
IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Contents

1 More applications of DC

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 1 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC

Section outline

1 More applications of DC
Divide and Conquer
Strategy
Polynomial multiplication
Polynomial multiplication by
DC

Polynomial multiplication by
Karatsuba DC
Maximum Sum Subarray by
brute force
Maximum Sum Subarray by
DC
Matrix multiplication by DC
Practice problems

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 2 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Divide and Conquer Strategy

Divide and Conquer Strategy

1 Given a problem, identify a small number of smaller subproblems
of the same type and of similarly sizes

2 Solve each subproblem recursively (the smallest possible size of a
subproblem is a base-case)

3 Combine these solutions into a solution for the main problem

T (n) =

 TDivide +
∑
Pi

T (|Pi |) + TCombine

TBase

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 3 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication

Polynomial multiplication

C(x) = A(x)B(x) =
2n−2∑
i=0

cixi , ci =
∑

0≤j,i−j≤n−1
ajbi−j

[Note the convolution of the coefficients]
Time complexity of this scheme is:

O(n2), actually Θ(n2)

float polyMul(float *A, *B, *C, int deg) {
int j, k;
for (j=0; j<=2*deg-2; j++) C[j] = 0;
for (j=0; j<=deg-1; j++)
for (k=0; k<=deg-1; k++)
C[j+k] += A[j] * B[k];

}
Can we do better than Θ(n2), how could we do that?
Since the time grows with the degree, can we compute the
product multiplying smaller polynomials?

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 4 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication

Polynomial multiplication

C(x) = A(x)B(x) =
2n−2∑
i=0

cixi , ci =
∑

0≤j,i−j≤n−1
ajbi−j

[Note the convolution of the coefficients]
Time complexity of this scheme is: O(n2), actually Θ(n2)

float polyMul(float *A, *B, *C, int deg) {
int j, k;
for (j=0; j<=2*deg-2; j++) C[j] = 0;
for (j=0; j<=deg-1; j++)
for (k=0; k<=deg-1; k++)
C[j+k] += A[j] * B[k];

}

Can we do better than Θ(n2), how could we do that?
Since the time grows with the degree, can we compute the
product multiplying smaller polynomials?

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 4 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication

Polynomial multiplication

C(x) = A(x)B(x) =
2n−2∑
i=0

cixi , ci =
∑

0≤j,i−j≤n−1
ajbi−j

[Note the convolution of the coefficients]
Time complexity of this scheme is: O(n2), actually Θ(n2)

float polyMul(float *A, *B, *C, int deg) {
int j, k;
for (j=0; j<=2*deg-2; j++) C[j] = 0;
for (j=0; j<=deg-1; j++)
for (k=0; k<=deg-1; k++)
C[j+k] += A[j] * B[k];

}
Can we do better than Θ(n2), how could we do that?

Since the time grows with the degree, can we compute the
product multiplying smaller polynomials?

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 4 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication

Polynomial multiplication

C(x) = A(x)B(x) =
2n−2∑
i=0

cixi , ci =
∑

0≤j,i−j≤n−1
ajbi−j

[Note the convolution of the coefficients]
Time complexity of this scheme is: O(n2), actually Θ(n2)

float polyMul(float *A, *B, *C, int deg) {
int j, k;
for (j=0; j<=2*deg-2; j++) C[j] = 0;
for (j=0; j<=deg-1; j++)
for (k=0; k<=deg-1; k++)
C[j+k] += A[j] * B[k];

}
Can we do better than Θ(n2), how could we do that?
Since the time grows with the degree, can we compute the
product multiplying smaller polynomials?

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 4 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication by DC

Polynomial multiplication by DC

A(x) = AL(x) + x tAH(x)

AL(x) = a0 + a1x + . . .+ at−1x t−1,
AH(x) = at + at+1x + . . .+ an−1xn−1−t

t =
⌊n

2

⌋
, so that both AL(x) and AH(x) are nearly equal

Ideally, n is a power of 2, n = 2d ,d ≥ 0
Similarly, B(x) = BL + x tBH , where BL ≡ BL(x) and BH ≡ BH(x)

C(x) = A(x)B(x) = x2tAHBH + x t (AHBL + ALBH) + ALBL

Smaller polynomials recursively multiplied until the degree
reduces to 0, when the coefficients are directly multiplied

TmulHL(n) =

{
a [n = 1]

4TmulHL

(n
2

)
+ bn + c [n > 1,n = 2d ,d ≥ 0]

Solution (by standard methods): TmulHL(n) ∈ Θ
(
n2)

No improvement, but why? There are too many sub-problems

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 5 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication by DC

Polynomial multiplication by DC

A(x) = AL(x) + x tAH(x)

AL(x) = a0 + a1x + . . .+ at−1x t−1,
AH(x) = at + at+1x + . . .+ an−1xn−1−t

t =
⌊n

2

⌋
, so that both AL(x) and AH(x) are nearly equal

Ideally, n is a power of 2, n = 2d ,d ≥ 0
Similarly, B(x) = BL + x tBH , where BL ≡ BL(x) and BH ≡ BH(x)

C(x) = A(x)B(x) = x2tAHBH + x t (AHBL + ALBH) + ALBL

Smaller polynomials recursively multiplied until the degree
reduces to 0, when the coefficients are directly multiplied

TmulHL(n) =

{
a [n = 1]

4TmulHL

(n
2

)
+ bn + c [n > 1,n = 2d ,d ≥ 0]

Solution (by standard methods): TmulHL(n) ∈ Θ
(
n2)

No improvement, but why? There are too many sub-problems

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 5 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication by DC

Polynomial multiplication by DC

A(x) = AL(x) + x tAH(x)

AL(x) = a0 + a1x + . . .+ at−1x t−1,
AH(x) = at + at+1x + . . .+ an−1xn−1−t

t =
⌊n

2

⌋
, so that both AL(x) and AH(x) are nearly equal

Ideally, n is a power of 2, n = 2d ,d ≥ 0
Similarly, B(x) = BL + x tBH , where BL ≡ BL(x) and BH ≡ BH(x)

C(x) = A(x)B(x) = x2tAHBH + x t (AHBL + ALBH) + ALBL

Smaller polynomials recursively multiplied until the degree
reduces to 0, when the coefficients are directly multiplied

TmulHL(n) =

{
a [n = 1]

4TmulHL

(n
2

)
+ bn + c [n > 1,n = 2d ,d ≥ 0]

Solution (by standard methods): TmulHL(n) ∈ Θ
(
n2)

No improvement, but why? There are too many sub-problems

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 5 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication by DC

Polynomial multiplication by DC

A(x) = AL(x) + x tAH(x)

AL(x) = a0 + a1x + . . .+ at−1x t−1,
AH(x) = at + at+1x + . . .+ an−1xn−1−t

t =
⌊n

2

⌋
, so that both AL(x) and AH(x) are nearly equal

Ideally, n is a power of 2, n = 2d ,d ≥ 0
Similarly, B(x) = BL + x tBH , where BL ≡ BL(x) and BH ≡ BH(x)

C(x) = A(x)B(x) = x2tAHBH + x t (AHBL + ALBH) + ALBL

Smaller polynomials recursively multiplied until the degree
reduces to 0, when the coefficients are directly multiplied

TmulHL(n) =

{
a [n = 1]

4TmulHL

(n
2

)
+ bn + c [n > 1,n = 2d ,d ≥ 0]

Solution (by standard methods): TmulHL(n) ∈ Θ
(
n2)

No improvement, but why?

There are too many sub-problems

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 5 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication by DC

Polynomial multiplication by DC

A(x) = AL(x) + x tAH(x)

AL(x) = a0 + a1x + . . .+ at−1x t−1,
AH(x) = at + at+1x + . . .+ an−1xn−1−t

t =
⌊n

2

⌋
, so that both AL(x) and AH(x) are nearly equal

Ideally, n is a power of 2, n = 2d ,d ≥ 0
Similarly, B(x) = BL + x tBH , where BL ≡ BL(x) and BH ≡ BH(x)

C(x) = A(x)B(x) = x2tAHBH + x t (AHBL + ALBH) + ALBL

Smaller polynomials recursively multiplied until the degree
reduces to 0, when the coefficients are directly multiplied

TmulHL(n) =

{
a [n = 1]

4TmulHL

(n
2

)
+ bn + c [n > 1,n = 2d ,d ≥ 0]

Solution (by standard methods): TmulHL(n) ∈ Θ
(
n2)

No improvement, but why? There are too many sub-problems
Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 5 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication by Karatsuba DC

Polynomial multiplication by Karatsuba DC

C(x) = A(x)B(x) = x2tAHBH + x t (AHBL + ALBH) + ALBL

AHBL + ALBH = (AH + AL)(BH + BL)− AHBH − ALBL

Store and reuse AHBH and ALBL computed earlier
Smaller polynomials recursively multiplied until the degree
reduces to 0, when the coefficients are directly multiplied

TmulHL(n) =

{
a [n = 1]

3TmulHL

(n
2

)
+ b′n + c′ [n > 1,n = 2d ,d ≥ 0]

More polynomial additions, so the constants b′ and c′ are
expected to be somewhat larger than before
Solution (by standard methods): TmulHL(n) ∈ Θ

(
nlog2 3),

log2 3 = 1.58496 . . .

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 6 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication by Karatsuba DC

Polynomial multiplication by Karatsuba DC

C(x) = A(x)B(x) = x2tAHBH + x t (AHBL + ALBH) + ALBL

AHBL + ALBH = (AH + AL)(BH + BL)− AHBH − ALBL

Store and reuse AHBH and ALBL computed earlier
Smaller polynomials recursively multiplied until the degree
reduces to 0, when the coefficients are directly multiplied

TmulHL(n) =

{
a [n = 1]

3TmulHL

(n
2

)
+ b′n + c′ [n > 1,n = 2d ,d ≥ 0]

More polynomial additions, so the constants b′ and c′ are
expected to be somewhat larger than before
Solution (by standard methods): TmulHL(n) ∈ Θ

(
nlog2 3),

log2 3 = 1.58496 . . .

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 6 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication by Karatsuba DC

Polynomial multiplication by Karatsuba DC

C(x) = A(x)B(x) = x2tAHBH + x t (AHBL + ALBH) + ALBL

AHBL + ALBH = (AH + AL)(BH + BL)− AHBH − ALBL

Store and reuse AHBH and ALBL computed earlier
Smaller polynomials recursively multiplied until the degree
reduces to 0, when the coefficients are directly multiplied

TmulHL(n) =

{
a [n = 1]

3TmulHL

(n
2

)
+ b′n + c′ [n > 1,n = 2d ,d ≥ 0]

More polynomial additions, so the constants b′ and c′ are
expected to be somewhat larger than before

Solution (by standard methods): TmulHL(n) ∈ Θ
(
nlog2 3),

log2 3 = 1.58496 . . .

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 6 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Polynomial multiplication by Karatsuba DC

Polynomial multiplication by Karatsuba DC

C(x) = A(x)B(x) = x2tAHBH + x t (AHBL + ALBH) + ALBL

AHBL + ALBH = (AH + AL)(BH + BL)− AHBH − ALBL

Store and reuse AHBH and ALBL computed earlier
Smaller polynomials recursively multiplied until the degree
reduces to 0, when the coefficients are directly multiplied

TmulHL(n) =

{
a [n = 1]

3TmulHL

(n
2

)
+ b′n + c′ [n > 1,n = 2d ,d ≥ 0]

More polynomial additions, so the constants b′ and c′ are
expected to be somewhat larger than before
Solution (by standard methods): TmulHL(n) ∈ Θ

(
nlog2 3),

log2 3 = 1.58496 . . .

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 6 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by brute force

Maximum Sum Subarray by brute force
You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

n

n − 1
n − 1

n − 2
n − 2

n − 2

1 1 1 1 1 1 1 1 1 1 1 1

Time taken is for finding sum of intervals and computing their max

T (n) =
j=1∑
j=n

C(n − j + 1,n) + βn, where C(i ,n) is the cost of

summing i intervals each having n − i + 1 elements
C(i ,n) = αi(n − i + 1) (naive)
C(i ,n) = α((n − i + 1) + 2(i − 1)) (clever)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by brute force

Maximum Sum Subarray by brute force
You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

n

n − 1
n − 1

n − 2
n − 2

n − 2

1 1 1 1 1 1 1 1 1 1 1 1

Time taken is for finding sum of intervals and computing their max

T (n) =
j=1∑
j=n

C(n − j + 1,n) + βn, where C(i ,n) is the cost of

summing i intervals each having n − i + 1 elements
C(i ,n) = αi(n − i + 1) (naive)
C(i ,n) = α((n − i + 1) + 2(i − 1)) (clever)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by brute force

Maximum Sum Subarray by brute force
You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

n

n − 1
n − 1

n − 2
n − 2

n − 2

1 1 1 1 1 1 1 1 1 1 1 1

Time taken is for finding sum of intervals and computing their max

T (n) =
j=1∑
j=n

C(n − j + 1,n) + βn, where C(i ,n) is the cost of

summing i intervals each having n − i + 1 elements
C(i ,n) = αi(n − i + 1) (naive)
C(i ,n) = α((n − i + 1) + 2(i − 1)) (clever)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by brute force

Maximum Sum Subarray by brute force
You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

n

n − 1
n − 1

n − 2
n − 2

n − 2

1 1 1 1 1 1 1 1 1 1 1 1

Time taken is for finding sum of intervals and computing their max

T (n) =
j=1∑
j=n

C(n − j + 1,n) + βn, where C(i ,n) is the cost of

summing i intervals each having n − i + 1 elements
C(i ,n) = αi(n − i + 1) (naive)
C(i ,n) = α((n − i + 1) + 2(i − 1)) (clever)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by brute force

Maximum Sum Subarray by brute force
You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

n

n − 1
n − 1

n − 2
n − 2

n − 2

1 1 1 1 1 1 1 1 1 1 1 1

Time taken is for finding sum of intervals and computing their max

T (n) =
j=1∑
j=n

C(n − j + 1,n) + βn, where C(i ,n) is the cost of

summing i intervals each having n − i + 1 elements
C(i ,n) = αi(n − i + 1) (naive)
C(i ,n) = α((n − i + 1) + 2(i − 1)) (clever)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by brute force

Maximum Sum Subarray by brute force
You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

n

n − 1
n − 1

n − 2
n − 2

n − 2

1 1 1 1 1 1 1 1 1 1 1 1

Time taken is for finding sum of intervals and computing their max

T (n) =
j=1∑
j=n

C(n − j + 1,n) + βn, where C(i ,n) is the cost of

summing i intervals each having n − i + 1 elements
C(i ,n) = αi(n − i + 1) (naive)
C(i ,n) = α((n − i + 1) + 2(i − 1)) (clever)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by brute force

Maximum Sum Subarray by brute force
You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

n

n − 1
n − 1

n − 2
n − 2

n − 2

1 1 1 1 1 1 1 1 1 1 1 1

Time taken is for finding sum of intervals and computing their max

T (n) =
j=1∑
j=n

C(n − j + 1,n) + βn, where C(i ,n) is the cost of

summing i intervals each having n − i + 1 elements

C(i ,n) = αi(n − i + 1) (naive)
C(i ,n) = α((n − i + 1) + 2(i − 1)) (clever)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by brute force

Maximum Sum Subarray by brute force
You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

n

n − 1
n − 1

n − 2
n − 2

n − 2

1 1 1 1 1 1 1 1 1 1 1 1

Time taken is for finding sum of intervals and computing their max

T (n) =
j=1∑
j=n

C(n − j + 1,n) + βn, where C(i ,n) is the cost of

summing i intervals each having n − i + 1 elements
C(i ,n) = αi(n − i + 1) (naive)

C(i ,n) = α((n − i + 1) + 2(i − 1)) (clever)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by brute force

Maximum Sum Subarray by brute force
You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

n

n − 1
n − 1

n − 2
n − 2

n − 2

1 1 1 1 1 1 1 1 1 1 1 1

Time taken is for finding sum of intervals and computing their max

T (n) =
j=1∑
j=n

C(n − j + 1,n) + βn, where C(i ,n) is the cost of

summing i intervals each having n − i + 1 elements
C(i ,n) = αi(n − i + 1) (naive)
C(i ,n) = α((n − i + 1) + 2(i − 1)) (clever)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by DC

Maximum Sum Subarray by DC

You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

sl sr

sl csl csr sr

T (n) =

{
a n = 1

2T
(n

2

)
+ bn + c n > 1

T (n) ∈ Θ(n lg n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 8 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by DC

Maximum Sum Subarray by DC

You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

sl sr

sl csl csr sr

T (n) =

{
a n = 1

2T
(n

2

)
+ bn + c n > 1

T (n) ∈ Θ(n lg n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 8 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by DC

Maximum Sum Subarray by DC

You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

sl sr

sl csl csr sr

T (n) =

{
a n = 1

2T
(n

2

)
+ bn + c n > 1

T (n) ∈ Θ(n lg n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 8 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by DC

Maximum Sum Subarray by DC

You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

sl sr

sl csl csr sr

T (n) =

{
a n = 1

2T
(n

2

)
+ bn + c n > 1

T (n) ∈ Θ(n lg n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 8 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by DC

Maximum Sum Subarray by DC

You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

sl sr

sl csl csr sr

T (n) =

{
a n = 1

2T
(n

2

)
+ bn + c n > 1

T (n) ∈ Θ(n lg n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 8 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by DC

Maximum Sum Subarray by DC

You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

sl sr

sl csl csr sr

T (n) =

{
a n = 1

2T
(n

2

)
+ bn + c n > 1

T (n) ∈ Θ(n lg n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 8 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by DC

Maximum Sum Subarray by DC (contd.)

int maxSumSubarray(int A[], int l, int h) {
// base case when A has only one element
if (l == h) return A[l];
// now the recursive steps
int m = (l + h)/2; // divide A at the middle
// need to compute max of
// the maxSumSubarray of each part and
// the max sum in the interval containing A[m]

return max(
maxSumSubarray(A, l, m),
maxSumSubarray(A, m+1, h),
maxCrossSum(A, l, m, h));

}

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 9 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by DC

Maximum Sum Subarray by DC (contd.)

int maxSumSubarray(int A[], int l, int h) {
// base case when A has only one element
if (l == h) return A[l];
// now the recursive steps
int m = (l + h)/2; // divide A at the middle
// need to compute max of
// the maxSumSubarray of each part and
// the max sum in the interval containing A[m]
return max(
maxSumSubarray(A, l, m),
maxSumSubarray(A, m+1, h),
maxCrossSum(A, l, m, h));

}

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 9 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Maximum Sum Subarray by DC

Computing maxCrossSum

int maxCrossSum(int A[], int l, int m, int h) {
// at least A[m] and A[m+1] are present, h>l
int sum = A[m]; int lSum = A[m];
for (int i = m-1; i >= l; i--) {
sum = sum + A[i];
if (sum > lSum) lSum = sum;
}
sum = A[m+1]; int rSum = A[m+1];
for (int i = m+2; i <= h; i++) {
sum = sum + A[i];
if (sum > rSum) rSum = sum;
}
return lSum + rSum;
}

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 10 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Matrix multiplication by DC

Matrix multiplication by DC

Given, n × n matrices A = (aij),B = (bij), product C = AB is

defined as cij =
n∑

k=0
aikbkj

This way, computation of each cij takes Θ(n) time
C is computed in Θ(n3) time

Application of DC can be considered

A =

(
A11 A12
A21 A22

)
B =

(
B11 B12
B21 B22

)
C =

(
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)
Time complexity: T (n) =8T

(n
2

)
+ Θ(n2)

Solution (by standard methods): Θ(n3), so no benefit

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 11 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Matrix multiplication by DC

Matrix multiplication by DC

Given, n × n matrices A = (aij),B = (bij), product C = AB is

defined as cij =
n∑

k=0
aikbkj

This way, computation of each cij takes Θ(n) time
C is computed in Θ(n3) time
Application of DC can be considered

A =

(
A11 A12
A21 A22

)
B =

(
B11 B12
B21 B22

)
C =

(
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)
Time complexity: T (n) =

8T
(n

2

)
+ Θ(n2)

Solution (by standard methods): Θ(n3), so no benefit

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 11 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Matrix multiplication by DC

Matrix multiplication by DC

Given, n × n matrices A = (aij),B = (bij), product C = AB is

defined as cij =
n∑

k=0
aikbkj

This way, computation of each cij takes Θ(n) time
C is computed in Θ(n3) time
Application of DC can be considered

A =

(
A11 A12
A21 A22

)
B =

(
B11 B12
B21 B22

)
C =

(
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)
Time complexity: T (n) =8T

(n
2

)
+ Θ(n2)

Solution (by standard methods): Θ(n3), so no benefit

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 11 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Matrix multiplication by DC

Matrix multiplication by DC (contd.)

Strassen’s matrix multiplication
algorithm works by first defining 7 intermediate matrices as follows:
D1 = (A11 + A22)(B11 + B22)
D2 = (A21 + A22)B11
D3 = A11(B12 − B22)
D4 = A22(B21 − B11)

D5 = (A11 + A12)B22
D6 = (A21 − A11)(B11 + B12)
D7 = (A12 − A22)(B21 + B22)

Next, the sub-matrices of C are computed as follows:
C11 = D1 + D4 − D5 + D7
C12 = D3 + D5

C21 = D2 + D4
C22 = D1 − D2 + D3 + D6

Time complexity: T (n) =7T
(n

2

)
+ Θ(n2)

Solution (by standard methods): Θ(n2.80735...)

Practical utility is limited, but an important result
Method of Coppersmith and Winograd works in O(n2.376)

Trivial lower bound is: Ω(n2)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 12 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Matrix multiplication by DC

Matrix multiplication by DC (contd.)

Strassen’s matrix multiplication
algorithm works by first defining 7 intermediate matrices as follows:
D1 = (A11 + A22)(B11 + B22)
D2 = (A21 + A22)B11
D3 = A11(B12 − B22)
D4 = A22(B21 − B11)

D5 = (A11 + A12)B22
D6 = (A21 − A11)(B11 + B12)
D7 = (A12 − A22)(B21 + B22)

Next, the sub-matrices of C are computed as follows:
C11 = D1 + D4 − D5 + D7
C12 = D3 + D5

C21 = D2 + D4
C22 = D1 − D2 + D3 + D6

Time complexity: T (n) =7T
(n

2

)
+ Θ(n2)

Solution (by standard methods): Θ(n2.80735...)

Practical utility is limited, but an important result
Method of Coppersmith and Winograd works in O(n2.376)

Trivial lower bound is: Ω(n2)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 12 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Matrix multiplication by DC

Matrix multiplication by DC (contd.)

Strassen’s matrix multiplication
algorithm works by first defining 7 intermediate matrices as follows:
D1 = (A11 + A22)(B11 + B22)
D2 = (A21 + A22)B11
D3 = A11(B12 − B22)
D4 = A22(B21 − B11)

D5 = (A11 + A12)B22
D6 = (A21 − A11)(B11 + B12)
D7 = (A12 − A22)(B21 + B22)

Next, the sub-matrices of C are computed as follows:
C11 = D1 + D4 − D5 + D7
C12 = D3 + D5

C21 = D2 + D4
C22 = D1 − D2 + D3 + D6

Time complexity: T (n) =

7T
(n

2

)
+ Θ(n2)

Solution (by standard methods): Θ(n2.80735...)

Practical utility is limited, but an important result
Method of Coppersmith and Winograd works in O(n2.376)

Trivial lower bound is: Ω(n2)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 12 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Matrix multiplication by DC

Matrix multiplication by DC (contd.)

Strassen’s matrix multiplication
algorithm works by first defining 7 intermediate matrices as follows:
D1 = (A11 + A22)(B11 + B22)
D2 = (A21 + A22)B11
D3 = A11(B12 − B22)
D4 = A22(B21 − B11)

D5 = (A11 + A12)B22
D6 = (A21 − A11)(B11 + B12)
D7 = (A12 − A22)(B21 + B22)

Next, the sub-matrices of C are computed as follows:
C11 = D1 + D4 − D5 + D7
C12 = D3 + D5

C21 = D2 + D4
C22 = D1 − D2 + D3 + D6

Time complexity: T (n) =7T
(n

2

)
+ Θ(n2)

Solution (by standard methods): Θ(n2.80735...)

Practical utility is limited, but an important result
Method of Coppersmith and Winograd works in O(n2.376)

Trivial lower bound is: Ω(n2)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 12 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Matrix multiplication by DC

Matrix multiplication by DC (contd.)

Strassen’s matrix multiplication
algorithm works by first defining 7 intermediate matrices as follows:
D1 = (A11 + A22)(B11 + B22)
D2 = (A21 + A22)B11
D3 = A11(B12 − B22)
D4 = A22(B21 − B11)

D5 = (A11 + A12)B22
D6 = (A21 − A11)(B11 + B12)
D7 = (A12 − A22)(B21 + B22)

Next, the sub-matrices of C are computed as follows:
C11 = D1 + D4 − D5 + D7
C12 = D3 + D5

C21 = D2 + D4
C22 = D1 − D2 + D3 + D6

Time complexity: T (n) =7T
(n

2

)
+ Θ(n2)

Solution (by standard methods): Θ(n2.80735...)

Practical utility is limited, but an important result
Method of Coppersmith and Winograd works in O(n2.376)

Trivial lower bound is:

Ω(n2)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 12 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Matrix multiplication by DC

Matrix multiplication by DC (contd.)

Strassen’s matrix multiplication
algorithm works by first defining 7 intermediate matrices as follows:
D1 = (A11 + A22)(B11 + B22)
D2 = (A21 + A22)B11
D3 = A11(B12 − B22)
D4 = A22(B21 − B11)

D5 = (A11 + A12)B22
D6 = (A21 − A11)(B11 + B12)
D7 = (A12 − A22)(B21 + B22)

Next, the sub-matrices of C are computed as follows:
C11 = D1 + D4 − D5 + D7
C12 = D3 + D5

C21 = D2 + D4
C22 = D1 − D2 + D3 + D6

Time complexity: T (n) =7T
(n

2

)
+ Θ(n2)

Solution (by standard methods): Θ(n2.80735...)

Practical utility is limited, but an important result
Method of Coppersmith and Winograd works in O(n2.376)

Trivial lower bound is: Ω(n2)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 12 / 13

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Practice problems

Practice problems

Given a sorted array in which all elements appear twice (together)
and one element appears only once, locate that element
An array of n points in the plane is given; find out the closest pair
of points in the array
Find the largest rectangular area possible in a given histogram
where the largest rectangle can be made of a number of
contiguous bars. For simplicity, assume that all bars have same
width of 1 unit
Given a n × n board where n is a power of 2 with minimum value
as 2, with one missing cell (of size 1× 1) at a known location, fill
the board using L shaped tiles An L shaped tile is a 2× 2 square
with one cell (of size 1× 1) missing
There are two sorted arrays A and B of size n each, find the
median of the array obtained after merging the above 2 arrays
Check if a given integer p appears more than n

2 times in a sorted
array of n integers

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 13 / 13

	More applications of DC
	Divide and Conquer Strategy
	Polynomial multiplication
	Polynomial multiplication by DC
	Polynomial multiplication by Karatsuba DC
	Maximum Sum Subarray by brute force
	Maximum Sum Subarray by DC
	Matrix multiplication by DC
	Practice problems

	resultado2:
	hours: 20
	minutes: 06
	seconds: 05
	cronohours: 00
	cronominutes: 00
	crseconds: 03
	day: 15
	month: 12
	year: 2022
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00

