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More applications of DC Divide and Conquer Strategy

Divide and Conquer Strategy

1 Given a problem, identify a small number of smaller subproblems
of the same type and of similarly sizes

2 Solve each subproblem recursively (the smallest possible size of a
subproblem is a base-case)

3 Combine these solutions into a solution for the main problem

T (n) =

 TDivide +
∑
Pi

T (|Pi |) + TCombine

TBase
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More applications of DC Polynomial multiplication

Polynomial multiplication

C(x) = A(x)B(x) =
2n−2∑
i=0

cixi , ci =
∑

0≤j,i−j≤n−1
ajbi−j

[Note the convolution of the coefficients]
Time complexity of this scheme is:

O(n2), actually Θ(n2)

float polyMul(float *A, *B, *C, int deg) {
int j, k;
for (j=0; j<=2*deg-2; j++) C[j] = 0;
for (j=0; j<=deg-1; j++)
for (k=0; k<=deg-1; k++)
C[j+k] += A[j] * B[k];

}
Can we do better than Θ(n2), how could we do that?
Since the time grows with the degree, can we compute the
product multiplying smaller polynomials?
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More applications of DC Polynomial multiplication by DC

Polynomial multiplication by DC

A(x) = AL(x) + x tAH(x)

AL(x) = a0 + a1x + . . .+ at−1x t−1,
AH(x) = at + at+1x + . . .+ an−1xn−1−t

t =
⌊n

2

⌋
, so that both AL(x) and AH(x) are nearly equal

Ideally, n is a power of 2, n = 2d ,d ≥ 0
Similarly, B(x) = BL + x tBH , where BL ≡ BL(x) and BH ≡ BH(x)

C(x) = A(x)B(x) = x2tAHBH + x t (AHBL + ALBH) + ALBL

Smaller polynomials recursively multiplied until the degree
reduces to 0, when the coefficients are directly multiplied

TmulHL(n) =

{
a [n = 1]

4TmulHL

(n
2

)
+ bn + c [n > 1,n = 2d ,d ≥ 0]

Solution (by standard methods): TmulHL(n) ∈ Θ
(
n2)

No improvement, but why? There are too many sub-problems
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More applications of DC Polynomial multiplication by Karatsuba DC

Polynomial multiplication by Karatsuba DC

C(x) = A(x)B(x) = x2tAHBH + x t (AHBL + ALBH) + ALBL

AHBL + ALBH = (AH + AL)(BH + BL)− AHBH − ALBL

Store and reuse AHBH and ALBL computed earlier
Smaller polynomials recursively multiplied until the degree
reduces to 0, when the coefficients are directly multiplied

TmulHL(n) =

{
a [n = 1]

3TmulHL

(n
2

)
+ b′n + c′ [n > 1,n = 2d ,d ≥ 0]

More polynomial additions, so the constants b′ and c′ are
expected to be somewhat larger than before
Solution (by standard methods): TmulHL(n) ∈ Θ

(
nlog2 3),

log2 3 = 1.58496 . . .
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More applications of DC Maximum Sum Subarray by brute force

Maximum Sum Subarray by brute force
You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

n

n − 1
n − 1

n − 2
n − 2

n − 2

1 1 1 1 1 1 1 1 1 1 1 1

Time taken is for finding sum of intervals and computing their max

T (n) =
j=1∑
j=n

C(n − j + 1,n) + βn, where C(i ,n) is the cost of

summing i intervals each having n − i + 1 elements
C(i ,n) = αi(n − i + 1) (naive)
C(i ,n) = α((n − i + 1) + 2(i − 1)) (clever)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 7 / 13
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largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

n

n − 1
n − 1

n − 2
n − 2

n − 2

1 1 1 1 1 1 1 1 1 1 1 1

Time taken is for finding sum of intervals and computing their max

T (n) =
j=1∑
j=n

C(n − j + 1,n) + βn, where C(i ,n) is the cost of

summing i intervals each having n − i + 1 elements
C(i ,n) = αi(n − i + 1) (naive)
C(i ,n) = α((n − i + 1) + 2(i − 1)) (clever)
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More applications of DC Maximum Sum Subarray by DC

Maximum Sum Subarray by DC

You are given a one dimensional array that may contain both
positive and negative integers
Find the sum of contiguous subarray of numbers which has the
largest sum, e.g.: {-3, -6, 7, -1, -3, 2, 5, -7}

sl sr

sl csl csr sr

T (n) =

{
a n = 1

2T
(n

2

)
+ bn + c n > 1

T (n) ∈ Θ(n lg n)
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More applications of DC Maximum Sum Subarray by DC

Maximum Sum Subarray by DC (contd.)

int maxSumSubarray(int A[], int l, int h) {
// base case when A has only one element
if (l == h) return A[l];
// now the recursive steps
int m = (l + h)/2; // divide A at the middle
// need to compute max of
// the maxSumSubarray of each part and
// the max sum in the interval containing A[m]

return max(
maxSumSubarray(A, l, m),
maxSumSubarray(A, m+1, h),
maxCrossSum(A, l, m, h));

}
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More applications of DC Maximum Sum Subarray by DC

Maximum Sum Subarray by DC (contd.)
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More applications of DC Maximum Sum Subarray by DC

Computing maxCrossSum

int maxCrossSum(int A[], int l, int m, int h) {
// at least A[m] and A[m+1] are present, h>l
int sum = A[m]; int lSum = A[m];
for (int i = m-1; i >= l; i--) {
sum = sum + A[i];
if (sum > lSum) lSum = sum;
}
sum = A[m+1]; int rSum = A[m+1];
for (int i = m+2; i <= h; i++) {
sum = sum + A[i];
if (sum > rSum) rSum = sum;
}
return lSum + rSum;
}
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More applications of DC Matrix multiplication by DC

Matrix multiplication by DC

Given, n × n matrices A = (aij),B = (bij), product C = AB is

defined as cij =
n∑

k=0
aikbkj

This way, computation of each cij takes Θ(n) time
C is computed in Θ(n3) time

Application of DC can be considered

A =

(
A11 A12
A21 A22

)
B =

(
B11 B12
B21 B22

)
C =

(
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)
Time complexity: T (n) =8T

(n
2

)
+ Θ(n2)

Solution (by standard methods): Θ(n3), so no benefit
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More applications of DC Matrix multiplication by DC

Matrix multiplication by DC (contd.)

Strassen’s matrix multiplication
algorithm works by first defining 7 intermediate matrices as follows:
D1 = (A11 + A22)(B11 + B22)
D2 = (A21 + A22)B11
D3 = A11(B12 − B22)
D4 = A22(B21 − B11)

D5 = (A11 + A12)B22
D6 = (A21 − A11)(B11 + B12)
D7 = (A12 − A22)(B21 + B22)

Next, the sub-matrices of C are computed as follows:
C11 = D1 + D4 − D5 + D7
C12 = D3 + D5

C21 = D2 + D4
C22 = D1 − D2 + D3 + D6

Time complexity: T (n) =7T
(n

2

)
+ Θ(n2)

Solution (by standard methods): Θ(n2.80735...)

Practical utility is limited, but an important result
Method of Coppersmith and Winograd works in O(n2.376)

Trivial lower bound is: Ω(n2)
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Matrix multiplication by DC (contd.)
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More applications of DC Matrix multiplication by DC

Matrix multiplication by DC (contd.)

Strassen’s matrix multiplication
algorithm works by first defining 7 intermediate matrices as follows:
D1 = (A11 + A22)(B11 + B22)
D2 = (A21 + A22)B11
D3 = A11(B12 − B22)
D4 = A22(B21 − B11)

D5 = (A11 + A12)B22
D6 = (A21 − A11)(B11 + B12)
D7 = (A12 − A22)(B21 + B22)

Next, the sub-matrices of C are computed as follows:
C11 = D1 + D4 − D5 + D7
C12 = D3 + D5

C21 = D2 + D4
C22 = D1 − D2 + D3 + D6

Time complexity: T (n) =

7T
(n

2

)
+ Θ(n2)

Solution (by standard methods): Θ(n2.80735...)

Practical utility is limited, but an important result
Method of Coppersmith and Winograd works in O(n2.376)

Trivial lower bound is: Ω(n2)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 26, 2021 12 / 13



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

More applications of DC Matrix multiplication by DC

Matrix multiplication by DC (contd.)

Strassen’s matrix multiplication
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More applications of DC Matrix multiplication by DC

Matrix multiplication by DC (contd.)

Strassen’s matrix multiplication
algorithm works by first defining 7 intermediate matrices as follows:
D1 = (A11 + A22)(B11 + B22)
D2 = (A21 + A22)B11
D3 = A11(B12 − B22)
D4 = A22(B21 − B11)

D5 = (A11 + A12)B22
D6 = (A21 − A11)(B11 + B12)
D7 = (A12 − A22)(B21 + B22)

Next, the sub-matrices of C are computed as follows:
C11 = D1 + D4 − D5 + D7
C12 = D3 + D5

C21 = D2 + D4
C22 = D1 − D2 + D3 + D6

Time complexity: T (n) =7T
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2

)
+ Θ(n2)

Solution (by standard methods): Θ(n2.80735...)

Practical utility is limited, but an important result
Method of Coppersmith and Winograd works in O(n2.376)

Trivial lower bound is:

Ω(n2)
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More applications of DC Matrix multiplication by DC

Matrix multiplication by DC (contd.)
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More applications of DC Practice problems

Practice problems

Given a sorted array in which all elements appear twice (together)
and one element appears only once, locate that element
An array of n points in the plane is given; find out the closest pair
of points in the array
Find the largest rectangular area possible in a given histogram
where the largest rectangle can be made of a number of
contiguous bars. For simplicity, assume that all bars have same
width of 1 unit
Given a n × n board where n is a power of 2 with minimum value
as 2, with one missing cell (of size 1× 1) at a known location, fill
the board using L shaped tiles An L shaped tile is a 2× 2 square
with one cell (of size 1× 1) missing
There are two sorted arrays A and B of size n each, find the
median of the array obtained after merging the above 2 arrays
Check if a given integer p appears more than n

2 times in a sorted
array of n integers
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