
1 Greedy Algorithms

1.1 Non-cut edge

Given a connected, undirected graph G “ pE, V q, find whether it has a non-cut edge. A cut edge is an edge
whose removal from G makes it disconnected. Any other edge is a non-cut edge.

Solution

Since G is connected, an edge e P E is a non-cut edge of G if and only if e belongs to a cycle of G. So,
all we need to check is whether G has a cycle. For this, run DFS on G with any vertex as the source
vertex. If for any v P V , a vertex u P Adj rvs is found to be already visited, then pu, vq is a back edge,
which implies G has a cycle. If no back edge is ever found, then G is a tree and hence doesn’t have
any non-cut edge.

Time complexity: If G is a tree, then the algorithm runs in OpV q time. Otherwise, there are at least
|V | edges in G, and the first back edge will be found after processing at most |V | edges, i.e., in OpV q
time. So, running time of the algorithm is again OpV q.

1.2 Minimum edges

Show that if an undirected graph G “ pV,Eq with n vertices has k components, then it has at least n ´ k
edges. Recall that S Ď V is a component in G if (i) there is a path in G between every two vertices of S and
(ii) there is no path in G between any vertex of S and any vertex of V r S.

Solution

Let G “ pV,Eq be an undirected graph with n vertices and k connected components.
Let G1 “ pV1, E1q, G2 “ pV2, E2q, . . . , Gk “ pVk, Ekq be the connected components of G.
For 1 ď i ď k, Gi “ pVi, Eiq is connected

ùñ |Ei| ě |Vi| ´ 1 ùñ
k
ř

i“1

|Ei| ě
k
ř

i“1

p|Vi| ´ 1q “ n´ k.

As E “ E1 Z E2 Z ¨ ¨ ¨ Z Ek, we have |E| “
k
ř

i“1

|Ei| ě n´ k.

1.3 Change in MST and shortest paths

Consider an undirected graph G “ pV,Eq with edge weights we ě 0. Suppose that you have computed a
minimum spanning tree of G, and that you have also computed shortest paths to all nodes from a particular
node s P V . Now suppose each edge weight is increased by 1: the new weights are w1e “ we ` 1.

(a) Does the minimum spanning tree change? Give an example where it changes or prove it cannot change.

Solution

The minimum spanning tree (MST) does not change.

Let T be an MST of pG,weq, and T 1 be an MST of pG,w1eq.
Since T 1 is a spanning tree of pG,weq,

ÿ

ePEpT q

we ď
ÿ

ePEpT 1q

we. (♣)

1

Since T is a spanning tree of pG,w1eq,
ÿ

ePEpT 1q

w1
e ď

ÿ

ePEpT q

w1
e ùñ |V | ´ 1`

ÿ

ePEpT 1q

we ď |V | ´ 1`
ÿ

ePEpT q

we ùñ
ÿ

ePEpT 1q

we ď
ÿ

ePEpT q

we. (♠)

From p♣q and p♠q, we get

ÿ

ePEpT q

we “
ÿ

ePEpT 1q

we ùñ
ÿ

ePEpT q

w1e “
ÿ

ePEpT 1q

w1e.

(b) Do the shortest paths change? Give an example where they change or prove they cannot change.

Solution

The shortest paths change. An example is as follows. abcd is the shortest path from a to b. When
the weights are increased by 1, the shortest path from a to b is the edge ab whose weight is 5.

1 1 1

4

a b c d

1.4 Interval-graph coloring

Suppose that we have n activities to schedule among a large number of lecture halls, where any activity can
take place in any lecture hall. We wish to schedule all the activities using as few lecture halls as possible.
Give an efficient greedy algorithm to determine which activity should use which lecture hall. An activity i
is specified by its start and end times, ai and bi.

This problem is also known as the interval-graph coloring problem. We can create an interval graph whose
vertices are the given activities and whose edges connect incompatible activities. The smallest number of
colors required to color every vertex so that no two adjacent vertices have the same color corresponds to
finding the fewest lecture halls needed to schedule all of the given activities.

Solution

Consider the intervals Xi “ rai, bis, 1 ď i ď n, on the time axis, sorted by bi, i.e., b1 ď b2 ď ¨ ¨ ¨ ď bn.
Let t be any time instance such that bi´1 ď t ă bi for some i P r2, ns. If we increase t continuously,
then the optimum value OPT up to Xi´1 remains unchanged until t “ bi. At t “ bi, the new optimum
will change to OPT` 1 if and only if all the OPT colors have already been assigned to the intervals
intersected by Xi, that is, if and only if the set Y “ tXh : ph ă iq ^ pbh ą aiqu has consumed OPT
colors. To check this, we construct an AVL tree of all the intervals in the beginning, ordered by bi.
From this tree, we get Y in Oplog V `Adj risq time by searching with ai, where Adj ris is the adjacency
of i in the interval graph. If Y has consumed OPT colors, then we set OPT to OPT` 1, else not.

Total time “
ř

iPV

plog V `Adj risq “ OpV log V ` Eq.

1.5 Minimize gas fill

Prof Midas drives an automobile from Newark to Reno along Interstate 80. His car’s gas tank, when full,
hold enough gas to travel n miles, and his map gives the distances between gas stations on his route. The
professor wishes to make as few gas stops as possible along the way. Give an efficient algorithm by which he
can determine at which gas stations he should stop, and prove that your strategy yields an optimum solution.

2

Solution

If the destination is within n miles from the source or the just-filled gas station, then there is no need
to stop at any station. Otherwise, stop at the farthest station g which is within n miles. Continue
this until the destination is reached.

Proof. Let g1, g2, g3, . . . be the gas stations sorted in increasing order of their distances from the
source. Let OPTpiq be the optimum number of fills needed up to the last-filled station gi. Let gj
be the farthest station within n miles from gi. So, OPTpjq ą OPTpiq ` 1. As gj`1 is more than n
miles away from gi, OPTpjq ă OPTpiq ` 1. So, OPTpjq “ OPTpiq ` 1. Since OPTphq “ OPTpiq for
i ă h ă j, the algorithm yields an optimum solution.

1.6 Minimize unit intervals

Describe an efficient algorithm that, given a set tx1, x2, . . . , xnu of points on the real line, determines the
smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm
is correct.

Solution

Sort the n points in ascending order in time Opn log nq. Let the sorted sequence be x1 ă x2 ă x3 ă

¨ ¨ ¨ ă xn.

Observation: There exists a smallest set of unit-length closed intervals which contains an interval
with x1 as its lower endpoint. That interval is rx1, x1 ` 1s. So, include rx1, x1 ` 1s in the solution.
If xn ď x1 ` 1, then stop. Otherwise, find the smallest xi such that xi ą x1 ` 1 by doing binary
search for x1 ` 1 in the sorted sequence. The same argument holds for xi, so include rxi, xi ` 1s in
the solution, and repeat the above process until all the points are covered.

Total time “ Opn log nq.

3

	Greedy Algorithms
	Non-cut edge
	Minimum edges
	Change in MST and shortest paths
	Interval-graph coloring
	Minimize gas fill
	Minimize unit intervals

