
IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Contents

1 Asymptotic complexity of
programs

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 1 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs

Section outline

1 Asymptotic complexity of
programs

Asymptotic complexity
Big-O notation
Sample growth functions
Big-Omega notation
Determination of constants
Theta notation
Θ is an equivalence relation

Partial order relation
induced by O
Small-o notation: o(g(n))
Diagram of relation between
Θ, O and o
Sample relations between
functions
Small-ω notation: ω(g(n))
Summary
Practice questions

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 2 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Asymptotic complexity

Asymptotic complexity

Suppose we determine that a program takes 8n + 5 steps to solve
a problem of size n
What is the significance of the 8 and +5 ?
As n gets large, the +5 becomes insignificant
The 8 is inaccurate as different operations require varying
amounts of time
What is fundamental is that the time is linear in n
Asymptotic Complexity: As n gets large, ignore all lower order
terms and concentrate on the highest order term only

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 3 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Asymptotic complexity

Asymptotic complexity (Contd.)

8n + 5 is said to grow asymptotically like n
So does 119n − 45
This gives us a simplified approximation of the complexity of the
algorithm, leaving out details that become insignificant for larger
input sizes

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 4 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Big-O notation

Big-O notation

We have talked of O (n), O
(
n2) and O

(
n3) before

The big-O notation is used to express the upper bound on a
function, hence used to denote the worst case running time of a
program
If f (n) and g(n) are two functions then we can mathematically say:
f (n) ∈ O (g(n)) if there exist positive constants c and n0 such that
for all n > n0, 0 ≤ f (n) ≤ cg(n)

cg(n) dominates f (n) for n > n0 (for large n)
This is read “f (n) is order g(n),” or “f (n) is big-O of g(n)”
Loosely speaking, g(n) grows at least as fast as f (n)

Sometimes people also write f (n) = O (g(n)), but that notation is
misleading, as there is no straightforward equality involved
This characterisation is not tight, if f (n) ∈ O (n), then f (n) ∈ O

(
n2)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 5 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Big-O notation

Diagramatic representation of big-O

n0 n

y
g(n)

c · g(n)

f (n)

f (n) ∈ O (g(n))

∃c,n0 > 0, ∀n > n0,
0 ≤ f (n) ≤ c · g(n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 6 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Sample growth functions

Sample growth functions

The functions below are given in ascending order:

O (k) = O (1) Constant time
O (logbn) = O (log n) Logarithmic time
O (n) Linear time
O (n log n)

O
(
n2) Quadratic time

O
(
n3) Cubic time

. . .

O (kn) Exponential time
O (n!) Super exponential time

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 7 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Big-Omega notation

Big-Omega notation

In matrix evaluation by Cramer’s rule, the number of operations to
be performed is worse that n!, if used with a naive
determinant-finding algorithm
The big-Omega notation is used to express the lower bound on a
function
If f (n) and g(n) are two functions then we can mathematically say:
f (n) ∈ Ω(g(n)) if there exist positive constants c and n0 such that
for all n > n0 0,≤ cg(n) ≤ f (n)

f (n) dominates cg(n) for n > n0 (for large n)
Loosely speaking, f (n) grows at least as fast as g(n)

Sometimes people also write f (n) = Ω(g(n)), but that notation is
misleading, as there is no straightforward equality involved
This characterisation is also not tight

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 8 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Big-Omega notation

Diagramatic representation of big-Omega

n0 n

y
g(n)

c · g(n)

f (n)

f (n) ∈ Ω(g(n))

∃c,n0 > 0, ∀n > n0,
0 ≤ c · g(n) ≤ f (n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 9 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Determination of constants

Determination of constants

Example (T (n) = n3 + 20n + 1 ∈ O
(
n3))

By definition, T (n) ∈ O
(
n3) if T (n) ≤ c · n3 for some n ≥ n0

If n3 + 20n + 1 ≤ c · n3 then 1 + 20
n2 + 1

n3 ≤ c
Required condition holds for n ≥ n0 = 1 and c ≥ 22(= 1 + 20 + 1)

Larger values of n0 result in smaller values c (for n0 = 10,
c ≥ 1.201)

Example (T (n) = n3 + 20n + 1 6∈ O
(
n2))

By definition, T (n) ∈ O
(
n2) if T (n) ≤ c · n2 for some n ≥ n0

If n3 + 20n + 1 ≤ c · n2 then n + 20
n + 1

n2 ≤ c for n ≥ n0

Clearly, required condition is insatisfiable, so T (n) 6∈ O
(
n2)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 10 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Determination of constants

Determination of constants

Example (T (n) = n3 + 20n + 1 ∈ O
(
n3))

By definition, T (n) ∈ O
(
n3) if T (n) ≤ c · n3 for some n ≥ n0

If n3 + 20n + 1 ≤ c · n3 then 1 + 20
n2 + 1

n3 ≤ c
Required condition holds for n ≥ n0 = 1 and c ≥ 22(= 1 + 20 + 1)

Larger values of n0 result in smaller values c (for n0 = 10,
c ≥ 1.201)

Example (T (n) = n3 + 20n + 1 6∈ O
(
n2))

By definition, T (n) ∈ O
(
n2) if T (n) ≤ c · n2 for some n ≥ n0

If n3 + 20n + 1 ≤ c · n2 then n + 20
n + 1

n2 ≤ c for n ≥ n0

Clearly, required condition is insatisfiable, so T (n) 6∈ O
(
n2)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 10 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Determination of constants

Determination of constants

Example (T (n) = n3 + 20n + 1 ∈ O
(
n3))

By definition, T (n) ∈ O
(
n3) if T (n) ≤ c · n3 for some n ≥ n0

If n3 + 20n + 1 ≤ c · n3 then 1 + 20
n2 + 1

n3 ≤ c
Required condition holds for n ≥ n0 = 1 and c ≥ 22(= 1 + 20 + 1)

Larger values of n0 result in smaller values c (for n0 = 10,
c ≥ 1.201)

Example (T (n) = n3 + 20n + 1 6∈ O
(
n2))

By definition, T (n) ∈ O
(
n2) if T (n) ≤ c · n2 for some n ≥ n0

If n3 + 20n + 1 ≤ c · n2 then n + 20
n + 1

n2 ≤ c for n ≥ n0

Clearly, required condition is insatisfiable, so T (n) 6∈ O
(
n2)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 10 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Determination of constants

Determination of constants

Example (T (n) = n3 + 20n + 1 ∈ O
(
n3))

By definition, T (n) ∈ O
(
n3) if T (n) ≤ c · n3 for some n ≥ n0

If n3 + 20n + 1 ≤ c · n3 then 1 + 20
n2 + 1

n3 ≤ c
Required condition holds for n ≥ n0 = 1 and c ≥ 22(= 1 + 20 + 1)

Larger values of n0 result in smaller values c (for n0 = 10,
c ≥ 1.201)

Example (T (n) = n3 + 20n + 1 6∈ O
(
n2))

By definition, T (n) ∈ O
(
n2) if T (n) ≤ c · n2 for some n ≥ n0

If n3 + 20n + 1 ≤ c · n2 then n + 20
n + 1

n2 ≤ c for n ≥ n0

Clearly, required condition is insatisfiable, so T (n) 6∈ O
(
n2)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 10 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Determination of constants

Determination of constants (contd.)
Example (T (n) = n3 + 20n + 1 ∈ O

(
n4

)
)

By definition, T (n) ∈ O
(
n4

)
if T (n) ≤ c · n4 for some n ≥ n0

If n3 + 20n + 1 ≤ c · n4 then 1
n + 20

n3 + 1
n4 ≤ c

Required condition holds for n ≥ n0 = 1 and
c ≥ 22(= 0.1 + 0.02 + 0.0001)

Larger values of n0 result in smaller values for c (for n0 = 10,
c ≥ 0.1201)

Example (T (n) = n3 + 20n + 1 ∈ Ω(n2))

By definition, T (n) ∈ Ω(n2) if T (n) ≥ c · n2 for some n ≥ n0

If n3 + 20n + 1 ≥ c · n2 then n + 20
n + 1

n2 ≥ c for n ≥ n0

Required condition holds for n ≥ n0 =
√

20 and
c ≤ 8.9(≤ 2

√
20 + 0.0025)

Larger values of n0 result in larger values for c (for n0 = 20, c ≤ 21)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 11 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Determination of constants

Determination of constants (contd.)
Example (T (n) = n3 + 20n + 1 ∈ O

(
n4

)
)

By definition, T (n) ∈ O
(
n4

)
if T (n) ≤ c · n4 for some n ≥ n0

If n3 + 20n + 1 ≤ c · n4 then 1
n + 20

n3 + 1
n4 ≤ c

Required condition holds for n ≥ n0 = 1 and
c ≥ 22(= 0.1 + 0.02 + 0.0001)

Larger values of n0 result in smaller values for c (for n0 = 10,
c ≥ 0.1201)

Example (T (n) = n3 + 20n + 1 ∈ Ω(n2))

By definition, T (n) ∈ Ω(n2) if T (n) ≥ c · n2 for some n ≥ n0

If n3 + 20n + 1 ≥ c · n2 then n + 20
n + 1

n2 ≥ c for n ≥ n0

Required condition holds for n ≥ n0 =
√

20 and
c ≤ 8.9(≤ 2

√
20 + 0.0025)

Larger values of n0 result in larger values for c (for n0 = 20, c ≤ 21)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 11 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Determination of constants

Determination of constants (contd.)
Example (T (n) = n3 + 20n + 1 ∈ O

(
n4

)
)

By definition, T (n) ∈ O
(
n4

)
if T (n) ≤ c · n4 for some n ≥ n0

If n3 + 20n + 1 ≤ c · n4 then 1
n + 20

n3 + 1
n4 ≤ c

Required condition holds for n ≥ n0 = 1 and
c ≥ 22(= 0.1 + 0.02 + 0.0001)

Larger values of n0 result in smaller values for c (for n0 = 10,
c ≥ 0.1201)

Example (T (n) = n3 + 20n + 1 ∈ Ω(n2))

By definition, T (n) ∈ Ω(n2) if T (n) ≥ c · n2 for some n ≥ n0

If n3 + 20n + 1 ≥ c · n2 then n + 20
n + 1

n2 ≥ c for n ≥ n0

Required condition holds for n ≥ n0 =
√

20 and
c ≤ 8.9(≤ 2

√
20 + 0.0025)

Larger values of n0 result in larger values for c (for n0 = 20, c ≤ 21)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 11 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Determination of constants

Determination of constants (contd.)
Example (T (n) = n3 + 20n + 1 ∈ O

(
n4

)
)

By definition, T (n) ∈ O
(
n4

)
if T (n) ≤ c · n4 for some n ≥ n0

If n3 + 20n + 1 ≤ c · n4 then 1
n + 20

n3 + 1
n4 ≤ c

Required condition holds for n ≥ n0 = 1 and
c ≥ 22(= 0.1 + 0.02 + 0.0001)

Larger values of n0 result in smaller values for c (for n0 = 10,
c ≥ 0.1201)

Example (T (n) = n3 + 20n + 1 ∈ Ω(n2))

By definition, T (n) ∈ Ω(n2) if T (n) ≥ c · n2 for some n ≥ n0

If n3 + 20n + 1 ≥ c · n2 then n + 20
n + 1

n2 ≥ c for n ≥ n0

Required condition holds for n ≥ n0 =
√

20 and
c ≤ 8.9(≤ 2

√
20 + 0.0025)

Larger values of n0 result in larger values for c (for n0 = 20, c ≤ 21)
Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 11 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Theta notation

Theta notation

The Theta notation is used to express the notion that a function
g(n) is a good (preferably simpler) characterisation of another
function f (n)

If f (n) and g(n) are two functions then we can mathematically say:
f (n) ∈ Θ (g(n)) if there exist positive constants c1, c2 and n0 such
that for all n > n0

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n), (6.1)

Loosely speaking, f (n) grows like g(n)

Sometimes people also write f (n) = Θ (g(n)), but that notation is
misleading
This characterisation is tight

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 12 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Theta notation

Diagramatic representation of Theta

n0 n

y
g(n)

c2 · g(n)

c1 · g(n)

f (n)

f (n) ∈ Θ (g(n))

∃c1, c2,n0 > 0, ∀n >
n0, 0 ≤ c1 · g(n) ≤
f (n) ≤ c2 · g(n)

f (n) ∈ O (g(n)) ∧
f (n) ∈ Ω(g(n))⇒
f (n) ∈ Θ (g(n))

f (n) ∈ Θ (g(n))⇒
g(n) ∈ Θ (f (n))

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 13 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Theta notation

Diagramatic representation of Theta

n0 n

y
g(n)

c2 · g(n)

c1 · g(n)

f (n)

f (n) ∈ Θ (g(n))

∃c1, c2,n0 > 0, ∀n >
n0, 0 ≤ c1 · g(n) ≤
f (n) ≤ c2 · g(n)

f (n) ∈ O (g(n)) ∧
f (n) ∈ Ω(g(n))⇒
f (n) ∈ Θ (g(n))

f (n) ∈ Θ (g(n))⇒
g(n) ∈ Θ (f (n))

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 13 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Theta notation

Diagramatic representation of Theta

n0 n

y
g(n)

c2 · g(n)

c1 · g(n)

f (n)

f (n) ∈ Θ (g(n))

∃c1, c2,n0 > 0, ∀n >
n0, 0 ≤ c1 · g(n) ≤
f (n) ≤ c2 · g(n)

f (n) ∈ O (g(n)) ∧
f (n) ∈ Ω(g(n))⇒
f (n) ∈ Θ (g(n))

f (n) ∈ Θ (g(n))⇒
g(n) ∈ Θ (f (n))

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 13 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation

For a relation R on some set F be an equivalence relation, it needs to
be:

reflexive: so that for f ∈ F , fRf , ie: an item in F is related to itself
by R

symmetric: so that for f1, f2 ∈ F , f1Rf2 ⇒ f2Rf1
transitive: so that for f1, f2, f3 ∈ F , f1Rf2 ∧ f2Rf3 ⇒ f1Rf3

An equivalence relation partitions the underlying set into subsets so
that

elements in each subset are equivalent
elements in different subsets are non-equivalent

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 14 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation

For a relation R on some set F be an equivalence relation, it needs to
be:

reflexive: so that for f ∈ F , fRf , ie: an item in F is related to itself
by R
symmetric: so that for f1, f2 ∈ F , f1Rf2 ⇒ f2Rf1

transitive: so that for f1, f2, f3 ∈ F , f1Rf2 ∧ f2Rf3 ⇒ f1Rf3
An equivalence relation partitions the underlying set into subsets so
that

elements in each subset are equivalent
elements in different subsets are non-equivalent

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 14 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation

For a relation R on some set F be an equivalence relation, it needs to
be:

reflexive: so that for f ∈ F , fRf , ie: an item in F is related to itself
by R
symmetric: so that for f1, f2 ∈ F , f1Rf2 ⇒ f2Rf1
transitive: so that for f1, f2, f3 ∈ F , f1Rf2 ∧ f2Rf3 ⇒ f1Rf3

An equivalence relation partitions the underlying set into subsets so
that

elements in each subset are equivalent
elements in different subsets are non-equivalent

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 14 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation

For a relation R on some set F be an equivalence relation, it needs to
be:

reflexive: so that for f ∈ F , fRf , ie: an item in F is related to itself
by R
symmetric: so that for f1, f2 ∈ F , f1Rf2 ⇒ f2Rf1
transitive: so that for f1, f2, f3 ∈ F , f1Rf2 ∧ f2Rf3 ⇒ f1Rf3

An equivalence relation partitions the underlying set into subsets so
that

elements in each subset are equivalent
elements in different subsets are non-equivalent

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 14 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation (contd.)
We show that Θ is reflexive by substituting f (x) for g(x) in 6.1:

0 ≤ c1f (n) ≤ f (n) ≤ c2f (n), ∀n ≥ n0

which is satisfied for c1 = c2 = 1 and n0 = 0
Thus we conclude that Θ is reflexive

We need to show that Θ is symmetric
we divide the initial part of 6.1 by c1 to get

0 ≤ g(n) ≤ 1
c1

f (n), ∀n ≥ n0 (7.1)

We divide the latter part of 6.1 by c2 to get

0 ≤ 1
c2

f (n) ≤ g(n), ∀n ≥ n0 (7.2)

Combining 7.1 and 7.2, with c′
1 =

1
c2

and c′
2 =

1
c1

, we get

0 ≤ c′
1f (n) ≤ g(n) ≤ c′

2f (n), ∀n ≥ n0

Thus we conclude that Θ is symmetric

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 15 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation (contd.)
We show that Θ is reflexive by substituting f (x) for g(x) in 6.1:

0 ≤ c1f (n) ≤ f (n) ≤ c2f (n), ∀n ≥ n0

which is satisfied for c1 = c2 = 1 and n0 = 0
Thus we conclude that Θ is reflexive
We need to show that Θ is symmetric

we divide the initial part of 6.1 by c1 to get

0 ≤ g(n) ≤ 1
c1

f (n), ∀n ≥ n0 (7.1)

We divide the latter part of 6.1 by c2 to get

0 ≤ 1
c2

f (n) ≤ g(n), ∀n ≥ n0 (7.2)

Combining 7.1 and 7.2, with c′
1 =

1
c2

and c′
2 =

1
c1

, we get

0 ≤ c′
1f (n) ≤ g(n) ≤ c′

2f (n), ∀n ≥ n0

Thus we conclude that Θ is symmetric

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 15 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation (contd.)
We show that Θ is reflexive by substituting f (x) for g(x) in 6.1:

0 ≤ c1f (n) ≤ f (n) ≤ c2f (n), ∀n ≥ n0

which is satisfied for c1 = c2 = 1 and n0 = 0
Thus we conclude that Θ is reflexive
We need to show that Θ is symmetric

we divide the initial part of 6.1 by c1 to get

0 ≤ g(n) ≤ 1
c1

f (n), ∀n ≥ n0 (7.1)

We divide the latter part of 6.1 by c2 to get

0 ≤ 1
c2

f (n) ≤ g(n), ∀n ≥ n0 (7.2)

Combining 7.1 and 7.2, with c′
1 =

1
c2

and c′
2 =

1
c1

, we get

0 ≤ c′
1f (n) ≤ g(n) ≤ c′

2f (n), ∀n ≥ n0

Thus we conclude that Θ is symmetric
Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 15 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation (contd.)

We show that Θ is transitive
If f (n) ∈ Θ (g(n)), then ∃c1 > 0, c2 > 0,n0 > 0 such that,

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n), ∀n ≥ n0 (7.3)

Likewise, if g(n) ∈ Θ (h(n)), ∃c′
1 > 0, c′

2 > 0,n′
0 > 0 such that

0 ≤ c′
1h(n) ≤ g(n) ≤ c′

2h(n), ∀n ≥ n′
0 (7.4)

Multiplying the first part of 7.4 by c1 > 1, yields,

0 ≤ c1c′
1h(n) ≤ c1g(n). (7.5)

Multiplying the second part of 7.4 by c2 > 0, yields,

c2g(n) ≤ c2c′
2h(n) (7.6)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 16 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation (contd.)

We show that Θ is transitive
If f (n) ∈ Θ (g(n)), then ∃c1 > 0, c2 > 0,n0 > 0 such that,

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n), ∀n ≥ n0 (7.3)

Likewise, if g(n) ∈ Θ (h(n)), ∃c′
1 > 0, c′

2 > 0,n′
0 > 0 such that

0 ≤ c′
1h(n) ≤ g(n) ≤ c′

2h(n), ∀n ≥ n′
0 (7.4)

Multiplying the first part of 7.4 by c1 > 1, yields,

0 ≤ c1c′
1h(n) ≤ c1g(n). (7.5)

Multiplying the second part of 7.4 by c2 > 0, yields,

c2g(n) ≤ c2c′
2h(n) (7.6)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 16 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation (contd.)

We show that Θ is transitive
If f (n) ∈ Θ (g(n)), then ∃c1 > 0, c2 > 0,n0 > 0 such that,

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n), ∀n ≥ n0 (7.3)

Likewise, if g(n) ∈ Θ (h(n)), ∃c′
1 > 0, c′

2 > 0,n′
0 > 0 such that

0 ≤ c′
1h(n) ≤ g(n) ≤ c′

2h(n), ∀n ≥ n′
0 (7.4)

Multiplying the first part of 7.4 by c1 > 1, yields,

0 ≤ c1c′
1h(n) ≤ c1g(n). (7.5)

Multiplying the second part of 7.4 by c2 > 0, yields,

c2g(n) ≤ c2c′
2h(n) (7.6)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 16 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation (contd.)

We show that Θ is transitive
If f (n) ∈ Θ (g(n)), then ∃c1 > 0, c2 > 0,n0 > 0 such that,

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n), ∀n ≥ n0 (7.3)

Likewise, if g(n) ∈ Θ (h(n)), ∃c′
1 > 0, c′

2 > 0,n′
0 > 0 such that

0 ≤ c′
1h(n) ≤ g(n) ≤ c′

2h(n), ∀n ≥ n′
0 (7.4)

Multiplying the first part of 7.4 by c1 > 1, yields,

0 ≤ c1c′
1h(n) ≤ c1g(n). (7.5)

Multiplying the second part of 7.4 by c2 > 0, yields,

c2g(n) ≤ c2c′
2h(n) (7.6)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 16 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation (contd.)

Substituting 7.5 and 7.6 into 7.3 yields, n ≥ n0,
′′ n′′

0 = max(n0,n′
0)

0 ≤ c1c′
1h(n) ≤ c1g(n) ≤ f (n) ≤ c2g(n) ≤ c2c′

2h(n) (7.7)

With c′′
1 = c1c′

1, c
′′
2 = c2c′

2,

0 ≤ c′′
1h(n) ≤ f (n) ≤ c′′

2h(n), ∀n > n′′
0

Therefore, f (n) ∈ Θ (h(n)), so Θ is transitive

So, we can conclude that Θ is an equivalence relation

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 17 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Θ is an equivalence relation

Θ is an equivalence relation (contd.)

Substituting 7.5 and 7.6 into 7.3 yields, n ≥ n0,
′′ n′′

0 = max(n0,n′
0)

0 ≤ c1c′
1h(n) ≤ c1g(n) ≤ f (n) ≤ c2g(n) ≤ c2c′

2h(n) (7.7)

With c′′
1 = c1c′

1, c
′′
2 = c2c′

2,

0 ≤ c′′
1h(n) ≤ f (n) ≤ c′′

2h(n), ∀n > n′′
0

Therefore, f (n) ∈ Θ (h(n)), so Θ is transitive
So, we can conclude that Θ is an equivalence relation

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 17 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Partial order relation induced by O

Partial order relation induced by O

For a relation R on some set F be a partial order relation, it needs to
be:

reflexive: so that for f ∈ F , fRf , ie: an item in F is related to itself
by R

antisymmetric: so that for f1, f2 ∈ F , f1Rf2 ∧ f2Rf1 ⇒ f1 = f2
transitive: so that for f1, f2, f3 ∈ F , f1Rf2 ∧ f2Rf3 ⇒ f1Rf3

The properties of O will now be examined
f (n) ∈ O (f (n))?
Is it true that ∃c > 0,n0 > 0 such that ∀n ≥ n0, 0 ≤ f (n) ≤ cf (n)?
Yes, for c = 1 and n0 = 1, so O is reflexive

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 18 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Partial order relation induced by O

Partial order relation induced by O

For a relation R on some set F be a partial order relation, it needs to
be:

reflexive: so that for f ∈ F , fRf , ie: an item in F is related to itself
by R
antisymmetric: so that for f1, f2 ∈ F , f1Rf2 ∧ f2Rf1 ⇒ f1 = f2

transitive: so that for f1, f2, f3 ∈ F , f1Rf2 ∧ f2Rf3 ⇒ f1Rf3
The properties of O will now be examined

f (n) ∈ O (f (n))?
Is it true that ∃c > 0,n0 > 0 such that ∀n ≥ n0, 0 ≤ f (n) ≤ cf (n)?
Yes, for c = 1 and n0 = 1, so O is reflexive

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 18 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Partial order relation induced by O

Partial order relation induced by O

For a relation R on some set F be a partial order relation, it needs to
be:

reflexive: so that for f ∈ F , fRf , ie: an item in F is related to itself
by R
antisymmetric: so that for f1, f2 ∈ F , f1Rf2 ∧ f2Rf1 ⇒ f1 = f2
transitive: so that for f1, f2, f3 ∈ F , f1Rf2 ∧ f2Rf3 ⇒ f1Rf3

The properties of O will now be examined
f (n) ∈ O (f (n))?
Is it true that ∃c > 0,n0 > 0 such that ∀n ≥ n0, 0 ≤ f (n) ≤ cf (n)?
Yes, for c = 1 and n0 = 1, so O is reflexive

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 18 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Partial order relation induced by O

Partial order induced by O (contd.)

We show that O is transitive
If f (n) ∈ O (g(n)), then ∃c > 0,n0 > 0 such that,

0 ≤ f (n) ≤ cg(n), ∀n ≥ n0 (8.1)

Likewise, if g(n) ∈ O (h(n)), ∃c′ > 0,n′
0 > 0 such that

0 ≤ g(n) ≤ c′h(n), ∀n ≥ n′
0 (8.2)

Multiplying 8.2 by c, yields,

0 ≤ cg(n) ≤ cc′h(n) (8.3)

Combining 8.3 and 8.1, we have for n > max(n0,n′
0):

0 ≤ f (n) ≤ cg(n) ≤ cc′h(n), establishing that O is transitive

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 19 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Partial order relation induced by O

Partial order induced by O (contd.)

We show that O is transitive
If f (n) ∈ O (g(n)), then ∃c > 0,n0 > 0 such that,

0 ≤ f (n) ≤ cg(n), ∀n ≥ n0 (8.1)

Likewise, if g(n) ∈ O (h(n)), ∃c′ > 0,n′
0 > 0 such that

0 ≤ g(n) ≤ c′h(n), ∀n ≥ n′
0 (8.2)

Multiplying 8.2 by c, yields,

0 ≤ cg(n) ≤ cc′h(n) (8.3)

Combining 8.3 and 8.1, we have for n > max(n0,n′
0):

0 ≤ f (n) ≤ cg(n) ≤ cc′h(n), establishing that O is transitive

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 19 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Partial order relation induced by O

Partial order induced by O (contd.)

We show that O is transitive
If f (n) ∈ O (g(n)), then ∃c > 0,n0 > 0 such that,

0 ≤ f (n) ≤ cg(n), ∀n ≥ n0 (8.1)

Likewise, if g(n) ∈ O (h(n)), ∃c′ > 0,n′
0 > 0 such that

0 ≤ g(n) ≤ c′h(n), ∀n ≥ n′
0 (8.2)

Multiplying 8.2 by c, yields,

0 ≤ cg(n) ≤ cc′h(n) (8.3)

Combining 8.3 and 8.1, we have for n > max(n0,n′
0):

0 ≤ f (n) ≤ cg(n) ≤ cc′h(n), establishing that O is transitive

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 19 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Partial order relation induced by O

Partial order induced by O (contd.)

We show that O is transitive
If f (n) ∈ O (g(n)), then ∃c > 0,n0 > 0 such that,

0 ≤ f (n) ≤ cg(n), ∀n ≥ n0 (8.1)

Likewise, if g(n) ∈ O (h(n)), ∃c′ > 0,n′
0 > 0 such that

0 ≤ g(n) ≤ c′h(n), ∀n ≥ n′
0 (8.2)

Multiplying 8.2 by c, yields,

0 ≤ cg(n) ≤ cc′h(n) (8.3)

Combining 8.3 and 8.1, we have for n > max(n0,n′
0):

0 ≤ f (n) ≤ cg(n) ≤ cc′h(n), establishing that O is transitive
Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 19 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Partial order relation induced by O

Partial order induced by O (contd.)

Is O antisymmetric?
If f (n) ∈ O (g(n)) and g(n) ∈ O (f (n)) then f (n) ∈ Θ (g(n))

We have equivalence, but not equality

Let f ∈ O (g)

Consider any f ′ ∈ Θ (f) and any g′ ∈ Θ (g)

Clearly, f ′ ∈ O (f) and g ∈ O (g′)

Alongwith f ∈ O (g), we have f ′ ∈ O (g′) [by transitivity of O]
Thus, it makes sense to say Θ (f) ≺O Θ (g) if f ∈ O (g)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 20 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Partial order relation induced by O

Partial order induced by O (contd.)

Is O antisymmetric?
If f (n) ∈ O (g(n)) and g(n) ∈ O (f (n)) then f (n) ∈ Θ (g(n))

We have equivalence, but not equality
Let f ∈ O (g)

Consider any f ′ ∈ Θ (f) and any g′ ∈ Θ (g)

Clearly, f ′ ∈ O (f) and g ∈ O (g′)

Alongwith f ∈ O (g), we have f ′ ∈ O (g′) [by transitivity of O]
Thus, it makes sense to say Θ (f) ≺O Θ (g) if f ∈ O (g)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 20 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Partial order relation induced by O

Partial order induced by O (contd.)

It’s now easy to see that ≺O is a partial order induced by O
satisfying

reflexive Θ (f) ≺O Θ (f)
antisymmetric if Θ (f) ≺O Θ (g) and Θ (g) ≺O Θ (f) then

Θ (f) = Θ (g)
transitive if Θ (f) ≺O Θ (g) and Θ (g) ≺O Θ (h) then

Θ (f) = Θ (h)

The partial order is induced on the Θ equivalence classes of f and
g
On similar lines Ω also induces are partial order (say ≺Ω)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 21 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Small-o notation: o(g(n))

Small-o notation: o(g(n))

A function f (n) is said to be asymptotically smaller than g(n)
(denoted as f (n) ∈ o(g(n)), such that

o(g(n)) , {f (n) : ∀ε > 0, ∃n0 > 0, ∀n ≥ n0,0 ≤ f (n) < εg(n)}

n0 chosen in the above definition will usually depend on ε
small-o differs from big-O by requiring the strict inequality to be
satisfied for any value of ε (no matter how small)
No way g can be scaled down to let f exceed εg asymtotically

o(g(n)) =

{
f (n) : lim

n→+∞

f (n)

g(n)
= 0

}
Eg: n2 ∈ o(n3) (why?)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 22 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Diagram of relation between Θ, O and o

Diagram of relation between Θ, O and o

O Θ (f1)

O Θ (f2)

o

O Θ (f3)

O Θ (f4)

O Θ (f5)

o

O Θ (f6)

O Θ (0)

o

o

o

O Θ (f7)

o

o

o
o

O Θ (f8)

O Θ (f9)

O Θ (f10)

o

o

o

Each box depicts
the Θ class of f
A f -node along with
all its descendants
constitutes O (f)

Descendants of a
node are subset of
the o class – to be
seen next
If f4(x) = x2 what
could be f5 and f6?
0 ∈ o(f5), 0 ∈ o(f6),
0 ∈ o(f7), etc.
0 is in small-o of
many functions

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 23 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Sample relations between functions

Sample relations between functions
Example (Example of non-dominating functions)

n0

n

y
x

x
2 (1 + cos x)
x
2 (1 + sin x)

f (n) 6∈ O (g(n))

g(n) 6∈ O (f (n))

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 24 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Sample relations between functions

Another example
Example (What can be said about these functions)

n0

n

y
x
4 (2 + cos x)

x
4 (2.25 + sin x)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 25 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Sample relations between functions

Yet another example
Example (What can be said about these functions)

n0

n

y
x
4 (2 + cos x)
x
4 (1 + sin x)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 26 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Sample relations between functions

Yet another example (contd.)
Example (What can be said about these functions)

n0

n

y
x
4 (2 + cos x)
x
4 (1 + sin x)

2×
[x

4 (1 + sin x)
]

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 27 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Small-ω notation: ω(g(n))

Small-ω notation: ω(g(n))

A function f (n) is said to be asymptotically greater than g(n), if
f (n) ∈ ω(g(n)), where

ω(g(n)) , {f (n) : ∀c > 0,∃n0 > 0, ∀n ≥ n0,0 ≤ c g(n) < f (n)}

No matter how much g is scaled up, it never exceeds f ,
asymptotically

ω(g(n)) =

{
f (n) : lim

n→+∞

f (n)

g(h)
= +∞

}

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 28 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Summary

Summary

O (f) Functions that grow no faster than f
Ω(f) Functions that grow no slower than f
Θ (f) Functions that grow at the same rate as f
o(f) Functions that grow slower than f

o(f) = O (f)−Θ (f)

ω(f) Functions that grow faster than f

ω(f) = Ω(f)−Θ (f)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 29 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Practice questions

Practice questions

What’s the time complexity of sorting with this card sorting machine?
Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 30 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Practice questions

Practice questions (contd.)

Identify shortcomings of asymptotic analysis
For the following code outline derive the worst-case asymptotic
time complexity (in terms of n).
for (i=0; i<=n-1; i++) {
for (j=i+1; j<=n-1; j++) {
fixed length loop body
}
}
For each of the following pairs of functions f1(n) and f2(n) answer
the following questions: a is f1(n) ∈ O (f2(n))? b is
f1(n) ∈ o (f2(n))? c is f1(n) ∈ Θ (f2(n))? d is f1(n) ∈ Ωf2(n)?

e is f1(n) ∈ ω (f2(n))?
1 f1(n) = 6n2, f2(n) = n2 log n
2 f1(n) = 3

2 n2 + 7n − 4, f2(n) = 8n2

3 f1(n) = n4, f2(n) = n3 log n4

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 31 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Practice questions

Practice questions (contd.)

If you were given two algorithms A1 with time complexity f1(n) and
A2 with time complexity f2(n), which would you pick if your goal
was to have the faster algorithm?
You should justify your answer considering the definitions of O, Θ,
Ω and also the size of the inputs to be handled.
Prove whether or not each of the following statements are true.
Falsity should be established by giving a counterexample. Truth
should be established wrt the formal definitions of O, Ω and Θ.
For all problems, assume f (n) ≥ 0 and g(n) ≥ 0.

1 If f (n) ∈ O (g(n)) then g(n) ∈ O (f (n))
2 f (n) + g(n) ∈ O (max(f (n),g(n)))
3 If f (n) ∈ Ωg(n) then g(n) ∈ O (f (n))

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 32 / 33

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Asymptotic complexity of programs Practice questions

Practice questions (contd.)

Are each of the following true or false?
3n2 + 10n log n ∈ O (n log n)

3n2 + 10n log n ∈ Ω(n2)

3n2 + 10n log n ∈ Θ
(
n2)

n log n + n/2 ∈ O (n)

10
√

n + log n ∈ O (n)
√

n + log n ∈ O (log n)
√

n + log n ∈ Θ (log n)
√

n + log n ∈ Θ (n)

2
√

n + log n ∈ Θ
(√

n
)

√
n + log n ∈ Ω(1)
√

n + log n ∈ Ω(log n)
√

n + log n ∈ Ω(n)

Chittaranjan Mandal (IIT Kharagpur) Algorithms August 31, 2021 33 / 33

	Asymptotic complexity of programs
	Asymptotic complexity
	Big-O notation
	Sample growth functions
	Big-Omega notation
	Determination of constants
	Theta notation
	 is an equivalence relation
	Partial order relation induced by O
	Small-o notation: o(g(n))
	Diagram of relation between , O and o
	Sample relations between functions
	Small- notation: (g(n))
	Summary
	Practice questions

	resultado2:
	hours: 19
	minutes: 58
	seconds: 46
	cronohours: 00
	cronominutes: 00
	crseconds: 03
	day: 15
	month: 12
	year: 2022
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00
	cronominutes: 00

