Points and Pointillism A Computational Perspective

Partha Bhowmick

Associate Professor
CSE Department
IIT Kharagpur

Corners as Points

Corners as Points

Corners as Points

Corners as Points

Corners as Points

Applications

(1) shape analysis
(2) tracking and classification of moving vehicles
(3) optical flow computation
(1) 3 D scene analysis and reconstruction from stereo image pairs
(6) face tracking and face recognition
(0) retrieval of images and videos etc.

Corners as Points

Shape Analysis

Minutiae as Points

Partha Bhowmick | BESU May 2013
Points and Pointillism

Minutiae as Points

Partha Bhowmick | BESU May 2013
Points and Pointillism

Minutiae as Points

Partha Bhowmick | BESU May 2013
Points and Pointillism

Minutiae as Points

Partha Bhowmick | BESU May 2013
Points and Pointillism

Point Set Pattern Matching

Object corners

Point Set Pattern Matching

Point set

Point Set Pattern Matching

Q: Does the blue point set match the black one? What's the transformation?

Point Set Pattern Matching

Treat them separately in proper local coordinate system.

Point Set Pattern Matching

Consider the longest vectors (red lines).

Point Set Pattern Matching

Define the local coordinate systems and compare the recomputed point coordinates.

Point Set Pattern Matching

Report the match.

Point Set Pattern Matching

Redraw the objects if needed.

Pointillism

Our algorithmic artwork (in progress)

Unordered Point Set

Unordered Point Set

Sufficient?

Unordered Point Set

Sufficient???

Unordered Point Set

Yes, sufficient! (Pointillist factor $\phi=1$)

Unordered Point Set

More than sufficient (Pointillist factor $\phi=2$)

Unordered Point Set

Reconstruction

The idea

- Use the nearest neighbor (NN) rule.
- NN mimics our psycho-visual mechanism.
- Pick an optimal or suboptimal set of points so that reconstruction is possible.

Edge processing

Procedure

Find the minimum distance between two edges e_{i} and e_{j} of (same or different) polygon(s).

Edge processing

Edge processing

Case 2

Edge processing

Case 3

Edge processing

Case 4

Reconstruction idea

Facts about Delaunay triangulation $D T(S)$ of any point set S :

- Each pair of nearest neighbors in S are neighbors in $D T(S)$.

Reconstruction idea

Facts about Delaunay triangulation $D T(S)$ of any point set S :

- Each pair of nearest neighbors in S are neighbors in $D T(S)$.
- For the Euclidean graph ${ }^{1} E G(S)$ of S, the minimum spanning tree $M S T(E G(S))$ is a subgraph of $D T(S)$.

[^0]
Reconstruction - by Voronoi diagram

Voronoi diagrams for different point sets

Reconstruction - by Voronoi diagram

Original contour \mathcal{C}

Reconstruction - by Voronoi diagram

Pointillist ensemble $\widehat{\mathcal{C}}$

Reconstruction - by Voronoi diagram

Reconstruction - by Voronoi diagram

Delaunay triangulation (in red), $D T(\widehat{\mathcal{C}})$, from $\operatorname{Vor}(\widehat{\mathcal{C}})$

Reconstruction - by Voronoi diagram

$D T(\widehat{\mathcal{C}})=$ subgraph of Euclidean graph $E G(\widehat{\mathcal{C}})$

Reconstruction - by Voronoi diagram

Reconstructed curve (in green) $=\operatorname{MST}(D T(\widehat{\mathcal{C}}))$

Reconstruction - by Voronoi diagram

Original

Reconstruction

Reconstruction - by Voronoi diagram

Reconstruction - by Voronoi diagram

Reconstruction - by Voronoi diagram

reconstructed

original

[^0]: ${ }^{1}$ If S consists of m points, then the vertices of $E G(S)$ are the points in S and the edges are all $\binom{n}{2}$ undirected pairs of distinct points, the weight of each edge being given by the Euclidean distance between the corresponding points.

