
IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Contents

1 Binary search trees (BST)

2 Prefix trees (Tries)

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 1 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST)

Section outline

1 Binary search trees (BST)
BST definition
Searching in a BST

Inserting in a BST
Deletion from a BST
Average case searching
time in a BST

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 2 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) BST definition

BST definition

Definition (Binary search tree)
It is a binary tree having a key in each
node and satisfying the following
properties:

The left subtree of a node contains
only nodes with keys less than the
node’s key
The right subtree of a node contains
only nodes with keys greater than the
node’s key
Both the left and right subtrees must
also be binary search trees

Invented by P.F. Windley, A.D. Booth,
A.J.T. Colin, and T.N. Hibbard in 1960

11

5 12

4 7 15

6 9 14

8

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 3 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) BST definition

BST typedef

typedef int keyTyp;

typedef struct binTTag {
keyTyp key;
struct binTTag

*lChild, *rChild;
} binTreeTyp, *binTreePtr;

11

5 12

4 7 15

6 9 14

8

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 4 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) Searching in a BST

Searching in a BST

binTreePtr *bstSearch(binTreePtr bstP, keyTyp ky)
Base cases

CBa bstP==NULL // empty BST
ABa return NULL;
CBb bstP->key == ky // key found
ABb return bstP;

Inductive/recursive case
CIa ky<bstP->key // check in left subtree

AIa1 return bstSearch(bsTP->lChild, ky);
CIb ky>bstP->key // check in right subtree

AIb1 return bstSearch(bsTP->rChild, ky);
Worst case time complexity for a BST with n keys is O(n), when the
tree is skewed

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 5 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) Searching in a BST

Searching in a BST

binTreePtr *bstSearch(binTreePtr bstP, keyTyp ky)
Base cases

CBa bstP==NULL // empty BST
ABa return NULL;
CBb bstP->key == ky // key found
ABb return bstP;

Inductive/recursive case
CIa ky<bstP->key // check in left subtree

AIa1 return bstSearch(bsTP->lChild, ky);
CIb ky>bstP->key // check in right subtree

AIb1 return bstSearch(bsTP->rChild, ky);
Worst case time complexity for a BST with n keys is O(n), when the
tree is skewed

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 5 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) Searching in a BST

Programming friendly searching in BST

binTreePtr *bstSearch(binTreePtr *bstPP, keyTyp ky)
Base cases

CBa *bstPP==NULL // empty BST
ABa return bstPP; // caller checks whether *bstPP==NULL
CBb (*bstPP)->key == ky // key found
ABb return bstPP;

Inductive/recursive case
CIa ky<(*bstPP)->key // check in left subtree

AIa1 return bstSearch(&((*bstPP)->lChild), ky);
CIb ky>(*bstPP)->key // check in right subtree

AIb1 return bstSearch(&((*bstPP)->rChild), ky);
Use pointer to the pointer to the BST, through which a new node can
be inserted or an existing node deleted

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 6 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) Searching in a BST

Programming friendly searching in BST

binTreePtr *bstSearch(binTreePtr *bstPP, keyTyp ky)
Base cases

CBa *bstPP==NULL // empty BST
ABa return bstPP; // caller checks whether *bstPP==NULL
CBb (*bstPP)->key == ky // key found
ABb return bstPP;

Inductive/recursive case
CIa ky<(*bstPP)->key // check in left subtree

AIa1 return bstSearch(&((*bstPP)->lChild), ky);
CIb ky>(*bstPP)->key // check in right subtree

AIb1 return bstSearch(&((*bstPP)->rChild), ky);
Use pointer to the pointer to the BST, through which a new node can
be inserted or an existing node deleted

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 6 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) Inserting in a BST

Inserting in a BST

binTreePtr *bstIns(binTreePtr *bstPP, keyTyp ky) {
// first locate the node or
// the point where the search fails
binTreePtr *bstSrchP = bstSearch(bstPP, ky);
if (*bstSrchP==NULL) {
*bstSrchP = binTreeLeafNode(ky);
} // else ky is already present
}

binTreePtr binTreeLeafNode(ky) {
binTreePtr nP = malloc(sizeof(binTreeTyp));
nP->ky = ky; nP->lChild = nP->rChild = NULL;
}

Worst case time complexity is determined by that of bstSearch()

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 7 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) Deletion from a BST

Deletion from a BST

11

5 12

4 7 15

6 9 14

8

First locate the node containing the key to be
deleted, then continue as follows:
Node is a leaf? Delete directly
Node has only one child? Delete, moving

the subtree in its place
Node has both children? – cannot be

deleted simply
1 Identify the predecessor or

successor of the node in the
subtree rooted at that node

2 Replace the node with the
identified predecessor or
successor, deleting that

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 8 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) Deletion from a BST

Deletion from a BST (contd.)
binTreePtr bstFndDelPred

(bstTreePtr nP) {
// find and delete the
// predecessor of node in the
// subtree rooted at it

binTreePtr *nPP =
&(nP->lChild);

while (*nPP->rChild) {
nPP = &(*nPP->rChild);
} // keep going right in loop
nP = *nPP; // the pred node
// now short circuit pred node
*nPP = nP->lChild;
nP->lChild = NULL;
return nP; // with pred ky
}

binTreePtr *bstDel(binTreePtr *bstPP,
keyTyp ky) { // try locating the key

binTreePtr pP, *kyNodePP =
bstSearch(bstPP, ky);

if (*kyNodePP == NULL) return; // absent
if ((*kyNodePP)->rChild == NULL) {

pP = *kyNodePP; // rChild absent
*kyNodePP = pP->lChild;
} else if ((*kyNodePP)->lChild == NULL) {

pP = *kyNodePP; // lChild absent
*kyNodePP = pP->rChild;

} else { // both l&r child, so pred ky to del ky
pP = bstFndDelPred
(*kyNodePP);
(*kyNodePP)->ky = pP->ky;

}
free(pP); // del ky or vacated pred ky

}

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 9 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) Deletion from a BST

Deletion from a BST (contd.)
binTreePtr bstFndDelPred

(bstTreePtr nP) {
// find and delete the
// predecessor of node in the
// subtree rooted at it

binTreePtr *nPP =
&(nP->lChild);

while (*nPP->rChild) {
nPP = &(*nPP->rChild);
} // keep going right in loop
nP = *nPP; // the pred node
// now short circuit pred node
*nPP = nP->lChild;
nP->lChild = NULL;
return nP; // with pred ky
}

binTreePtr *bstDel(binTreePtr *bstPP,
keyTyp ky) { // try locating the key

binTreePtr pP, *kyNodePP =
bstSearch(bstPP, ky);

if (*kyNodePP == NULL) return; // absent
if ((*kyNodePP)->rChild == NULL) {

pP = *kyNodePP; // rChild absent
*kyNodePP = pP->lChild;
} else if ((*kyNodePP)->lChild == NULL) {

pP = *kyNodePP; // lChild absent
*kyNodePP = pP->rChild;

} else { // both l&r child, so pred ky to del ky
pP = bstFndDelPred
(*kyNodePP);
(*kyNodePP)->ky = pP->ky;

}
free(pP); // del ky or vacated pred ky

}
CM and PB (IIT Kharagpur) Algorithms January 12, 2023 9 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) Average case searching time in a BST

Average case searching time in a BST

11

5 12

4 7

6

d = 0

d = 1

d = 2

d = 3

d = 4

Let T be any BST with n nodes

|NULLs| = 1 + |BSTNodes|

In ≡ sum of levels of all BSTNodes

En ≡ sum of levels of all NULLs

n = 6, |NULLs| = n + 1 = 7,
I = 0+1×2+2×2+3×1 = 9,
E = 2× 2 + 3× 3 + 4× 2 =
21 = I + 2n

En = In + 2n (5.1)

Sn ≡ average #comparisons
for successful search

Un ≡ average #comparisons
for unsuccessful search

Now, Un = En
n+1 (5.2)

Also, Sn = In+n
n = En−n

n
[by (5.1)]

There are n ! equi-probable
insertion sequences

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 10 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) Average case searching time in a BST

Consider each such sequence {x1, x2, . . . , xn}
Denote by Tı (1 ≤ ı ≤ n) the partial BST with x1, x2, . . . , xı only
Let Xı ≡ number of comparisons for successful search of xı in Tı

By definition, Uı−1 ≡ average number of comparisons for
unsuccessful search of xı in Tı−1

The unsuccessful search of xı in Tı−1 ends at the parent of xı in Tı

Hence,
Xı = 1 + Uı−1 (5.3)

From (5.3),

Sn =
1
n

n∑
ı=1

Xı = 1 +
1
n

n−1∑
i=0

Uı ⇒ nSn = n +
n−1∑
i=0

Uı (5.4)

From (5.2),

(n + 1)Un = En, nSn = En − n⇒ (n + 1)Un = nSn + n (5.5)

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 11 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) Average case searching time in a BST

So, from (5.4),

(n + 1)Un = 2n +
n−1∑
ı=0

Uı

⇒ nUn−1 = 2(n − 1) +
n−2∑
ı=0

Uı [replacing n by n − 1]

⇒ (n + 1)Un − nUn−1 = 2 + Un−1 [subtracting 2nd from the 1st]

⇒ Un = Un−1 +
2

n + 1
With U1 = 1, unfold the above recurrence to get

U2 = 1 + 2
3 ,

U3 = 1 + 2
3 + 2

4 ,

U4 = 1 + 2
3 + 2

4 + 2
5 ,

...
Un = 1 + 2

3 + 2
4 + 2

5 + · · ·+ 2
n+1 = 2

(
1 + 1

2 + 1
3 + · · ·+ 1

n+1

)
− 2

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 12 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Binary search trees (BST) Average case searching time in a BST

Un = 2Hn+1 − 2 ∈ O(log n)
From (5.5),

Sn =

(
1 +

1
n

)
Un − 1 ∈ O(log n)

Even though the worst case search time is linear, the average
search time is logarithmic

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 13 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Prefix trees (Tries)

Section outline

2 Prefix trees (Tries)

Efficient key retrieval
Storage mechanism

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 14 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Prefix trees (Tries) Efficient key retrieval

Efficient key retrieval

Example (Storing keys using tries)

c d

a

cat

o

cow

o u

duckg

dog

p

doppler

Trie derived from retrieval
Not all words are at leaves:
cat, cataclysm, cataclysmic
Initially, one letter is
enough
Branching needed after
divergence from common
prefix
Recognition of key may
happen after branching
Insertion, search, delete
key of length k : O(k)
Independent of keys stored
(n) and may be better than
lg n

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 15 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Prefix trees (Tries) Efficient key retrieval

Efficient key retrieval

Example (Storing keys using tries)

c d

a

cat

o

cow

o u

duckg

dog

p

doppler

Trie derived from retrieval
Not all words are at leaves:
cat, cataclysm, cataclysmic

Initially, one letter is
enough
Branching needed after
divergence from common
prefix
Recognition of key may
happen after branching
Insertion, search, delete
key of length k : O(k)
Independent of keys stored
(n) and may be better than
lg n

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 15 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Prefix trees (Tries) Efficient key retrieval

Efficient key retrieval

Example (Storing keys using tries)

c d

a

cat

o

cow

o u

duckg

dog

p

doppler

Trie derived from retrieval
Not all words are at leaves:
cat, cataclysm, cataclysmic
Initially, one letter is
enough
Branching needed after
divergence from common
prefix
Recognition of key may
happen after branching

Insertion, search, delete
key of length k : O(k)
Independent of keys stored
(n) and may be better than
lg n

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 15 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Prefix trees (Tries) Efficient key retrieval

Efficient key retrieval

Example (Storing keys using tries)

c d

a

cat

o

cow

o u

duckg

dog

p

doppler

Trie derived from retrieval
Not all words are at leaves:
cat, cataclysm, cataclysmic
Initially, one letter is
enough
Branching needed after
divergence from common
prefix
Recognition of key may
happen after branching
Insertion, search, delete
key of length k : O(k)

Independent of keys stored
(n) and may be better than
lg n

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 15 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Prefix trees (Tries) Efficient key retrieval

Efficient key retrieval

Example (Storing keys using tries)

c d

a

cat

o

cow

o u

duckg

dog

p

doppler

Trie derived from retrieval
Not all words are at leaves:
cat, cataclysm, cataclysmic
Initially, one letter is
enough
Branching needed after
divergence from common
prefix
Recognition of key may
happen after branching
Insertion, search, delete
key of length k : O(k)
Independent of keys stored
(n) and may be better than
lg n

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 15 / 16

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Prefix trees (Tries) Storage mechanism

Storage mechanism

Example (Storing keys using tries)

F . . . c d . . .

F a . . . o . . .

F cat F cow

F o . . .

T dog

CM and PB (IIT Kharagpur) Algorithms January 12, 2023 16 / 16

	Binary search trees (BST)
	BST definition
	Searching in a BST
	Inserting in a BST
	Deletion from a BST
	Average case searching time in a BST

	Prefix trees (Tries)
	Efficient key retrieval
	Storage mechanism

	resultado2:
	hours: 10
	minutes: 50
	seconds: 06
	cronohours: 00
	cronominutes: 00
	crseconds: 08
	day: 12
	month: 01
	year: 2023
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00

