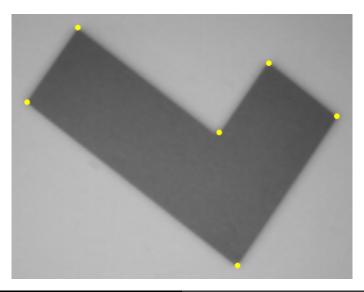
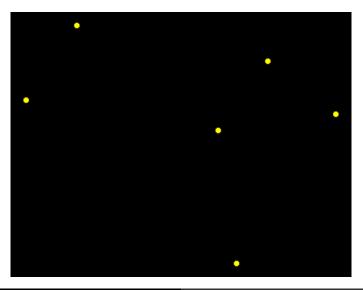
Points and Pointillism

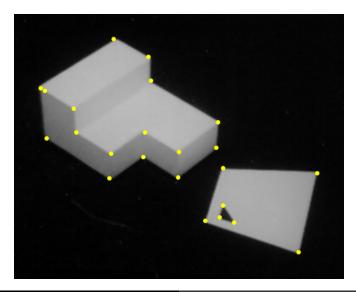
A Computational Perspective

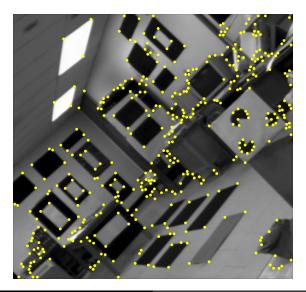
Partha Bhowmick

Associate Professor CSE Department IIT Kharagpur







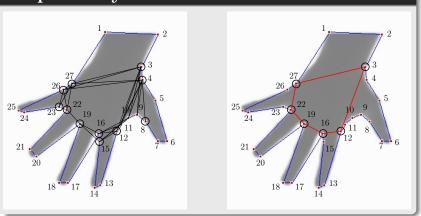


Applications

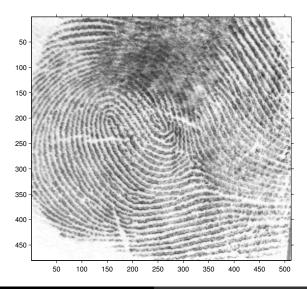
- shape analysis
- **2** tracking and classification of moving vehicles
- optical flow computation
- 3D scene analysis and reconstruction from stereo image pairs
- face tracking and face recognition
- retrieval of images and videos

etc.

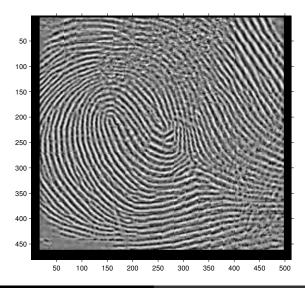
Shape Analysis



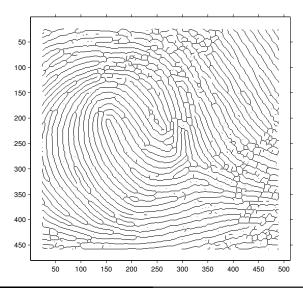
Minutiae as Points



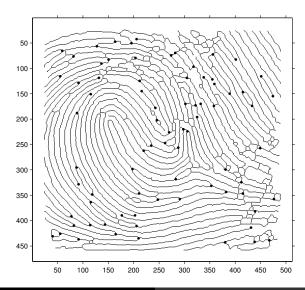
Minutiae as Points



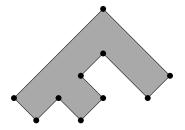
Minutiae as Points



Minutiae as Points

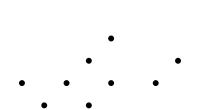


Point Set Pattern Matching



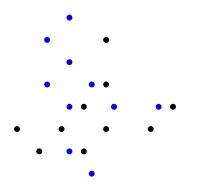
Object corners

Point Set Pattern Matching



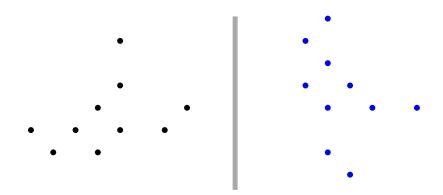
Point set

Point Set Pattern Matching



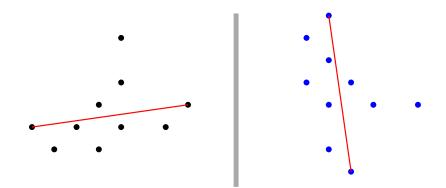
Q: Does the blue point set match the black one? What's the transformation?

Point Set Pattern Matching



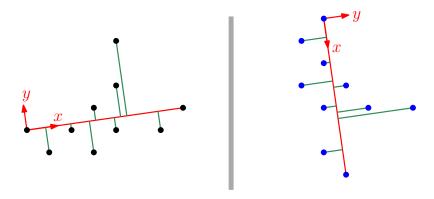
Treat them separately in proper local coordinate system.

Point Set Pattern Matching



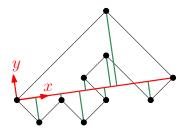
Consider the longest vectors (red lines).

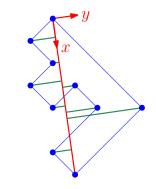
Point Set Pattern Matching



Define the local coordinate systems and compare the recomputed point coordinates.

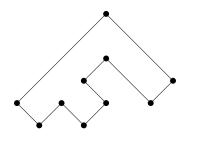
Point Set Pattern Matching

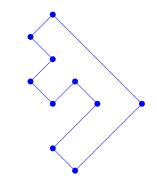




Report the match.

Point Set Pattern Matching





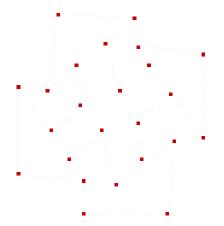
Redraw the objects if needed.

Pointillism

----Our algorithmic artwork (in progress)---

Ensemble

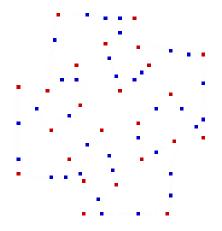
Unordered Point Set



Object corners — Too few to reconstruct

Ensemble

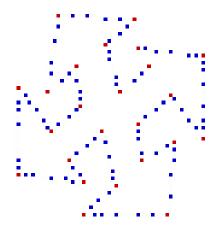
Unordered Point Set



Sufficient?

Ensemble

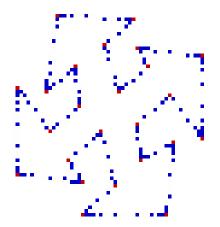
Unordered Point Set



Sufficient???

Ensemble

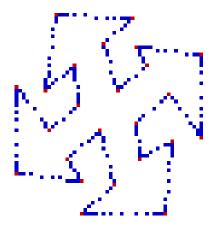
Unordered Point Set



Yes, sufficient! (Pointillist factor $\phi = 1$)

Ensemble

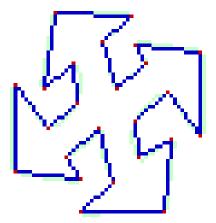
Unordered Point Set



More than sufficient (Pointillist factor $\phi = 2$)

Ensemble

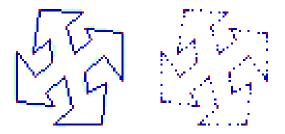
Unordered Point Set



Reconstruction

The idea

- Use the nearest neighbor (NN) rule.
- NN mimics our psycho-visual mechanism.
- Pick an optimal or suboptimal set of points so that reconstruction is possible.

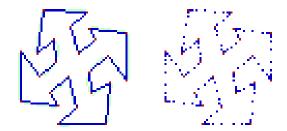


Ensemble

Edge processing

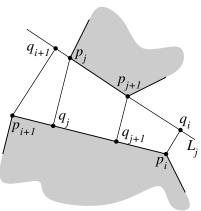
Procedure

Find the minimum distance between two edges e_i and e_j of (same or different) polygon(s).



Edge processing

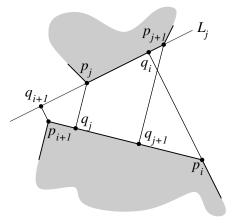
Case 1



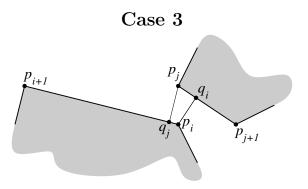
Ensemble

Edge processing

Case 2



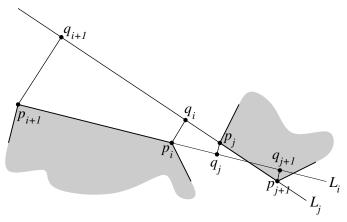
Edge processing



Ensemble

Edge processing

Case 4



Reconstruction idea

Facts about **Delaunay triangulation** DT(S) of any point set S:

• Each pair of nearest neighbors in S are neighbors in DT(S).

• For the **Euclidean graph**¹ EG(S) of S, the **minimum spanning tree** MST(EG(S)) is a subgraph of DT(S).

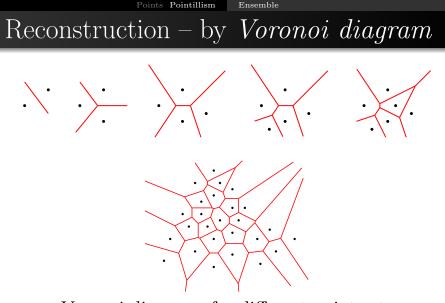
¹If S consists of m points, then the vertices of EG(S) are the points in S and the edges are all $\binom{n}{2}$ undirected pairs of distinct points, the weight of each edge being given by the Euclidean distance between the corresponding points.

Reconstruction idea

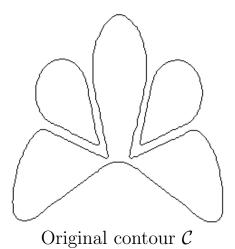
Facts about **Delaunay triangulation** DT(S) of any point set S:

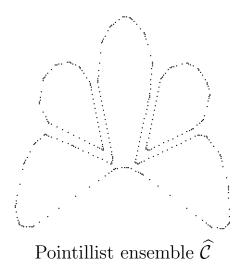
- Each pair of nearest neighbors in S are neighbors in DT(S).
- For the **Euclidean graph**¹ EG(S) of S, the **minimum spanning tree** MST(EG(S)) is a subgraph of DT(S).

¹If S consists of m points, then the vertices of EG(S) are the points in S and the edges are all $\binom{n}{2}$ undirected pairs of distinct points, the weight of each edge being given by the Euclidean distance between the corresponding points.

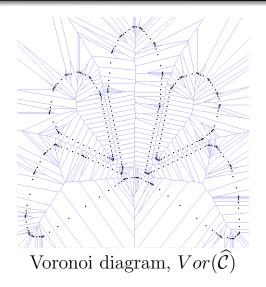


Voronoi diagrams for different point sets



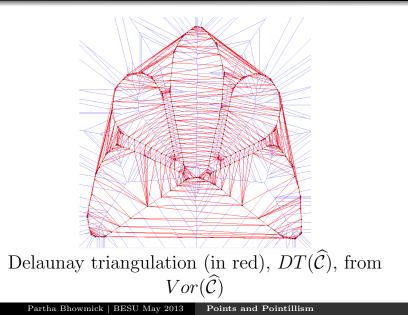


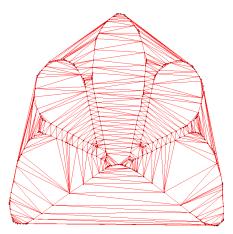
Reconstruction – by Voronoi diagram



Ensemble

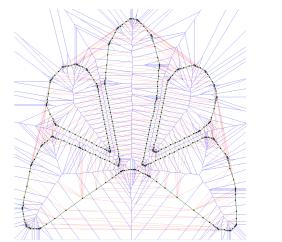
Reconstruction – by Voronoi diagram



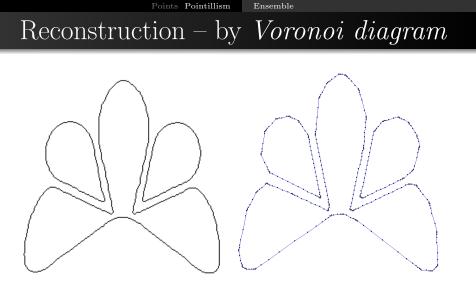


 $DT(\widehat{\mathcal{C}}) =$ subgraph of Euclidean graph $EG(\widehat{\mathcal{C}})$

Reconstruction – by Voronoi diagram

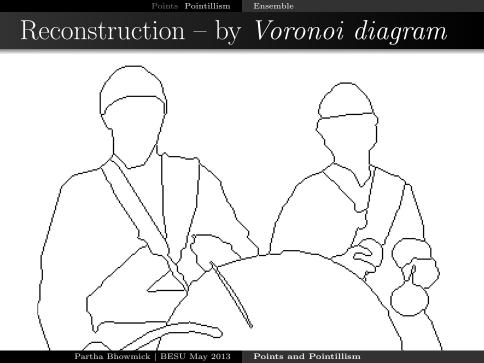


Reconstructed curve (in green) = $MST(DT(\widehat{C}))$



Original

Reconstruction



Ensemble

Reconstruction – by Voronoi diagram

