
1 DYNAMIC PROGRAMMING 1

1 Dynamic Programming

1.1 Max independent set in a vertex-weighted path

Let G “ pV,Eq be an undirected graph with n nodes. A subset S of V is called an independent set if no two
vertices of S are joined by an edge. Finding large independent sets is difficult in general but not for paths. A
graph is a path if its nodes can be written as v1, v2, . . . , vn, with an edge between vi and vj if and only if i and j
differ by exactly 1. With each node vi, we associate a positive integer weight wi. The goal in this question is to
find an independent set in a path G whose total weight is as large as possible.

Solution

(a) The “heaviest-first” greedy algorithm: Not correct.
1, 3, 5, 4 — output 5` 1 “ 6 but opt “ 3` 4 “ 7.

(b) Max between odd set and even set: Not correct.
1, 5, 3, 3, 5 — output 1` 3` 5 “ 9 but opt “ 5` 5 “ 10.

(c) For 1 ď i ď n, let OPTris denote the optimum value for houses from 1 to i.
Our goal is to find OPTrns.

For DP recurrence, the base bases are OPTr1s “ c1,OPTr2s “ maxpc1, c2q.
For i ě 3, two possible cases:

(i) vi does not contribute to OPTris ùñ OPTris “ OPTri´ 1s.

(ii) vi contributes to OPTris ùñ OPTris “ ci `OPTri´ 2s.

Combining the above two cases for i ě 3, we get OPTris “ maxpOPTri´ 1s, ci `OPTri´ 2sq.

Time to compute each OPTris “ Op1q ùñ total time complexity “ Opnq.

Algorithm 1: Max-Indep-Set

1 OPTr1s Ð c1,OPT2 Ð maxpc1, c2q
2 for iÐ 3, 4, . . . , n do
3 OPTris Ð maxpOPTri´ 1s, ci `OPTri´ 2sq // constant time

4 return OPTrns

1.2 Optimum plan

Given a sequence of n weeks containing the value `i for “low-stress” job and hi for “high-stress” job for
every week i. A plan is specified by a choice of “low-stress”, “high-stress”, or “none” for each week, with
the constraint that if high-stress is chosen for week i ą 1, then none has to be chosen for week i´1. (It’s okay
to choose a high-stress job in week 1.) The value of the plan is determined in the natural way: for each week i,
you add `i or hi or 0 to the value if you choose low-stress or high-stress or none in that week, respectively. Your
task is to find a plan of maximum value.

Example: Suppose n “ 4, and the values are as follows.

Week 1 Week 2 Week 3 Week 4
` 10 1 10 10
h 5 50 5 1

Then the plan of maximum value would be to choose none in week 1, a high-stress job in week 2, and low-stress
jobs in weeks 3 and 4. The value of this plan would be 0` 50` 10` 10 “ 70.

1 DYNAMIC PROGRAMMING 2

Solution

For 1 ď i ď n, let OPTris denote the value of an optimal plan for the first i weeks. Our goal is to find
OPTrns.

Base cases: OPTr1s “ maxp`1, h1q, OPTr2s “ maxph1 ` `2, h2q.
Recurrence: In an optimal plan of the first i ě 3 weeks, there are 3 possibilities:

(i) No job in week i ùñ OPTris “ OPTri´ 1s.

(ii) Low-stress job in week i ùñ OPTris “ `i `OPTri´ 1s.

(iii) High-stress job in week i ùñ OPTris “ hi `OPTri´ 2s.

Combining cases (i), (ii), (iii), we get

OPTris “ maxpOPTri´ 1s, `i `OPTri´ 1s, hi `OPTri´ 2sq @i ě 3.

Algorithm: Create a 1D array OPTr1..ns and fill it up using the above recurrence and base cases.
Return OPTrns.

Time complexity: Time to compute OPTris “ Op1q ùñ total time “ Opnq.

1.3 Longest path in ordered graph

Let G “ pV,Eq be a directed graph with nodes v1, . . . , vn. We say that G is an ordered graph if it has the
following properties.

(i) Each edge goes from a node with a lower index to a node with a higher index. That is, every directed
edge has the form pvi, vjq with i ă j.

(ii) Each node except vn has at least one edge leaving it. That is, for every node vi, i “ 1, . . . , n´1, there is
at least one edge of the form pvi, vjq with i ă j ď n.

Given an ordered graph G, find the length of the longest path that begins at v1 and ends at vn. (The length of
a path is the number of edges in it.)

(a) Show that the following greedy algorithm does not correctly solve this problem.

Set w “ v1
Set L “ 0
While there is an edge out of the node w
Choose the edge pw, vjq for which j is as small as possible

Set w “ vj
Increase L by 1

end while

Return L as the length of the longest path

Solution

Following is a counterexample. The optimum is 3 but the algorithm returns 2.

1 2 3 4 5

1 DYNAMIC PROGRAMMING 3

(b) Give an efficient algorithm that takes an ordered graph G and returns the length of the longest path that
begins at v1 and ends at vn.

Solution

For 1 ď i ď n, let OPTris denote the length of the longest path that begins at vi and ends at vn.
Note that OPTris is a well-defined number for 1 ď i ď n because G is an ordered graph.
Our goal is to find OPTr1s.

Base cases: OPTrns “ 0,OPTrn´ 1s “ 1.
Recurrence: OPTris “ max

pvi,vjqPE
t1`OPTrjsu for 1 ď i ď n´ 2.

Algorithm: Create a 1D array OPTr1..ns.
Fill up OPTrns,OPTrn´ 1s, . . . ,OPTr1s using the above recurrence and base cases.
Return OPTr1s.

Time complexity: Time to compute OPTris “ |tpvi, vjq P Eu|. So, total time is

OPTr1..ns “
ÿ

viPV

ˇ

ˇtpvi, vjq P Eu
ˇ

ˇ “ OpEq.

1.4 Minimum operating cost

Suppose you’re running a lightweight consulting business. Your clients are distributed between the East Coast
and the West Coast, and this leads to the following question.

Each month, you can either run your business from an office in New York (NY) or from an office in San
Francisco (SF). In month i, you’ll incur an operating cost of Ni if you run the business out of NY or an
operating cost of Si if you run it out of SF. However, if you run the business out of one city in month i, and
then out of the other city in month i` 1, then you incur a fixed moving cost of M to switch base offices.

Given a sequence of n months, a plan is a sequence of n locations—each one equal to either NY or SF—such
that the i-th location indicates the city in which you will be based in the i-th month. The cost of a plan is the
sum of the operating costs for each of the n months, plus a moving cost of M for each time you switch cities.
The plan can begin in either city.

Given a value for the moving cost M , and sequences of operating costs N1, . . . , Nn and S1, . . . , Sn, find a plan
of minimum cost.

Example: Suppose n “ 4,M “ 10, and the operating costs are given by the following table.

Month 1 Month 2 Month 3 Month 4
NY 1 3 20 30
SF 50 20 2 4

Then the plan of minimum cost would be the sequence of locations (NY, NY, SF, SF), with a total cost of
1` 3` 2` 4` 10 “ 20, where the final term of 10 arises because you change locations once.

(a) Show that the following algorithm does not correctly solve this problem, by giving an instance on which
it does not return the correct answer.

for i “ 1 to n
if Ni ă Si then

choose NY in Month i
else

choose SF in Month i
end for

1 DYNAMIC PROGRAMMING 4

In your example, say what the correct answer is and also what the algorithm above finds.

Solution

Example of an instance with M “ 10:

Month 1 Month 2 Month 3 Month 4
NY 20 21 20 21
SF 21 20 21 20

The algorithm returns (NY, SF, NY, SF), which is not an optimal plan. An optimal plan is (NY,
NY, NY, NY) or (SF, SF, SF, SF).

(b) Give an example of an instance in which every optimum plan must move (i.e., change locations) at least
three times. Provide a brief explanation, saying why your example has this property.

Solution

Example of an instance with M “ 2:

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6
NY 20 40 20 40 20 40
SF 40 20 21 20 40 20

The above example has a unique optimal plan (NY,SF,NY,SF,NY,SF), which changes locations
three times.

(c) Give an efficient algorithm that finds an optimal plan.

Solution

For 1 ď i ď n, define:
Aris “ minimum cost of a plan for the first i months ending with NY;
Bris “ minimum cost of a plan for the first i months ending with SF.

Our goal is to find minpArns, Brnsq.

Base cases: Ar1s “ N1, Br1s “ S1.
Recurrences: For i ě 2,
Aris “ minpAri´ 1s `Ni, Bri´ 1s `M `Niq,
Bris “ minpAri´ 1s `M ` Si, Bri´ 1s ` Siq.

Algorithm: Create 1D arrays Ar1..ns and Br1..ns, fill them up, using the above recurrence and
base cases, and return minpArns, Brnsq.

Time complexity: Time to compute Aris and Bris “ Op1q ùñ total time “ Opnq.

1.5 Maximum-quality segmentation

Given a string of letters y “ y1y2 ¨ ¨ ¨ yn, its segmentation means a partition into blocks of contiguous letters. If
a block is a dictionary word, then its quality is `1, else ´1. The quality for any block is available from a black
box in constant time.

The total quality of a segmentation is determined by adding up the qualities of its blocks. For example, for
meetateight, the total quality for the segmentation meet + ate + ight is 1` 1´ 1 “ 1, whereas that for
meet + at + eight is 1` 1` 1 “ 3.

1 DYNAMIC PROGRAMMING 5

Give an efficient algorithm that takes a string and computes a segmentation of maximum total quality.

Solution

For 1 ď i ď n, let OPTris denote the maximum total quality of a segmentation of y1 ¨ ¨ ¨ yi.
Our goal is to find OPTrns.

Base cases: OPTr1s “ qualitypy1q.

Recurrence: Consider the last contiguous block in an optimal segmentation of y1 ¨ ¨ ¨ yi.
Let the last block be yj ¨ ¨ ¨ yi, where 1 ď j ď i.
j “ 1 ùñ OPTris “ qualitypy1y2 ¨ ¨ ¨ yiq.
2 ď j ď i ùñ OPTris “ OPTrj ´ 1s ` qualitypyjyj`1 ¨ ¨ ¨ yi´1yiq.
So, for 2 ď i ď n,

OPTris “ max

ˆ

max
2ďjďi

!

OPTrj ´ 1s ` qualitypyjyj`1 ¨ ¨ ¨ yi´1yiq
)

, qualitypy1y2 ¨ ¨ ¨ yi´1yiq

˙

.

Algorithm: Create a 1D arrays OPTr1..ns, fill it up using the above recurrence and base cases, and
return OPTrns.

Time complexity analysis: Time to compute OPTris “ Opiq ùñ total time “ Opn2q.

1.6 Minimum-slack text formatting

Suppose our text consists of a sequence of words, W “ tw1, . . . , wnu, where wi consists of ci characters.
Assume that all characters have same fixed-width font and ignore issues of punctuation or hyphenation. We
have a maximum line-length of L. A formatting of W consists of a partition of the words in W into lines. In
the words assigned to a single line, there should be a space after each word except the last; and so if wj , . . . , wk

are assigned to one line, then we should have

k ´ j `
k
ÿ

i“j

ci ď L.

An assignment of words to a line is valid if it satisfies the above constraint. The amount by which the sum
(left-hand side of the above equation) falls short of L, is called the slack of the line—that is, the number of
spaces left at the right margin.

Give an efficient algorithm to find a partition of a set of words W into valid lines, so that the sum of the squares
of the slacks of all lines (including the last line) is minimized.

The goal of “minimum-slack text formatting” is to take text with a ragged right margin, like this:

Call me Ishmael.

Some years ago,

never mind how long precisely,

having little or no money in my purse,

and nothing particular to interest me on shore,

I thought I would sail about a little

and see the watery part of the world.

and turn it into text whose right margin is as “even” as possible, like this:

Call me Ishmael. Some years ago, never

mind how long precisely, having little

or no money in my purse, and nothing

1 DYNAMIC PROGRAMMING 6

particular to interest me on shore, I

thought I would sail about a little

and see the watery part of the world.

Solution

For 1 ď i ď n, let OPTris denote the minimum possible value of the sum of the squares of the slacks of
all lines in a partition of tw1, w2, . . . , wiu. Our goal is to find OPTrns.

Base cases: OPTr0s “ 0, OPTr1s “ pL´ c1q
2.

Recurrence: Consider the last line in an optimal partition of tw1, w2, . . . , wiu. Let it be
twh, wh`1, . . . , wiu, where 1 ď h ď i. Since it is a valid line, we have

i´ h`
i
ÿ

k“h

ck ď L ùñ OPTris “ OPTrh´ 1s `

˜

L´ i` h´
i
ÿ

k“h

ck

¸2

.

So, for 2 ď i ď n, we have

OPTris “ min
1 ď h ď i

i´ h`
i
ř

k“h

ck ď L

$

&

%

OPTrh´ 1s `

˜

L´ i` h´
i
ÿ

k“h

ck

¸2
,

.

-

.

Algorithm 2: Text formatting

1 OPTr0s Ð 0, OPTr1s Ð pL´ c1q
2

2 for hÐ 1, . . . , n do
3 crhsrhs Ð ch
4 for iÐ h` 1, . . . , n do
5 crhsris Ð crhsri´ 1s ` ci // crhsris “ ch ` ¨ ¨ ¨ ` ci

6 for iÐ 2, . . . , n do
7 OPTris Ð 8

8 for hÐ 1, . . . , i do
9 if i´ h` crhsris ď L then

10 OPTris Ð min
´

OPTris, OPTrh´ 1s ` pL´ i` h´ crhsrisq
2
¯

// constant time

11 return OPTrns

Time complexity: cr1..nsr1..ns is computed in Opn2q time. OPTris takes Opiq time to compute, so
total time “ Opn2q.

	Dynamic Programming
	Max independent set in a vertex-weighted path
	Optimum plan
	Longest path in ordered graph
	Minimum operating cost
	Maximum-quality segmentation
	Minimum-slack text formatting

