Contents

1/33

э

Section outline

Asymptotic complexity of programs

- Asymptotic complexity
- Big-O notation
- Sample growth functions
- Big-Omega notation
- Determination of constants
- Theta notation
- ⊖ is an equivalence relation

- Partial order relation induced by \mathcal{O}
- Small-o notation: o(g(n))
- Diagram of relation between
 Θ, O and o
- Sample relations between functions
- Small- ω notation: $\omega(g(n))$
- Summary
- Practice questions

Asymptotic complexity

- Suppose we determine that a program takes 8n + 5 steps to solve a problem of size n
- What is the significance of the 8 and +5 ?
- As *n* gets large, the +5 becomes insignificant
- The 8 is inaccurate as different operations require varying amounts of time
- What is fundamental is that the time is *linear* in *n*
- Asymptotic Complexity: As n gets large, ignore all lower order terms and concentrate on the highest order term only

3/33

Asymptotic complexity (Contd.)

- 8*n*+5 is said to grow asymptotically like *n*
- So does 119n 45
- This gives us a simplified approximation of the complexity of the algorithm, leaving out details that become insignificant for larger input sizes

4/33

Big-O notation

- We have talked of $\mathcal{O}(n)$, $\mathcal{O}(n^2)$ and $\mathcal{O}(n^3)$ before
- The big-O notation is used to express the upper bound on a function, hence used to denote the worst case running time of a program
- If f(n) and g(n) are two functions then we can mathematically say: $f(n) \in \mathcal{O}(g(n))$ if there exist positive constants c and n_0 such that for all $n > n_0$, $0 \le f(n) \le cg(n)$
- cg(n) dominates f(n) for $n > n_0$ (for large n)
- This is read "f(n) is order g(n)," or "f(n) is big-O of g(n)"
- Loosely speaking, g(n) grows at least as fast as f(n)
- Sometimes people also write f(n) = O (g(n)), but that notation is misleading, as there is no straightforward equality involved
- This characterisation is not tight, if $f(n) \in \mathcal{O}(n)$, then $f(n) \in \mathcal{O}(n^2)$

Big-O notation

Diagramatic representation of big-O

Sample growth functions

The functions below are given in ascending order:

$\mathcal{O}(k) = \mathcal{O}(1)$	Constant time
$\mathcal{O}\left(\log_b n\right) = \mathcal{O}\left(\log n\right)$	Logarithmic time
$\mathcal{O}(n)$	Linear time
$\mathcal{O}(n \log n)$	
$\mathcal{O}\left(n^{2}\right)$	Quadratic time
$\mathcal{O}(n^3)$	Cubic time
$\mathcal{O}(k^n)$	Exponential time
$\mathcal{O}(n!)$	Super exponential time

Image: A math

Big-Omega notation

- In matrix evaluation by Cramer's rule, the number of operations to be performed is worse that n!, if used with a naive determinant-finding algorithm
- The big-Omega notation is used to express the lower bound on a function
- If f(n) and g(n) are two functions then we can mathematically say: $f(n) \in \Omega(g(n))$ if there exist positive constants c and n_0 such that for all $n > n_0 \ 0, \le cg(n) \le f(n)$
- f(n) dominates cg(n) for $n > n_0$ (for large n)
- Loosely speaking, f(n) grows at least as fast as g(n)
- Sometimes people also write f(n) = Ω(g(n)), but that notation is misleading, as there is no straightforward equality involved
- This characterisation is also not tight

< ロ > < 同 > < 回 > < 回 > < 回 > <

Diagramatic representation of big-Omega

Example ($T(n) = n^3 + 20n + 1 \in O(n^3)$ **)**

10/33

э

Chittaranjan Mandal (IIT Kharagpur)

Example ($T(n) = n^3 + 20n + 1 \in O(n^3)$ **)**

- By definition, $T(n) \in \mathcal{O}\left(n^3\right)$ if $T(n) \leq c \cdot n^3$ for some $n \geq n_0$
- If $n^3 + 20n + 1 \le c \cdot n^3$ then $1 + \frac{20}{n^2} + \frac{1}{n^3} \le c$
- Required condition holds for $n \ge n_0 = 1$ and $c \ge 22(= 1 + 20 + 1)$
- Larger values of n₀ result in smaller values c (for n₀ = 10, c ≥ 1.201)

< ロ > < 同 > < 三 > < 三 > -

Example ($T(n) = n^3 + 20n + 1 \in O(n^3)$ **)**

- By definition, $T(n) \in \mathcal{O}\left(n^3\right)$ if $T(n) \leq c \cdot n^3$ for some $n \geq n_0$
- If $n^3 + 20n + 1 \le c \cdot n^3$ then $1 + \frac{20}{n^2} + \frac{1}{n^3} \le c$
- Required condition holds for $n \ge n_0 = 1$ and $c \ge 22(= 1 + 20 + 1)$
- Larger values of n₀ result in smaller values c (for n₀ = 10, c ≥ 1.201)

Example ($T(n) = n^3 + 20n + 1 \notin O(n^2)$ **)**

э.

10/33

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example ($T(n) = n^3 + 20n + 1 \in O(n^3)$ **)**

- By definition, $T(n) \in \mathcal{O}\left(n^3\right)$ if $T(n) \leq c \cdot n^3$ for some $n \geq n_0$
- If $n^3 + 20n + 1 \le c \cdot n^3$ then $1 + \frac{20}{n^2} + \frac{1}{n^3} \le c$
- Required condition holds for $n \ge n_0 = 1$ and $c \ge 22(= 1 + 20 + 1)$
- Larger values of n₀ result in smaller values c (for n₀ = 10, c ≥ 1.201)

Example ($T(n) = n^3 + 20n + 1 \notin O(n^2)$ **)**

- By definition, $T(n) \in \mathcal{O}(n^2)$ if $T(n) \le c \cdot n^2$ for some $n \ge n_0$
- If $n^3 + 20n + 1 \le c \cdot n^2$ then $n + \frac{20}{n} + \frac{1}{n^2} \le c$ for $n \ge n_0$
- Clearly, required condition is insatisfiable, so $T(n) \notin \mathcal{O}(n^2)$

э

Determination of constants (contd.)

Example ($T(n) = n^3 + 20n + 1 \in O(n^4)$ **)**

Chittaranjan Mandal (IIT Kharagpur)

Determination of constants (contd.)

Example ($T(n) = n^3 + 20n + 1 \in O(n^4)$ **)**

- By definition, $T(n) \in \mathcal{O}(n^4)$ if $T(n) \le c \cdot n^4$ for some $n \ge n_0$
- If $n^3 + 20n + 1 \le c \cdot n^4$ then $\frac{1}{n} + \frac{20}{n^3} + \frac{1}{n^4} \le c$
- Required condition holds for *n* ≥ *n*₀ = 1 and *c* ≥ 22(= 0.1 + 0.02 + 0.0001)
- Larger values of n₀ result in smaller values for c (for n₀ = 10, c ≥ 0.1201)

11/33

< ロ > < 同 > < 回 > < 回 > < □ > <

Determination of constants (contd.)

Example ($T(n) = n^3 + 20n + 1 \in O(n^4)$ **)**

- By definition, $T(n) \in \mathcal{O}(n^4)$ if $T(n) \le c \cdot n^4$ for some $n \ge n_0$
- If $n^3 + 20n + 1 \le c \cdot n^4$ then $\frac{1}{n} + \frac{20}{n^3} + \frac{1}{n^4} \le c$
- Required condition holds for *n* ≥ *n*₀ = 1 and *c* ≥ 22(= 0.1 + 0.02 + 0.0001)
- Larger values of n₀ result in smaller values for c (for n₀ = 10, c ≥ 0.1201)

Example ($T(n) = n^3 + 20n + 1 \in \Omega(n^2)$ **)**

11/33

Determination of constants (contd.)

Example ($T(n) = n^3 + 20n + 1 \in O(n^4)$ **)**

- By definition, $T(n) \in \mathcal{O}(n^4)$ if $T(n) \le c \cdot n^4$ for some $n \ge n_0$
- If $n^3 + 20n + 1 \le c \cdot n^4$ then $\frac{1}{n} + \frac{20}{n^3} + \frac{1}{n^4} \le c$
- Required condition holds for *n* ≥ *n*₀ = 1 and *c* ≥ 22(= 0.1 + 0.02 + 0.0001)
- Larger values of n₀ result in smaller values for c (for n₀ = 10, c ≥ 0.1201)

Example ($T(n) = n^3 + 20n + 1 \in \Omega(n^2)$ **)**

- By definition, $T(n) \in \Omega(n^2)$ if $T(n) \ge c \cdot n^2$ for some $n \ge n_0$
- If $n^3 + 20n + 1 \ge c \cdot n^2$ then $n + \frac{20}{n} + \frac{1}{n^2} \ge c$ for $n \ge n_0$
- Required condition holds for $n \ge n_0 = \sqrt{20}$ and $c \le 8.9 (\le 2\sqrt{20} + 0.0025)$

• Larger values of n_0 result in larger values for c (for $n_0 = 20, c \le 21$) Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021

- The Theta notation is used to express the notion that a function g(n) is a good (preferably simpler) characterisation of another function f(n)
- If f(n) and g(n) are two functions then we can mathematically say: $f(n) \in \Theta(g(n))$ if there exist positive constants c_1, c_2 and n_0 such that for all $n > n_0$

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n),$$
 (6.1)

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

August 31, 2021

- Loosely speaking, f(n) grows like g(n)
- Sometimes people also write *f*(*n*) = ⊖ (*g*(*n*)), but that notation is misleading
- This characterisation is tight

3

Diagramatic representation of Theta

Diagramatic representation of Theta

Diagramatic representation of Theta

For a relation \mathcal{R} on some set \mathcal{F} be an equivalence relation, it needs to be:

 reflexive: so that for *f* ∈ *F*, *fRf*, ie: an item in *F* is related to itself by *R*

14/33

For a relation \mathcal{R} on some set \mathcal{F} be an equivalence relation, it needs to be:

- reflexive: so that for *f* ∈ *F*, *fRf*, ie: an item in *F* is related to itself by *R*
- **symmetric**: so that for $f_1, f_2 \in \mathcal{F}, f_1\mathcal{R}f_2 \Rightarrow f_2\mathcal{R}f_1$

For a relation \mathcal{R} on some set \mathcal{F} be an equivalence relation, it needs to be:

- reflexive: so that for *f* ∈ *F*, *fRf*, ie: an item in *F* is related to itself by *R*
- **symmetric**: so that for $f_1, f_2 \in \mathcal{F}, f_1 \mathcal{R} f_2 \Rightarrow f_2 \mathcal{R} f_1$
- **transitive**: so that for $f_1, f_2, f_3 \in \mathcal{F}, f_1\mathcal{R}f_2 \wedge f_2\mathcal{R}f_3 \Rightarrow f_1\mathcal{R}f_3$

August 31, 2021

For a relation \mathcal{R} on some set \mathcal{F} be an equivalence relation, it needs to be:

- reflexive: so that for *f* ∈ *F*, *fRf*, ie: an item in *F* is related to itself by *R*
- **symmetric**: so that for $f_1, f_2 \in \mathcal{F}, f_1 \mathcal{R} f_2 \Rightarrow f_2 \mathcal{R} f_1$
- **transitive**: so that for $f_1, f_2, f_3 \in \mathcal{F}$, $f_1\mathcal{R}f_2 \wedge f_2\mathcal{R}f_3 \Rightarrow f_1\mathcal{R}f_3$

An equivalence relation partitions the underlying set into subsets so that

- elements in each subset are equivalent
- elements in different subsets are non-equivalent

• We show that Θ is reflexive by substituting f(x) for g(x) in 6.1: $0 < c_1 f(n) < f(n) < c_2 f(n), \forall n \ge n_0$

which is satisfied for $c_1 = c_2 = 1$ and $n_0 = 0$

Thus we conclude that ⊖ is reflexive

15/33

B N 4 B N

• We show that Θ is reflexive by substituting f(x) for g(x) in 6.1: $0 < c_1 f(n) < f(n) < c_2 f(n), \forall n > n_0$

which is satisfied for $c_1 = c_2 = 1$ and $n_0 = 0$

- Thus we conclude that ⊖ is reflexive
- We need to show that ⊖ is symmetric

Θ is an equivalence relation (contd.)

• We show that Θ is reflexive by substituting f(x) for g(x) in 6.1:

 $0 \leq c_1 f(n) \leq f(n) \leq c_2 f(n), \ \forall n \geq n_0$

which is satisfied for $c_1 = c_2 = 1$ and $n_0 = 0$

- Thus we conclude that ⊖ is reflexive
- We need to show that ⊖ is symmetric
 - we divide the initial part of 6.1 by c₁ to get

$$0 \leq g(n) \leq \frac{1}{c_1} f(n), \ \forall n \geq n_0 \tag{7.1}$$

• We divide the latter part of 6.1 by c₂ to get

$$0 \leq \frac{1}{c_2} f(n) \leq g(n), \ \forall n \geq n_0 \tag{7.2}$$

• Combining 7.1 and 7.2, with $c'_1 = \frac{1}{c_2}$ and $c'_2 = \frac{1}{c_1}$, we get

$$0 \leq c_1' f(n) \leq g(n) \leq c_2' f(n), \ \forall n \geq n_0$$

• Thus we conclude that Θ is symmetric

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

We show that Θ is transitive

• If
$$f(n) \in \Theta(g(n))$$
, then $\exists c_1 > 0, c_2 > 0, n_0 > 0$ such that,

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n), \ \forall n \geq n_0 \tag{7.3}$$

16/33

э

∃ → < ∃ →</p>

We show that Θ is transitive

• If $f(n) \in \Theta(g(n))$, then $\exists c_1 > 0, c_2 > 0, n_0 > 0$ such that,

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n), \ \forall n \geq n_0 \tag{7.3}$$

• Likewise, if $g(n) \in \Theta(h(n))$, $\exists c'_1 > 0, c'_2 > 0, n'_0 > 0$ such that $0 \le c'_1 h(n) \le g(n) \le c'_2 h(n), \ \forall n \ge n'_0$ (7.4)

3

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

August 31, 2021

We show that Θ is transitive

• If $f(n) \in \Theta(g(n))$, then $\exists c_1 > 0, c_2 > 0, n_0 > 0$ such that,

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n), \ \forall n \geq n_0 \tag{7.3}$$

- Likewise, if $g(n) \in \Theta(h(n))$, $\exists c'_1 > 0, c'_2 > 0, n'_0 > 0$ such that $0 \le c'_1 h(n) \le g(n) \le c'_2 h(n), \ \forall n \ge n'_0$ (7.4)
- Multiplying the first part of 7.4 by c₁ > 1, yields,

$$0 \le c_1 c'_1 h(n) \le c_1 g(n).$$
 (7.5)

August 31, 2021

э.

16/33

We show that Θ is transitive

• If $f(n) \in \Theta(g(n))$, then $\exists c_1 > 0, c_2 > 0, n_0 > 0$ such that,

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n), \ \forall n \geq n_0 \tag{7.3}$$

- Likewise, if $g(n) \in \Theta(h(n))$, $\exists c'_1 > 0, c'_2 > 0, n'_0 > 0$ such that $0 \le c'_1 h(n) \le g(n) \le c'_2 h(n), \ \forall n \ge n'_0$ (7.4)
- Multiplying the first part of 7.4 by c₁ > 1, yields,

$$0 \le c_1 c'_1 h(n) \le c_1 g(n).$$
 (7.5)

• Multiplying the second part of 7.4 by $c_2 > 0$, yields,

$$c_2g(n) \leq c_2c_2'h(n)$$

• Substituting 7.5 and 7.6 into 7.3 yields, $n \ge n_0$, " $n_0^{"} = \max(n_0, n_0')$

$$0 \le c_1 c'_1 h(n) \le c_1 g(n) \le f(n) \le c_2 g(n) \le c_2 c'_2 h(n)$$
(7.7)

• With
$$c_1'' = c_1 c_1', c_2'' = c_2 c_2'$$
,

$$0 \le c_1'' h(n) \le f(n) \le c_2'' h(n), \ \forall n > n_0''$$

• Therefore, $f(n) \in \Theta(h(n))$, so Θ is **transitive**

Image: A math

A B N A B N

17/33

August 31, 2021

• Substituting 7.5 and 7.6 into 7.3 yields, $n \ge n_0, "n_0" = \max(n_0, n_0')$

$$0 \le c_1 c'_1 h(n) \le c_1 g(n) \le f(n) \le c_2 g(n) \le c_2 c'_2 h(n)$$
(7.7)

• With
$$c_1'' = c_1 c_1', c_2'' = c_2 c_2'$$
,

$$0 \le c_1'' h(n) \le f(n) \le c_2'' h(n), \ \forall n > n_0''$$

- Therefore, $f(n) \in \Theta(h(n))$, so Θ is **transitive**
- So, we can conclude that Θ is an equivalence relation

17/33

Partial order relation induced by \mathcal{O}

For a relation ${\mathcal R}$ on some set ${\mathcal F}$ be a partial order relation, it needs to be:

reflexive: so that for *f* ∈ *F*, *fRf*, ie: an item in *F* is related to itself by *R*

Partial order relation induced by \mathcal{O}

For a relation ${\mathcal R}$ on some set ${\mathcal F}$ be a partial order relation, it needs to be:

- reflexive: so that for *f* ∈ *F*, *fRf*, ie: an item in *F* is related to itself by *R*
- antisymmetric: so that for $f_1, f_2 \in \mathcal{F}, f_1\mathcal{R}f_2 \wedge f_2\mathcal{R}f_1 \Rightarrow f_1 = f_2$

イロト イポト イラト イラト
Partial order relation induced by $\ensuremath{\mathcal{O}}$

For a relation ${\mathcal R}$ on some set ${\mathcal F}$ be a partial order relation, it needs to be:

- reflexive: so that for f ∈ F, fRf, ie: an item in F is related to itself by R
- antisymmetric: so that for $f_1, f_2 \in \mathcal{F}, f_1\mathcal{R}f_2 \wedge f_2\mathcal{R}f_1 \Rightarrow f_1 = f_2$
- **transitive**: so that for $f_1, f_2, f_3 \in \mathcal{F}$, $f_1\mathcal{R}f_2 \wedge f_2\mathcal{R}f_3 \Rightarrow f_1\mathcal{R}f_3$

The properties of \mathcal{O} will now be examined

•
$$f(n) \in \mathcal{O}(f(n))$$
?

Is it true that $\exists c > 0, n_0 > 0$ such that $\forall n \ge n_0, 0 \le f(n) \le cf(n)$? Yes, for c = 1 and $n_0 = 1$, so \mathcal{O} is reflexive

We show that \mathcal{O} is transitive

• If $f(n) \in \mathcal{O}(g(n))$, then $\exists c > 0, n_0 > 0$ such that,

 $0 \le f(n) \le cg(n), \ \forall n \ge n_0 \tag{8.1}$

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

We show that \mathcal{O} is transitive

• If $f(n) \in \mathcal{O}(g(n))$, then $\exists c > 0, n_0 > 0$ such that,

$$0 \le f(n) \le cg(n), \ \forall n \ge n_0 \tag{8.1}$$

• Likewise, if $g(n) \in \mathcal{O}(h(n)), \exists c' > 0, n'_0 > 0$ such that $0 \le g(n) \le c'h(n), \ \forall n \ge n'_0$ (8.2)

3

イロト イポト イラト イラト

August 31, 2021

We show that \mathcal{O} is transitive

• If $f(n) \in \mathcal{O}(g(n))$, then $\exists c > 0, n_0 > 0$ such that,

$$0 \le f(n) \le cg(n), \ \forall n \ge n_0 \tag{8.1}$$

- Likewise, if $g(n) \in \mathcal{O}(h(n)), \exists c' > 0, n'_0 > 0$ such that $0 \le g(n) \le c'h(n), \ \forall n \ge n'_0$ (8.2)
- Multiplying 8.2 by c, yields,

$$0 \le cg(n) \le cc'h(n) \tag{8.3}$$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

August 31, 2021

3

We show that \mathcal{O} is transitive

• If $f(n) \in \mathcal{O}(g(n))$, then $\exists c > 0, n_0 > 0$ such that,

$$0 \le f(n) \le cg(n), \ \forall n \ge n_0 \tag{8.1}$$

- Likewise, if $g(n) \in \mathcal{O}(h(n)), \exists c' > 0, n'_0 > 0$ such that $0 \le g(n) \le c'h(n), \ \forall n \ge n'_0$ (8.2)
- Multiplying 8.2 by c, yields,

$$0 \le cg(n) \le cc'h(n) \tag{8.3}$$

• Combining 8.3 and 8.1, we have for $n > \max(n_0, n'_0)$: $0 \le f(n) \le cg(n) \le cc'h(n)$, establishing that \mathcal{O} is transitive

Algorithms

August 31, 2021

Is \mathcal{O} antisymmetric?

• If $f(n) \in \mathcal{O}(g(n))$ and $g(n) \in \mathcal{O}(f(n))$ then $f(n) \in \Theta(g(n))$ We have equivalence, but not equality

化原因 化原因

Is \mathcal{O} antisymmetric?

- If $f(n) \in \mathcal{O}(g(n))$ and $g(n) \in \mathcal{O}(f(n))$ then $f(n) \in \Theta(g(n))$ We have equivalence, but not equality
- Let $f \in \mathcal{O}(g)$
- Consider any $f' \in \Theta\left(f
 ight)$ and any $g' \in \Theta\left(g
 ight)$
- Clearly, $f' \in \mathcal{O}\left(f
 ight)$ and $g \in \mathcal{O}\left(g'
 ight)$
- Alongwith $f \in \mathcal{O}(g)$, we have $f' \in \mathcal{O}(g')$ [by transitivity of \mathcal{O}]
- Thus, it makes sense to say $\Theta(f) \prec_{\mathcal{O}} \Theta(g)$ if $f \in \mathcal{O}(g)$

э

• It's now easy to see that $\prec_{\mathcal{O}}$ is a partial order induced by \mathcal{O} satisfying

reflexive $\Theta(f) \prec_{\mathcal{O}} \Theta(f)$ antisymmetric if $\Theta(f) \prec_{\mathcal{O}} \Theta(g)$ and $\Theta(g) \prec_{\mathcal{O}} \Theta(f)$ then $\Theta(f) = \Theta(g)$ transitive if $\Theta(f) \prec_{\mathcal{O}} \Theta(g)$ and $\Theta(g) \prec_{\mathcal{O}} \Theta(h)$ then $\Theta(f) = \Theta(h)$

- The partial order is induced on the Θ equivalence classes of f and g
- On similar lines Ω also induces are partial order (say \prec_{Ω})

Small-o notation: o(g(n))

 A function f(n) is said to be asymptotically smaller than g(n) (denoted as f(n) ∈ o(g(n)), such that

 $o(g(n)) \triangleq \{f(n) : \forall \varepsilon > 0, \exists n_0 > 0, \forall n \ge n_0, 0 \le f(n) < \varepsilon g(n)\}$

- n₀ chosen in the above definition will usually depend on ε
- small-o differs from big-O by requiring the strict inequality to be satisfied for *any* value of ε (no matter how small)
- No way g can be scaled down to let f exceed εg asymtotically

$$o(g(n)) = \left\{ f(n) : \lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0 \right\}$$

• Eg: $n^2 \in o(n^3)$ (why?)

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

э

Diagram of relation between Θ , O and o

- Each box depicts the ⊖ class of *f* A *f*-node along with
 - all its descendants constitutes $\mathcal{O}(f)$
 - Descendants of a node are subset of the *o* class to be seen next
- If $f_4(x) = x^2$ what could be f_5 and f_6 ?
- $\ \ 0 \in \textit{o}(\textit{f}_5), \, 0 \in \textit{o}(\textit{f}_6), \\ 0 \in \textit{o}(\textit{f}_7), \, \text{etc.}$
- 0 is in small-o of many functions

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

August 31, 2021

Sample relations between functions

Example (Example of non-dominating functions)

Chittaranjan Mandal (IIT Kharagpur)

Another example

Example (What can be said about these functions)

$$\frac{x_{4}(2 + \cos x)}{x_{4}(2.25 + \sin x)}$$

Yet another example

Example (What can be said about these functions)

$$\begin{array}{c} & & \\ & &$$

Chittaranjan Mandal (IIT Kharagpur)

Sample relations between functions

Yet another example (contd.)

Example (What can be said about these functions)

Small- ω notation: $\omega(g(n))$

• A function f(n) is said to be *asymptotically greater than* g(n), if $f(n) \in \omega(g(n))$, where

 $\omega(g(n)) \triangleq \{f(n) : \forall c > 0, \exists n_0 > 0, \forall n \ge n_0, 0 \le c g(n) < f(n)\}$

• No matter how much *g* is scaled up, it never exceeds *f*, asymptotically

$$\omega(g(n)) = \left\{ f(n) : \lim_{n \to +\infty} \frac{f(n)}{g(n)} = +\infty \right\}$$

3

28/33

Summary

 $\mathcal{O}(f)$ Functions that grow no faster than f $\Omega(f)$ Functions that grow no slower than f $\Theta(f)$ Functions that grow at the same rate as f o(f) Functions that grow slower than f

$$o(f) = \mathcal{O}(f) - \Theta(f)$$

 $\omega(f)$ Functions that grow faster than f

$$\omega(f) = \Omega(f) - \Theta(f)$$

Practice questions

Practice questions

What's the time complexity of sorting with this card sorting machine?

Practice questions

Practice questions (contd.)

- Identify shortcomings of asymptotic analysis
- For the following code outline derive the worst-case asymptotic time complexity (in terms of *n*).

```
for (i=0; i<=n-1; i++) {
  for (j=i+1; j<=n-1; j++) {
    fixed length loop body
  }
}</pre>
```

For each of the following pairs of functions f₁(n) and f₂(n) answer the following questions: (a) is f₁(n) ∈ O(f₂(n))? (b) is f₁(n) ∈ o(f₂(n))? (c) is f₁(n) ∈ o(f₂(n))? (c) is f₁(n) ∈ Ω(f₂(n))?
(a) is f₁(n) ∈ ω(f₂(n))?
(b) f₁(n) = 6n², f₂(n) = n² log n
(c) f₁(n) = ³/₂n² + 7n - 4, f₂(n) = 8n²
(c) f₁(n) = n⁴, f₂(n) = n³ log n⁴

Practice questions (contd.)

If you were given two algorithms A₁ with time complexity f₁(n) and A₂ with time complexity f₂(n), which would you pick if your goal was to have the faster algorithm?
 You should justify your answer considering the definitions of O, Θ,

 Ω and also the size of the inputs to be handled.

• Prove whether or not each of the following statements are true. Falsity should be established by giving a counterexample. Truth should be established wrt the formal definitions of O, Ω and Θ . For all problems, assume $f(n) \ge 0$ and $g(n) \ge 0$.

• If
$$f(n) \in \mathcal{O}(g(n))$$
 then $g(n) \in \mathcal{O}(f(n))$

2
$$f(n) + g(n) \in \mathcal{O}(\max(f(n), g(n)))$$

3 If $f(n) \in \Omega g(n)$ then $g(n) \in \mathcal{O}(f(n))$

< ロ > < 同 > < 三 > < 三 > -

Practice questions (contd.)

Are each of the following true or false?

- $3n^2 + 10n \log n \in \mathcal{O}(n \log n)$
- $3n^2 + 10n \log n \in \Omega(n^2)$
- $3n^2 + 10n \log n \in \Theta(n^2)$
- $n \log n + n/2 \in \mathcal{O}(n)$
- $10\sqrt{n} + \log n \in \mathcal{O}(n)$
- $\sqrt{n} + \log n \in \mathcal{O}(\log n)$
- $\sqrt{n} + \log n \in \Theta(\log n)$
- $\sqrt{n} + \log n \in \Theta(n)$
- $2\sqrt{n} + \log n \in \Theta(\sqrt{n})$
- $\sqrt{n} + \log n \in \Omega(1)$
- $\sqrt{n} + \log n \in \Omega(\log n)$
- $\sqrt{n} + \log n \in \Omega(n)$