Contents

© Prefix trees (Tries)

0 Binary search trees (BST)

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 1/16

Binary search trees (BST)

Section outline

o Binary search trees (BST)
@ BST definition
@ Searching in a BST

CM and PB (lIT Kharagpur)

Algorithms

@ Inserting in a BST

@ Deletion from a BST

@ Average case searching
time in a BST

January 12, 2023 2/16

Binary search trees (BST) BST definition

BST definition

Definition (Binary search tree)

It is a binary tree having a key in each
node and satisfying the following
properties:
@ The left subtree of a node contains
only nodes with keys less than the
node’s key

@ The right subtree of a node contains
only nodes with keys greater than the
node’s key

@ Both the left and right subtrees must
also be binary search trees

Invented by P.F. Windley, A.D. Booth,
A.J.T. Colin, and T.N. Hibbard in 1960

(11
(s) ()
OXONO®
ONORO
(8) ®

January 12, 2023 3/16

BST typedef

typedef int keyTyp; e @
typedef struct binTTag {
ceyTyp Koy OROER 0O
struct binTTag
*1Child, =rChild;
} binTreeTyp, =*binTreePtr; e e @
(&) @

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 4/16

Searching in a BST

binTreePtr *bstSearch(binTreePtr bstP, keyTyp ky)
Base cases
CBa bstP==NULL // empty BST
ABa return NULL;
CBb bstP->key == ky // key found
ABDb return bstP;

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 5/16

Searching in a BST

binTreePtr *bstSearch(binTreePtr bstP, keyTyp ky)
Base cases
CBa bstP==NULL // empty BST
ABa return NULL;
CBb bstP->key == ky // key found
ABDb return bstP;
Inductive/recursive case
Cla ky<bstP->key // check in left subtree
Alai return bstSearch(bsTP->IChild, ky);
Clb ky>bstP->key // check in right subtree
Alb1 return bstSearch(bsTP->rChild, ky);

Worst case time complexity for a BST with n keys is O(n), when the @
tree is skewed

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 5/16

Binary search trees (BST) Searching in a BST

Programming friendly searching in BST

binTreePtr *bstSearch(binTreePtr *bstPP, keyTyp ky)
Base cases
CBa *bstPP==NULL // empty BST
ABa return bstPP; // caller checks whether *bstPP==NULL
CBb (*bstPP)->key == ky // key found
ABb return bstPP;

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 6/16

Binary search trees (BST) Searching in a BST

Programming friendly searching in BST

binTreePtr *bstSearch(binTreePtr *bstPP, keyTyp ky)
Base cases
CBa *bstPP==NULL // empty BST
ABa return bstPP; // caller checks whether *bstPP==NULL
CBb (*bstPP)->key == ky // key found
ABb return bstPP;
Inductive/recursive case
Cla ky<(*bstPP)->key // check in left subtree
Ala1 return bstSearch(&((*bstPP)->IChild), ky);
Clb ky>(*bstPP)->key // check in right subtree
Alb1 return bstSearch(&((*bstPP)->rChild), ky);
Use pointer to the pointer to the BST, through which a new node can
be inserted or an existing node deleted @

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 6/16

Binary search trees (BST) Inserting in a BST

Inserting in a BST

binTreePtr xbstIns(binTreePtr xbstPP, keyTyp ky) {
// first locate the node or
// the point where the search fails
binTreePtr *bstSrchP = bstSearch (bstPP, ky);
if (*#bstSrchP==NULL) {
*bstSrchP = binTreelLeafNode (ky);
} // else ky is already present

}

binTreePtr binTreelLeafNode (ky) {
binTreePtr nP = malloc (sizeof (binTreeTyp));
nP->ky = ky; nP->1Child = nP->rChild = NULL;

}

Worst case time complexity is determined by that of bstSearch() @
Algorithms January 12, 2023 7/16

Binary search trees (BST) Deletion from a BST

Deletion from a BST

First locate the node containing the key to be
0 deleted, then continue as follows:

Node is a leaf? Delete directly

e @ Node has only one child? Delete, moving
the subtree in its place

Node has both children? — cannot be

° o @ deleted simply

@ Identify the predecessor or
successor of the node in the

e e @ subtree rooted at that node
© Replace the node with the

identified predecessor or

e successor, deleting that

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 8/16

Deletion from a BST (contd.)

binTreePtr bstFndDelPred
(bstTreePtr nP) {
// find and delete the
// predecessor of node in the
// subtree rooted at it
binTreePtr *nPP =
&(nP->IChild);
while (*nPP->rChild) {
nPP = &(*nPP->rChild);
} // keep going right in loop
nP = *nPP; // the pred node
/I now short circuit pred node
*nPP = nP->IChild;
nP->IChild = NULL;
return nP; // with pred ky @

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 9/16

Deletion from a BST (contd.)

binTreePtr bstFndDelPred binTreePtr *bstDel(binTreePtr *bstPP,
(bstTreePtr nP) { _ keyTyp ky) { // try locating the key
// find and delete the binTreePtr pP, *kyNodePP =

; bstSearch(bstPP, ky);
/I predecessor of node in the
/ gubtree rooted at it I if ("*kyNodePP == NULL) return; // absent

if ((*kyNodePP)->rChild == NULL) {

binTreePtr "nPP = pP = *kyNodePP; // rChild absent
&(nP->IChild); *kyNodePP = pP->IChild;

while (*nPP->rChild) { } else if ((*kyNodePP)->IChild == NULL) {
nPP = &(*nPP->rChild); pP = *kyNodePP; // IChild absent

} // keep going right in loop *kyNodePP = pP->rChild;

nP = *nPP; // the pred node } else { // both 1&r child, so pred ky to del ky
// now short circuit pred node ziyzgztggg;?emred
oo R e

return nP; // with pred ky free(pP); // del ky or vacated pred ky &
} }
Algorithms January 12, 2023 9/16

Binary search trees (BST) Average case searching time in a BST

Average case searching time in a BST

@ Let T be any BST with n nodes
@ |NULLs| =1+ |BSTNodes|
@ /, = sum of levels of all BSTNodes

@ E, = sum of levels of all NULLs

CM and PB (lIT Kharagpur) Algorithms

@ n=6,|NULLs| =n+1=7,

|=0+1x24+2x24+3x1 =09,
E=2x2+3x3+4x2=
21 =1/+2n

@ E,=I,+2n (5.1)

@ S, = average #comparisons
for successful search

@ U, = average #comparisons
for unsuccessful search

@ Now, U, = £ (5.2)

@ Also, S, = it = En=n
[by (5.1)]

@ There are n! equi-probable@
insertion.sequences

January 12, 2023 10/16

Binary search trees (BST) Average case searching time in a BST

@ Consider each such sequence {x1, X2,...,Xn}
@ Denote by T, (1 < < n) the partial BST with x1, xo, ..., X, only
@ Let X, = number of comparisons for successful search of x, in T,

@ By definition, U,_{ = average number of comparisons for
unsuccessful search of x, in T,_4

@ The unsuccessful search of x, in T,_1 ends at the parent of x, in T,

@ Hence,
)(z =1+ U7471 (53)

@ From (5.3),
10 4 01 n—1
sn:n;)g:1+ngojul;»nsn=n+iz;ul (5.4)
@ From (5.2),
(n+1)Un=Ep, nSy=Ep—n=(n+1)Up=nSy+n (58§

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 11/16

Binary search trees (BST) Average case searching time in a BST

@ So, from (5.4),

n—1
(n+1)Ur=2n+ >_ U,
1=0

n—2

= nU,_y1=2(n—1)+ >_ U, [replacing nby n— 1]
1=0

= (n+1)Up — nUp_1 =2+ U,_1 [subtracting 2nd from the 1st]

2
= Un = Un71 + m
@ With U; = 1, unfold the above recurrence to get
Up=1+3,
U =1+ % + %,

Up=14+5+2+%,

2) iy
n+1 n+1

— 24,242, . 2 _ L R
Up=1+%+2+2+ 4 2 =21+ 1+ 5+ +
Algorithms January 12, 2023 12/16

Binary search trees (BST) Average case searching time in a BST

@ Up=2Hp1 —2 € O(logn)
@ From (5.5),
Sn = (1 + :_’> Un—1 S O(logn)

@ Even though the worst case search time is linear, the average
search time is logarithmic

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 13/16

Prefix trees (Tries)

Section outline

o Efficient key retrieval

@ Storage mechanism
e Prefix trees (Tries)

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 14/16

Prefix trees (Tries) Efficient key retrieval

Efficient key retrieval

Example (Storing keys using tries)

o
=
Q
=

Q o
o o
(o} L)
j=3
(]
=

- @

January 12, 2023 15/16

Algorithms

CM and PB (lIT Kharagpur)

Prefix trees (Tries) Efficient key retrieval

Efficient key retrieval
@ Trie derived from retrieval

Example (Storing keys using tries) @ Not all words are at leaves:
cat, cataclysm, cataclysmic

- @

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 15/16

Prefix trees (Tries) Efficient key retrieval

Efficient key retrieval
@ Trie derived from retrieval

Example (Storing keys using tries) @ Not all words are at leaves:
cat, cataclysm, cataclysmic

@ Initially, one letter is
enough

@ Branching needed after
divergence from common
prefix

@ Recognition of key may
happen after branching

o
(S
Q
3

Q o
o o
(o} L)
j=3
®
=

- @

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 15/16

Prefix trees (Tries) Efficient key retrieval

Efficient key retrieval
@ Trie derived from retrieval

Example (Storing keys using tries) @ Not all words are at leaves:
cat, cataclysm, cataclysmic

@ Initially, one letter is
enough

@ Branching needed after
divergence from common
prefix

@ Recognition of key may
happen after branching

@ Insertion, search, delete
key of length k: O(k)

- @

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 15/16

o
(S
Q
3

Q o
o o
(o} L)
j=3
®
=

Prefix trees (Tries) Efficient key retrieval

Efficient key retrieval
@ Trie derived from retrieval

Example (Storing keys using tries) @ Not all words are at leaves:
cat, cataclysm, cataclysmic

@ Initially, one letter is
enough

@ Branching needed after
divergence from common
prefix

@ Recognition of key may
happen after branching

@ Insertion, search, delete
key of length k: O(k)

@ Independent of keys stored
n) and may be better th
() romr et v

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 15/16

o
(S
Q
3

o o
o o
Q@ §®)
joi
o)
-

Prefix trees (Tries) Storage mechanism

Storage mechanism

Example (Storing keys using tries)

F al---lo|--- F N B o)
F cat F cow T dog

v

CM and PB (lIT Kharagpur) Algorithms January 12, 2023 16/16

	Binary search trees (BST)
	BST definition
	Searching in a BST
	Inserting in a BST
	Deletion from a BST
	Average case searching time in a BST

	Prefix trees (Tries)
	Efficient key retrieval
	Storage mechanism

	resultado2:
	hours: 10
	minutes: 50
	seconds: 06
	cronohours: 00
	cronominutes: 00
	crseconds: 08
	day: 12
	month: 01
	year: 2023
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00

