

1/16

э

CM and PB (IIT Kharagpur)

Algorithms

▶ < ≡ ▶ < ≡ ▶</p>
January 12, 2023

Section outline

Binary search trees (BST)

- BST definition
- Searching in a BST

- Inserting in a BST
- Deletion from a BST

• Average case searching time in a BST

Algorithms

BST definition

Definition (Binary search tree)

It is a binary tree having a key in each node and satisfying the following properties:

- The left subtree of a node contains only nodes with keys less than the node's key
- The right subtree of a node contains only nodes with keys greater than the node's key
- Both the left and right subtrees must also be binary search trees

Invented by P.F. Windley, A.D. Booth, A.J.T. Colin, and T.N. Hibbard in 1960

CM and PB (IIT Kharagpur)

BST definition

BST typedef

typedef int keyTyp;

```
typedef struct binTTag {
 keyTyp key;
 struct binTTag
   *lChild, *rChild;
 binTreeTyp, *binTreePtr;
```


Searching in a BST

binTreePtr *bstSearch(binTreePtr bstP, keyTyp ky) Base cases CBa bstP==NULL // empty BST ABa return NULL; CBb bstP->key == ky // key found ABb return bstP;

5/16

Searching in a BST

binTreePtr *bstSearch(binTreePtr bstP, keyTyp ky)

Base cases

- CBa bstP==NULL // empty BST
- ABa return NULL;
- CBb bstP->key == ky // key found
- ABb return bstP;

Inductive/recursive case

- Cla ky
bstP->key // check in left subtree
- Ala1 return bstSearch(bsTP->IChild, ky);
 - Clb ky>bstP->key // check in right subtree
- Alb1 return bstSearch(bsTP->rChild, ky);

Worst case time complexity for a BST with *n* keys is O(n), when the tree is skewed

Programming friendly searching in BST

binTreePtr *bstSearch(binTreePtr *bstPP, keyTyp ky)

Base cases

- CBa *bstPP==NULL // empty BST
- ABa return bstPP; // caller checks whether *bstPP==NULL
- CBb (*bstPP)->key == ky // key found
- ABb return bstPP;

6/16

э

Programming friendly searching in BST

binTreePtr *bstSearch(binTreePtr *bstPP, keyTyp ky)

Base cases

- CBa *bstPP==NULL // empty BST
- ABa return bstPP; // caller checks whether *bstPP==NULL
- CBb (*bstPP)->key == ky // key found
- ABb return bstPP;

Inductive/recursive case

- Cla ky<(*bstPP)->key // check in left subtree
- Ala1 return bstSearch(&((*bstPP)->IChild), ky);
 - Clb ky>(*bstPP)->key // check in right subtree

Alb1 return bstSearch(&((*bstPP)->rChild), ky);

Use pointer to the pointer to the BST, through which a new node can be inserted or an existing node deleted

Algorithms

Inserting in a BST

Inserting in a BST

```
binTreePtr *bstIns(binTreePtr *bstPP, keyTyp ky) {
 // first locate the node or
 // the point where the search fails
 binTreePtr *bstSrchP = bstSearch(bstPP, ky);
 if (*bstSrchP==NULL) {
   *bstSrchP = binTreeLeafNode(ky);
 { // else ky is already present
binTreePtr binTreeLeafNode(ky) {
 binTreePtr nP = malloc(sizeof(binTreeTyp));
 nP->ky = ky; nP->lChild = nP->rChild = NULL;
```

Worst case time complexity is determined by that of bstSearch()

Deletion from a BST

First locate the node containing the key to be deleted, then continue as follows:

Node is a leaf? Delete directly

Node has only one child? Delete, moving the subtree in its place

Node has both children? - cannot be

deleted simply

- Identify the predecessor or successor of the node in the subtree rooted at that node
- 2 Replace the node with the identified predecessor or successor, deleting that

프 () () ()

Deletion from a BST (contd.)

```
binTreePtr bstFndDelPred
    (bstTreePtr nP) {
// find and delete the
// predecessor of node in the
// subtree rooted at it
  binTreePtr *nPP =
    &(nP->IChild):
  while (*nPP->rChild) {
    nPP = \&(*nPP ->rChild);
  } // keep going right in loop
  nP = *nPP; // the pred node
  // now short circuit pred node
  *nPP = nP -> |Child:
  nP->IChild = NULL;
  return nP; // with pred ky
```


Deletion from a BST (contd.)

(bstTreePtr nP) { // find and delete the // predecessor of node in the // subtree rooted at it binTreePtr *nPP =&(nP->IChild); while (*nPP->rChild) { nPP = &(*nPP ->rChild):} // keep going right in loop nP = *nPP; // the pred node // now short circuit pred node *nPP = nP -> IChild:nP->IChild = NULL; return nP; // with pred ky

binTreePtr bstFndDelPred

binTreePtr *bstDel(binTreePtr *bstPP, keyTyp ky) { // try locating the key binTreePtr pP, *kyNodePP = bstSearch(bstPP, ky); if (*kvNodePP == NULL) return; // absent if ((*kyNodePP)->rChild == NULL) { pP = *kyNodePP; // rChild absent *kyNodePP = pP->IChild; } else if ((*kyNodePP)->IChild == NULL) { pP = *kyNodePP; // IChild absent *kyNodePP = pP->rChild; } else { // both l&r child, so pred ky to del ky pP = bstFndDelPred (*kyNodePP); (*kyNodePP)->ky = pP->ky;

free(pP); // del ky or vacated pred ky

Average case searching time in a BST

- Let T be any BST with n nodes
- |NULLs| = 1 + |BSTNodes|
- $I_n \equiv$ sum of levels of all BSTNodes
- $E_n \equiv$ sum of levels of all NULLs CM and PB (IIT Kharagpur) Algorithms

- n = 6, |NULLs| = n + 1 = 7, $l = 0 + 1 \times 2 + 2 \times 2 + 3 \times 1 = 9$, $E = 2 \times 2 + 3 \times 3 + 4 \times 2 = 21 = l + 2n$
- $E_n = I_n + 2n$ (5.1)
- *S_n* = average #comparisons for successful search
- *U_n* ≡ average #comparisons for unsuccessful search
- Now, $U_n = \frac{E_n}{n+1}$ (5.2)

• Also,
$$S_n = \frac{I_n + n}{n} = \frac{E_n - n}{n}$$

[by (5.1)]

• There are *n*! equi-probable insertion sequences

January 12, 2023

- Consider each such sequence $\{x_1, x_2, \ldots, x_n\}$
- Denote by T_i (1 $\leq i \leq n$) the partial BST with x_1, x_2, \ldots, x_i only
- Let $X_i \equiv$ number of comparisons for successful search of x_i in T_i
- By definition, U_{i-1} ≡ average number of comparisons for unsuccessful search of x_i in T_{i-1}
- The unsuccessful search of x_i in T_{i-1} ends at the parent of x_i in T_i

Hence,

$$X_i = 1 + U_{i-1}$$
 (5.3)

• From (5.3),

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i = 1 + \frac{1}{n} \sum_{i=0}^{n-1} U_i \Rightarrow nS_n = n + \sum_{i=0}^{n-1} U_i$$
(5.4)

• From (5.2),

$$(n+1)U_n = E_n, \ nS_n = E_n - n \Rightarrow (n+1)U_n = nS_n + n$$
 (5.5)

3

• So, from (5.4),

 \Rightarrow

$$(n+1)U_n=2n+\sum_{i=0}^{n-1}U_i$$

$$nU_{n-1}=2(n-1)+\sum_{\imath=0}^{n-2}U_{\imath}$$
 [replacing n by $n-1$]

 $\Rightarrow (n+1)U_n - nU_{n-1} = 2 + U_{n-1} \text{ [subtracting 2nd from the 1st]}$ $\Rightarrow \qquad U_n = U_{n-1} + \frac{2}{n+1}$

• With $U_1 = 1$, unfold the above recurrence to get

$$U_{2} = 1 + \frac{2}{3},$$

$$U_{3} = 1 + \frac{2}{3} + \frac{2}{4},$$

$$U_{4} = 1 + \frac{2}{3} + \frac{2}{4} + \frac{2}{5},$$

$$\vdots$$

$$U_{n} = 1 + \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \dots + \frac{2}{n+1} = 2\left(1 + \frac{1}{2} + \frac{1}{3} + \dots \pm \frac{1}{n+1}\right) = -2\frac{2}{2}$$
(M and PB (IIT Kharagpur) Algorithms January 12, 2023 12/16

- $U_n = 2H_{n+1} 2 \in O(\log n)$
- From (5.5),

$$S_n = \left(1+\frac{1}{n}\right)U_n - 1 \in O(\log n)$$

 Even though the worst case search time is linear, the average search time is logarithmic

э

Section outline

- Efficient key retrieval
- Storage mechanism

14/16

CM and PB (IIT Kharagpur)

< A >

CM and PB (IIT Kharagpur)

3 🕨 - 3

- Trie derived from retrieval
- Not all words are at leaves: cat, cataclysm, cataclysmic

- Trie derived from retrieval
- Not all words are at leaves: cat, cataclysm, cataclysmic
- Initially, one letter is enough
- Branching needed after divergence from common prefix
- Recognition of key may happen after branching

- Trie derived from retrieval
- Not all words are at leaves: cat, cataclysm, cataclysmic
- Initially, one letter is enough
- Branching needed after divergence from common prefix
- Recognition of key may happen after branching
- Insertion, search, delete key of length k: O(k)

- Trie derived from retrieval
- Not all words are at leaves: cat, cataclysm, cataclysmic
- Initially, one letter is enough
- Branching needed after divergence from common prefix
- Recognition of key may happen after branching
- Insertion, search, delete key of length k: O(k)

CM and PB (IIT Kharagpur)

Algorithms

January 12, 2023

Storage mechanism

Storage mechanism

