Contents

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

March 10, 2017 1 / 36

★ 문 → ★ 문 →

< □ > < 同

æ

Section outline

AVL trees

- BST critique
- Balanced binary trees
- AVL trees search, insert and delete
- Correction by single rotation after insertion
- Failure to correct by single rotation after insertion

- Correction by double rotation after insertion
- Other cases of balance restoration
- Deletion in AVL trees
- Correction by single rotation after deletion
- Correction by double rotation after deletion
- Examples of AVL tree operations

2/36

BST critique

- BST operations are simple
- However, tree can get skewed or become degenerate in course of time
- Resulting tree is unbalanced
- All operations can take O(n) on a degenerate tree
- Is it possible to ensure that the BST remains balanced?

March 10, 2017

BST critique

- BST operations are simple
- However, tree can get skewed or become degenerate in course of time
- Resulting tree is unbalanced
- All operations can take O(n) on a degenerate tree
- Is it possible to ensure that the BST remains balanced?
- Solution was presented by G M Adelson-Velskii and E M Landis in 1962 – was called AVL tree
 - BST framework is still used
 - height is maintained in each node, dynamically
 - tree is restructured from time-to-time using rotations

3/36

Balanced binary trees

Definition (Balance factor)

The balance factor of a node is the height of its left subtree minus the height of its right subtree (sometimes opposite).

Definition (Balanced binary tree node)

A node of a binary tree with balance factor 1, 0, or -1 is considered balanced.

Definition (Height balanced binary tree)

An empty binary tree is balanced. A non-empty binary tree is balanced if its left and right subtrees are balanced and the root node is also balanced.

< ロ > < 同 > < 回 > < 回 > < 回 > <

$$\bigcap_{\substack{h=0\\N(h)=1}}$$

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

Some worst case HB trees (contd.)

• Let *N*(*h*) represent the minimum number of nodes in a balanced binary tree of height *h*

•
$$N(0) = 1, N(1) = 2, N(2) = 4$$

•
$$N(k) = 1 + N(k-1) + N(k-2)$$

• Adding 1 to both sides, $\overline{N(k) + 1} = \overline{1 + N(k - 1)} + \overline{1 + N(k - 2)}$

B N 4 B N

• Adding 1 to both sides, $\overline{N(k) + 1} = \overline{1 + N(k - 1)} + \overline{1 + N(k - 2)}$ • Let f(k) = N(k) + 1Now, f(h) = f(h - 1) + f(h - 2) and f(0) = N(0) + 1 = 2 = F(3), f(1) = N(1) + 1 = 3 = F(4), f(2) = N(2) + 1 = 5 = F(5)Thus, f(h) = F(h + 3), $h \ge 0$ $\therefore N(h) = F(h + 3) - 1$, $h \ge 0 = \frac{\phi^{h+3} - \psi^{h+3}}{\sqrt{5}} - 1$, $\phi = \frac{1 + \sqrt{5}}{2}$, $\psi = \frac{1 - \sqrt{5}}{2}$ $\therefore N(h) \ge \phi^h \Leftrightarrow h \le \log_{\phi} n$ • N(h) grows exponentially in h,

3

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

• Adding 1 to both sides, $N(k) + 1 = \overline{1 + N(k - 1)} + \overline{1 + N(k - 2)}$ • Let f(k) = N(k) + 1Now, f(h) = f(h - 1) + f(h - 2) and f(0) = N(0) + 1 = 2 = F(3), f(1) = N(1) + 1 = 3 = F(4), f(2) = N(2) + 1 = 5 = F(5)Thus, f(h) = F(h + 3), $h \ge 0$ $\therefore N(h) = F(h + 3) - 1$, $h \ge 0 = \frac{\phi^{h+3} - \psi^{h+3}}{\sqrt{5}} - 1$, $\phi = \frac{1 + \sqrt{5}}{2}$, $\psi = \frac{1 - \sqrt{5}}{2}$ $\therefore N(h) \ge \phi^h \Leftrightarrow h \le \log_{\phi} n$ • N(h) grows exponentially in *h*, searching possible in $O(\lg n)$ time

(日)

Adding 1 to both sides, N(k) + 1 = 1 + N(k - 1) + 1 + N(k - 2)
Let f(k) = N(k) + 1 Now, f(h) = f(h - 1) + f(h - 2) and f(0) = N(0) + 1 = 2 = F(3), f(1) = N(1) + 1 = 3 = F(4), f(2) = N(2) + 1 = 5 = F(5) Thus, f(h) = F(h + 3), h ≥ 0
∴ N(h) = F(h + 3) - 1, h ≥ 0 = \frac{\phi^{h+3} - \psi^{h+3}}{\sqrt{5}} - 1, \phi = \frac{1 + \sqrt{5}}{2}, \psi = \frac{1 - \sqrt{5}}{2}
∴ N(h) ≥ \phi^h \⇔ h ≤ \log_\phi n
N(h) grows exponentially in h, searching possible in O(lg n) time

Golden ratio

Lengths *a* and *b* are in golden ratio if $\frac{a+b}{a} = \frac{a}{b} \equiv 1 + \frac{b}{a} = \frac{a}{b} \equiv 1 + \frac{1}{x} = x$ Thus, $x^2 - x - 1 = 0$, $x = \frac{1\pm\sqrt{5}}{2}$, $\phi = \frac{1+\sqrt{5}}{2} \approx 1.618034$ (golden ratio), $\psi = \frac{1-\sqrt{5}}{2} \approx -0.618034$

Definition (AVL trees)

AVL trees are height balanced binary search trees, with permissible balance factor in $\left[-1,1\right]$

Definition (AVL trees)

AVL trees are height balanced binary search trees, with permissible balance factor in [-1, 1]

Search • Same as BST search – $\Theta(\lg N)$ complexity

Definition (AVL trees)

AVL trees are height balanced binary search trees, with permissible balance factor in [-1, 1]

- Search Same as BST search $\Theta(\lg N)$ complexity
- **Insert** First as BST insertion
 - Restructure tree by rotation if some nodes become unbalanced

Definition (AVL trees)

AVL trees are height balanced binary search trees, with permissible balance factor in [-1, 1]

Search	 Same as BST search – ⊖(lg N) complexity 	typedef int keyTyp;
Insert	 First as BST insertion Restructure tree by rotation if some nodes become unbalanced 	<pre>typedef struct avlTTag { keyTyp key; int height; struct avlTTag *lChild, *rChild; } avlTTyp, *avlTPtr;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;</pre>
Delete	 First as BST deletion Restructure tree by rotation if some nodes become unbalanced 	

Chittaranjan Mandal (IIT Kharagpur)

March 10, 2017

8/36

Insertion in AVL trees

Tree becomes unbalanced after insertion into the right sub-tree of B

• Right sub-tree of B gains height over its left sub-tree

- Right sub-tree of B gains height over its left sub-tree
- Balance disturbed at A, while retracing path back via R-ST

10/36

- Right sub-tree of B gains height over its left sub-tree
- Balance disturbed at A, while retracing path back via R-ST
- Visit *B* to find height(*R*-*ST* of *B*)>height(*L*-*ST* of *B*)

10/36

- Right sub-tree of B gains height over its left sub-tree
- Balance disturbed at A, while retracing path back via R-ST
- Visit *B* to find height(*R*-*ST* of *B*)>height(*L*-*ST* of *B*)
- Correct by applying single (left) rotation

Failure to correct by single rotation after insertion

- Left sub-tree of B gains height over its left sub-tree
- Application of single (left) rotation fails to restore balance

L-ST of R-child gaining height

L-ST of R-child gaining height

• Balance disturbed at A, while retracing path back to root

- Balance disturbed at A, while retracing path back to root
- Revisit C to find height(L-ST (B) of C)>height(R-ST of C)
- Correct by applying double (right-left) rotation

- Balance disturbed at A, while retracing path back to root
- Revisit C to find height(L-ST (B) of C)>height(R-ST of C)
- Correct by applying double (right-left) rotation
- Same rotation works, irrespective of the balance of B

Other cases of balance restoration

- Balance disturbed at *A*, while retracing path back via *L-ST* rooted at *B*
- Revisit *B* to find height(*L*-*ST* of *B*)>height(*R*-*ST* of *B*)
- Correct by applying single (right) rotation

Other cases of balance restoration

- Balance disturbed at *A*, while retracing path back via *L-ST* rooted at *B*
- Revisit *B* to find height(*L*-*ST* of *B*)>height(*R*-*ST* of *B*)
- Correct by applying single (right) rotation
- Balance disturbed at *A*, while retracing path back via *L*-*ST* rooted at *C*
- Revisit *C* to find height(*R*-*ST*(*B*) of *C*)>height(*L*-*ST* of *C*)
- Correct by applying double (left) rotation
- Same rotation works, irrespective of the balance of B

14/36

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Complexities of operations

Search Needs traversing to a leaf node $-\Theta(\lg N)$

- **Insert** Needs traversing to a leaf node
 - Correction by rotations up to two levels
 - $\Theta(\lg N)$ worst case complexity

15/36

Deletion in AVL trees

- As normal binary search tree deletion
- Final node deleted will be either a leaf or have just one subtree (what about nodes with two (non-empty) subtrees?)
- If the deleted node has one subtree, then that subtree contains only one node (why?)
- Retrace back from the deleted node checking the balance of each node, balance the node by rotation if unbalanced

16/36

Deletion in AVL trees

- As normal binary search tree deletion
- Final node deleted will be either a leaf or have just one subtree (what about nodes with two (non-empty) subtrees?)
- If the deleted node has one subtree, then that subtree contains only one node (why?)
- Retrace back from the deleted node checking the balance of each node, balance the node by rotation if unbalanced

- Imbalance may happen at a node such as A due to deletion in its L-ST
- Then examine r-child (B)
- For deletion in R-ST, examine I-child

Algorithms

L-ST of root loosing height after deletion

- A key is deleted from the L-ST of A
- Tree becomes unbalanced after deletion from the left sub-tree of A

L-ST of root loosing height after deletion

- A key is deleted from the L-ST of A
- Tree becomes unbalanced after deletion from the left sub-tree of A

Correction by single rotation after deletion

- Left subtree of root has lost height after deletion
- Balance disturbed at A, while retracing path back via L-ST

Correction by single rotation after deletion

- Left subtree of root has lost height after deletion
- Balance disturbed at A, while retracing path back via L-ST
- Revisit *B* to find height(*R*-*ST* of *B*) ≥ height(*L*-*ST* of *B*)
- Correct by applying single (left-right) rotation

2

h + 3

3

R

h+2

height(*R-ST* of *B*)>height(*L-ST* of *B*) after deletion

19/36

э

height(*R-ST* of *B*)>height(*L-ST* of *B*) after deletion

19/36

э

Another case of deletion

- Now, after deletion height(*R*-*ST* of *C*)<height(*L*-*ST* of *C*)
- Does applying single (left) rotation work?

Another case of deletion

- Now, after deletion height(*R*-ST of *C*)<height(*L*-ST of *C*)
- Does applying single (left) rotation work?

Correction by double rotation after deletion

- After deletion height(*R*-*ST* of *C*)<height(*L*-*ST* of *C*)
- What happens if correction by double rotation is attempted?

Correction by double rotation after deletion

- After deletion height(*R*-*ST* of *C*)<height(*L*-*ST* of *C*)
- What happens if correction by double rotation is attempted?
- Now balance is restored
- There is a reduction in height, corrections must continue upwards

Other cases of double rotation

Other cases of double rotation (contd.)

ъ

Complexities of operations

Search Needs traversing to a leaf node $-\Theta(\lg N)$

- Insert Needs traversing to a leaf node
 - Correction by rotations up to two levels
 - ⊖(lg N) worst case complexity

Delete • Needs traversing to a leaf node or a level above

- Correction by rotations, may propagate back to root node, *monotonically*
- ⊖(lg N) worst case complexity

ヨトィヨト

24/36

Examples of AVL tree operations

Examples of AVL tree operations

Examples of AVL tree operations

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

Examples of AVL tree operations

Revisit 7: height(L-ST) > height(R-ST), apply right rotation

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

March 10, 2017

25 / 36

Example (Insert: 13, 12)

Chittaranjan Mandal (IIT Kharagpur)

Example (Insert: 12)

Revisit 13: height(R-ST) < height(L-ST)

Chittaranjan Mandal (IIT Kharagpur)

Revisit 13: height(R-ST) < height(L-ST), apply right-left rotation

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

Revisit 13: height(R-ST) < height(L-ST), apply right-left rotation

Chittaranjan Mandal (IIT Kharagpur)

Example (Insert: 12)

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

Example (Insert: 8)

Revisit 12:

Chittaranjan Mandal (IIT Kharagpur)

Example (Insert: 8)

Revisit 12: height(L-ST) > height(R-ST)

Chittaranjan Mandal (IIT Kharagpur)

Example (Insert: 8)

Revisit 12: height(L-ST) > height(R-ST), apply double rotation

Chittaranjan Mandal (IIT Kharagpur)

Example (Insert: 8) 2 2 12) ()

Revisit 12: height(L-ST) > height(R-ST), apply double rotation

Chittaranjan Mandal (IIT Kharagpur)

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

Check 11:

Chittaranjan Mandal (IIT Kharagpur)

Check 11: height(*L*-*ST*) \geq height(*R*-*ST*)

Chittaranjan Mandal (IIT Kharagpur)

Check 11: height(*L*-*ST*) \geq height(*R*-*ST*), apply single rotation

Chittaranjan Mandal (IIT Kharagpur)

Check 11: height(*L*-*ST*) \geq height(*R*-*ST*), apply single rotation

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

Example (Delete: 53, 11)

Example (Delete: 53, 11)

Double would also work as L-ST and R-ST were of equal height, but with more effort

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

March 10, 2017

33 / 36

Example (Delete: 11, 8)

Example (Delete: 8)

Check 14:

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

Example (Delete: 8)

Check 14: height(L-ST) > height(R-ST)

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

Example (Delete: 8)

Check 14: height(L-ST) > height(R-ST), apply double rotation

Chittaranjan Mandal (IIT Kharagpur)

Algorithms
Examples of AVL tree operations (contd.)

Example (Delete: 8)

Check 14: height(L-ST) > height(R-ST), apply double rotation

Chittaranjan Mandal (IIT Kharagpur)

Algorithms

March 10, 2017

Examples of AVL tree operations (contd.)

