk)

4 dsuf[pyI].p = pxI

5 elsif (dsuf[pxi].rk<dsuf[pyi].rk)

6 dsuf[pxI].p = pyI

7 else

8 dsuf[pyI].p = pxI

9 dsuf[pxI].rk += 1

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 9 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Properties of linking by rank

Properties of linking by rank

1 If x is not a root node, then rank(x) < rank(parent(x))
A node of rank k is created only by merging two root nodes of rank k � 1

2 If x is not a root node, then rank(x) will never change again
Rank changes only for root nodes; a non-root node never becomes a
root

3 If parent(x) changes, then rank(parent(x)) strictly increases
Only a root node can link to the root node of another tree; if x is a root
node, before linking parent(x) = x ; after x is linked to a new root r due to
union by rank, we have rank(r) > rank(x)

4 If root node of tree for set S has rank k , jSj � 2k (inductive hypothesis)

Base case: satisfied for a singleton node tree with rank k = 0

Inductive step: A root node of rank k + 1 is created only by linking a
root node of rank k to another

By inductive hypothesis, each subtree has at least 2k nodes
Resulting tree has at least 2k + 2k = 2 � 2k = 2k+1 nodes

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 10 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Properties of linking by rank

Properties of linking by rank

1 If x is not a root node, then rank(x) < rank(parent(x))
A node of rank k is created only by merging two root nodes of rank k � 1

2 If x is not a root node, then rank(x) will never change again
Rank changes only for root nodes; a non-root node never becomes a
root

3 If parent(x) changes, then rank(parent(x)) strictly increases
Only a root node can link to the root node of another tree; if x is a root
node, before linking parent(x) = x ; after x is linked to a new root r due to
union by rank, we have rank(r) > rank(x)

4 If root node of tree for set S has rank k , jSj � 2k (inductive hypothesis)

Base case: satisfied for a singleton node tree with rank k = 0

Inductive step: A root node of rank k + 1 is created only by linking a
root node of rank k to another

By inductive hypothesis, each subtree has at least 2k nodes
Resulting tree has at least 2k + 2k = 2 � 2k = 2k+1 nodes

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 10 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Properties of linking by rank

Properties of linking by rank

1 If x is not a root node, then rank(x) < rank(parent(x))
A node of rank k is created only by merging two root nodes of rank k � 1

2 If x is not a root node, then rank(x) will never change again
Rank changes only for root nodes; a non-root node never becomes a
root

3 If parent(x) changes, then rank(parent(x)) strictly increases
Only a root node can link to the root node of another tree; if x is a root
node, before linking parent(x) = x ; after x is linked to a new root r due to
union by rank, we have rank(r) > rank(x)

4 If root node of tree for set S has rank k , jSj � 2k (inductive hypothesis)

Base case: satisfied for a singleton node tree with rank k = 0

Inductive step: A root node of rank k + 1 is created only by linking a
root node of rank k to another

By inductive hypothesis, each subtree has at least 2k nodes
Resulting tree has at least 2k + 2k = 2 � 2k = 2k+1 nodes

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 10 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Properties of linking by rank

Properties of linking by rank

1 If x is not a root node, then rank(x) < rank(parent(x))
A node of rank k is created only by merging two root nodes of rank k � 1

2 If x is not a root node, then rank(x) will never change again
Rank changes only for root nodes; a non-root node never becomes a
root

3 If parent(x) changes, then rank(parent(x)) strictly increases
Only a root node can link to the root node of another tree; if x is a root
node, before linking parent(x) = x ; after x is linked to a new root r due to
union by rank, we have rank(r) > rank(x)

4 If root node of tree for set S has rank k , jSj � 2k (inductive hypothesis)

Base case: satisfied for a singleton node tree with rank k = 0

Inductive step: A root node of rank k + 1 is created only by linking a
root node of rank k to another

By inductive hypothesis, each subtree has at least 2k nodes
Resulting tree has at least 2k + 2k = 2 � 2k = 2k+1 nodes

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 10 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Properties of linking by rank

Properties of linking by rank (contd.)
4

3

2

1

0

0

1

0

0

2

1

0

0

1

0

0 1

0 0 0

rank 4: 01 node, jV j=24 = 1
rank 3: 01 node, jV j=23 = 2
rank 2: 02 nodes, jV j=22 = 5
rank 1: 05 nodes, jV j=21 = 10
rank 0: 11 nodes, jV j=20 = 20
jV j = 20

5 For r � 0; r 2 Z, there are at most nr = jSj=2r nodes with rank r in TS

i Claim is trivially satisfied for rank r = 0
ii Let it be satisfied for rank r = k
iii A tree with root node of rank (k + 1) is formed in two ways:

Case-A linking the root of a tree with with rank k to the root of
a tree with rank k , whose rank increases to k + 1

Case-B linking the root of a tree with with rank � k to the root
of a tree with rank k + 1

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 11 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Properties of linking by rank

Properties of linking by rank (contd.)

Case-A Trees for sets S1 and S2 of same rank k are linked
iv For rank r < k , TS1 and TS2 satisfy n(1)

r � jS1j=2r and n(2)
r � jS1j=2r

v For the composite tree, for r < k , nr = n(1)
r + n(2)

r ; jSj = jS1j+ jS2j
vi) nr � jS1j=2r + jS2j=2r = jSj=2r

vii For r = k , nk = 1 satisfies nk � jS1j=2k � jSj=2k

viii For r = k + 1, root node of rank (k + 1) (nk+1 = 1) has at least 2k+1

descendants [property-4]
ix) jSj � 2k+1 and jSj=2k+1 � 1

Case-B: Trees S2 of ranks k + 1 and S1 of rank k 0 � k are linked
Assume that the tree for set S2 is initially formed through Case-A

x For rank r � k , TS1 and TS2 satisfy n(1)
r � jS1j=2r and n(2)

r � jS1j=2r

xi For the composite tree, for r � k , nr = n(1)
r + n(2)

r ; jSj = jS1j+ jS2j
xii) nr � jS1j=2r + jS2j=2r = jSj=2r

xiii For r = k + 1, nk+1 = 1 satisfies nk+1 � jS2j=2k+1 � jSj=2k+1

xiv The reasoning for this case continues to apply to trees of rank k + 1
fromed subsequently through this case

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 12 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Union with path compression

Union with path compression

Path compression mechanism
findSet(xI, dsuf[])

1 pI = dsuf[xI]
2 if (pI6=xI)
3 dsuf[xi]=findSet(pI)
4 return dsuf[xI]

Example (Path compression)

a

b

c e

d

a

b
e

cd

After findSet(d) using
path compression

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 13 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Union with path compression

Union with path compression

Path compression mechanism
findSet(xI, dsuf[])

1 pI = dsuf[xI]
2 if (pI6=xI)
3 dsuf[xi]=findSet(pI)
4 return dsuf[xI]

Example (Path compression)

a

b

c e

d

a

b
e

cd

After findSet(d) using
path compression

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 13 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Union with path compression

Properties of linking by rank and path
compression

6 The highest rank of a node in a tree of a set S is at most blg jSjc
Follows from property-4

7 Linking sets S1;S2 by rank for unionSet, ensures that time for any
unionSet for findSet operation is O (lg (jS1j+ jS2j))
Follows from property-6
. Now also consider path compression

8 With path compression ranks do not change though nodes may
loose height

9 In general, height(x) � rank(x) but they are not necessarily equal
10 The rank of the parent of a node may increase – a node may be

linked to a parent of a higher rank
11 If the parent changes, the rank of the new parent is strictly greater

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 14 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Grouping of ranks by the iterated logarithm

Grouping of ranks by the iterated logarithm

lg� n =

�
0 if n � 1
1 + lg�(lg n) otherwise

Group Gk has integers in the range
(k + 1)::2k

n lg� n Grp
1 0 G0
2 1 G1

[3, 4] 2 G2
[5, 16] 3 G4

[17, 65536] 4 G16
[65537, 265536] 5 G216

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 15 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Grouping of ranks by the iterated logarithm

Grouping of ranks by the iterated logarithm

lg� n =

�
0 if n � 1
1 + lg�(lg n) otherwise

Group Gk has integers in the range
(k + 1)::2k

n lg� n Grp
1 0 G0
2 1 G1

[3, 4] 2 G2
[5, 16] 3 G4

[17, 65536] 4 G16
[65537, 265536] 5 G216

We have lg� n � 5 unless n exceeds the number of atoms in the
universe – a “reasonable” assumption for an upper bound on the size
of the sets we consider!

12 Every non-zero rank falls within one of the first lg� n groups,
assuming that the sets are of “reasonable” size
Note that the rank of a root node for a set S is between 0 and
blg jSjc [property-6]

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 16 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Disbursing credits to drive findSet

Disbursing credits to drive findSet

If a node ceases to be the root and its rank is in the interval of
Gk it gets 2k credits

Costing credits disbursed

Number of credits disbursed to all nodes is jSj lg� jSj

Proof.
By property-5, the number of nodes with ranks in Gk (the

subrange [(k + 1)::2k]) is at most
jSj

2k+1 +
jSj

2k+2 + : : :+
jSj
22k �

jSj
2k

Thus, nodes in group Gk need at most jSj credits in total @ 2k

credits per node
As there are at most lg� jSj groups [property-12], at most
jSj lg� jSj credits get disbursed

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 17 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Amortised costing of find with path compression

Amortised costing of find with path compression
Example (Showing group of rank and credits received)

4

3
h2;4i

2

h1;2i

1
h0;1i

0
h0;1i

0
h0;1i

1
h0;1i

0
h0;1i

0
h0;1i

2
h1;2i

1
h0;1i

0
h0;1i

0
h0;1i

1
h0;1i

0
h0;1i

0
h0;1i

1
h0;1i

0
h0;1i

0
h0;1i

0
h0;1i

Each node in Gk has enough credits to move up to the node of
highest rank in Gk – done only once over m finds
Such link traversals within Gk are supported by disbursed credits
Crossings from Gk to Gk+1 (at most lg� n) charged to each find
Total cost of m finds: O((m + n)(lg� n))
Unions involve two finds and a linking (re-ordered)

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 18 / 19

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Disjoint sets Complexity of Kruskal’s algorithm with DSUF

Complexity of Kruskal’s algorithm with DSUF

1 create a min heap H of the edges
2 initialise T �; edge count c 0
3 foreach v 2 V makeSet(v)
4 while (c < jV j � 1) do

5 extract min cost edge e = hvi ; vji 2 H

6 if (findSet(vi) 6=findSet(vj))
// no cycle formed by adding e to T

7 add e to T ; c c + 1
8 unionSet(vi ; vj)

// track the two components joining
9 done

L1 takes O(jE j) time
L3 takes O(jV j) time
L5 takes
O(jE j lg jE j) �
O(jE j lg jV j) time
overall
L6 and L8 takes
O(jE j lg� jV j) time
overall using DSUF

Chittaranjan Mandal (IIT Kharagpur) FOCS September 3, 2015 19 / 19

	Disjoint sets
	Notion of disjoint sets
	Kruskal's algorithm with DSUF
	Disjoint set data structure
	The findSet operation
	The unionSet operation
	Size guided unionSet operation
	Rank guided unionSet operation
	Properties of linking by rank
	Union with path compression
	Grouping of ranks by the iterated logarithm
	Disbursing credits to drive findSet
	Amortised costing of find with path compression
	Complexity of Kruskal's algorithm with DSUF

	resultado2:
	hours: 20
	minutes: 09
	seconds: 00
	cronohours: 00
	cronominutes: 00
	crseconds: 00
	day: 15
	month: 12
	year: 2022
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00

