

Numbertheoretic

P. Bhowmick

Geometry, Vision, and Graphics: *A Number-theoretic Introduction*

Partha Bhowmick

CSE, IIT Kharagpur

Research Promotion Workshop Introduction to Graph and Geometric Algorithms 26-28 March 2011 (NIT Patna, India)

Numbertheoretic

P. Bhowmick

Line

Time discretization

- Straightness
- Periodicity
- Chain code
- properties Number-theoretic
- Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Is 1900 a leap year?

No!

An exception: 1900 mod 100 = 0

Observation

Years ending with "00" are not leap years.

s 2000 a leap year?

Yes!

An exception to exception: $2000 \mod 400 = 0$ Non-non-leap years: $2000, 2400, 2800, \ldots$

Numbertheoretic

P. Bhowmick

Line

Time discretization

- Straightness
- Periodicity
- Chain code
- Number-theoretic
- Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Is 1900 a leap year?

No!

An exception: 1900 mod 100 = 0

Observation

Years ending with "00" are not leap years.

s 2000 a leap year?

Yes!

An exception to exception: 2000 mod 400 = 0 Non-non-leap years: 2000, 2400, 2800, . . .

Numbertheoretic

P. Bhowmick

Line

Time discretization

Straightness

Periodicity

Chain code

Number-theoreti

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Is 1900 a leap year?

No!

An exception: 1900 mod 100 = 0

Observation

Years ending with "00" are not leap years.

s 2000 a leap year?

Yes!

An exception to exception: 2000 mod 400 = 0Non-non-leap years: 2000, 2400, 2800, . . .

Numbertheoretic

P. Bhowmick

Line

Time discretization

- Straightness
- Periodicity
- Chain code properties
- Number-theoret
- Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Is 1900 a leap year?

No!

An exception: 1900 mod 100 = 0

Observation

Years ending with "00" are not leap years.

s 2000 a leap year?

Yes!

An exception to exception: $2000 \mod 400 = 0$ Non-non-leap years: $2000, 2400, 2800, \ldots$

Numbertheoretic

P. Bhowmick

Line

Time discretization

- Straightness
- Periodicity
- Chain code
- Number-theoreti
- Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Is 1900 a leap year?

No!

An exception: 1900 mod 100 = 0

Observation

Years ending with "00" are not leap years.

Is 2000 a leap year?

Yes!

An exception to exception: 2000 mod 400 = 0
Non-non-leap years: 2000, 2400, 2800, . . .

Numbertheoretic

P. Bhowmick

Line

Time discretization

- Straightness
- Periodicity
- Chain code
- Number-theoret
- properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Is 1900 a leap year?

No!

An exception: 1900 mod 100 = 0

Observation

Years ending with "00" are not leap years.

Is 2000 a leap year?

Yes!

An exception to exception: $2000 \mod 400 = 0$ Non-non-leap years: $2000, 2400, 2800, \ldots$

Numbertheoretic

P. Bhowmick

Line

Time discretization

- Straightness
- Periodicity
- Chain code
- Number-theoret
- properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Is 1900 a leap year?

No!

An exception: 1900 mod 100 = 0

Observation

Years ending with "00" are not leap years.

Is 2000 a leap year?

Yes!

An exception to exception: $2000 \mod 400 = 0$ Non-non-leap years: $2000, 2400, 2800, \ldots$

Discretization of Gregorian calendar I

Numbertheoretic

P. Bhowmick

Line

Time discretization

Straightnes Periodicity

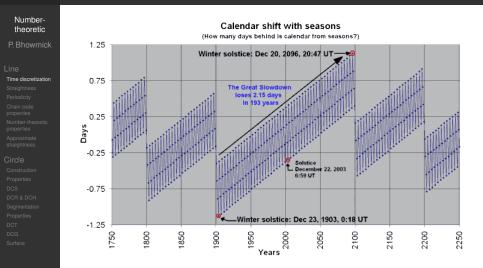
Chain cod

properties

properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface


Algorithm to determine leap years

(includes leap years before the official inception in 1582)

```
if (year % 400 == 0)
    then leap
else if (year % 100 == 0)
    then no leap
else if (year % 4 == 0)
    then leap
else no leap
```


Discretization of Gregorian calendar II

Numbertheoretic

P. Bhowmick

Line

Time discretization

Straightnes

Periodicity

Chain code properties

Number-theoret

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

What about

"an exception to exception to exception to ..."?

or

···-non-non-non-leap years?

Numbertheoretic

P. Bhowmick

Line

Time discretization

Straightne

Periodicity

Chain code properties

Number-theoret

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

What about

"an exception to exception to exception to"?

or

···-non-non-non-leap years?

Numbertheoretic

Leap years

What about

Line

Time discretization

Straightne

Periodicit

Chain code properties

Number-theoreti

Approximate straightness

Circle

Properties DCS DCR & DCH Segmentatio Properties DCT DCG

Surface

"an exception to exception to exception to ..."?

or

···-non-non-leap years?

Where and how lies the exception

Numbertheoretic

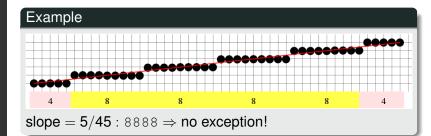
P. Bhowmick

Line

Time discretization

Straightness

Periodicity


properties Number-theoret

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

Surface

Where and how lies the exception

Numbertheoretic

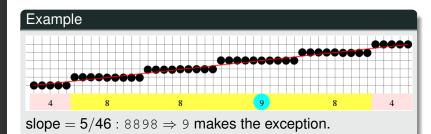
P. Bhowmick

Line

Time discretization

Straightness

Periodicity


properties Number-theore

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

Surface

Numbertheoretic

P. Bhowmick

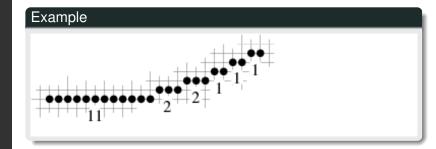
Line

Time discretization

Straightness

Periodicity

properties


Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Problem statement

Numbertheoretic

P. Bhowmick

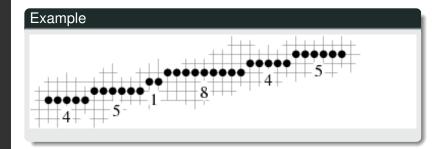
Line

Time discretization

Straightness

Periodicity

properties


Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Problem statement

Numbertheoretic

P. Bhowmick

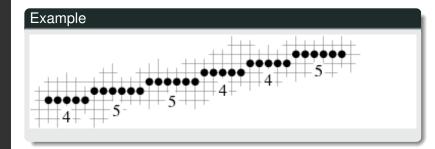
Line

Time discretization

Straightness

Periodicity

properties


Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Problem statement

Numbertheoretic

P. Bhowmick

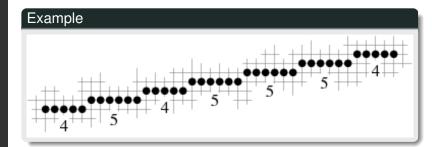
Line

Time discretization

Straightness

Periodicity

Chain code properties


Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Problem statement

Numbertheoretic

P. Bhowmick

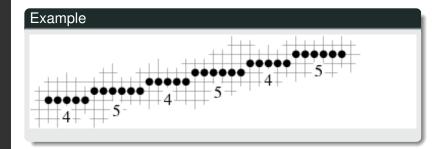
Line

Time discretization

Straightness

Periodicity

Chain code properties


Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Problem statement

Numbertheoretic

P. Bhowmick

Line

Time discretization

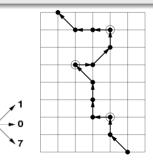
Straightness

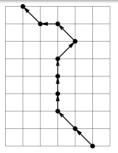
Periodicity

Chain code properties

Number-theoretic properties

Approximate straightness


Circle


Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Definition

Digital curve A sequence C of points in which each point is an 8-neighbor of its predecessor in C.

C is irreducible iff it does not remain 8-connected after removing a point that is not its end point.

Numbertheoretic

P. Bhowmick

Line

Time discretization

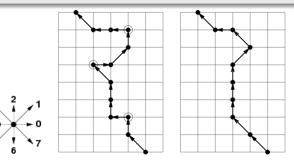
Straightness

Periodicity

Chain code properties

Number-theoretic properties

Approximate straightness


Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Definition

Digital curve A sequence C of points in which each point is an 8-neighbor of its predecessor in C.

> *C* is **irreducible** iff it does not remain 8-connected after removing a point that is not its end point.

Definition

Numbertheoretic

P. Bhowmick

Line

Time discretization

Straightness

Periodicity

Chain code properties

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Ray $\gamma_{\alpha,\beta} = \{(\mathbf{x}, \alpha \mathbf{x} + \beta) \in \mathbb{R}^2 : \mathbf{0} \le \mathbf{x} < \infty\}.$

Digital Ray $I_{\alpha,\beta} = \{(n, I_n) \in \mathbb{Z}^2 : n \ge 0 \land I_n = \lfloor \alpha n + \beta + 0.5 \rfloor\}$, considering $0 \le \alpha \le 1$, w.l.o.g.

Definition

Numbertheoretic

P. Bhowmick

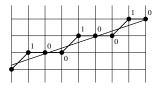
Line

Time discretization

Straightness

Periodicity

Chain code properties


Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Ray
$$\gamma_{\alpha,\beta} = \{(x, \alpha x + \beta) \in \mathbb{R}^2 : 0 \le x < \infty\}.$$

Digital Ray $I_{\alpha,\beta} = \{(n, I_n) \in \mathbb{Z}^2 : n \ge 0 \land I_n = \lfloor \alpha n + \beta + 0.5 \rfloor\}$, considering $0 \le \alpha \le 1$, w.l.o.g.

 $chain \ code = \dots 10010010\dots$

Rational vs. irrational slopes

Numbertheoretic

P. Bhowmick

Line

Time discretizati Straightness

Periodicity

Chain code properties Number-theoretic properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([R. Brons, 1974])

Rational digital rays are periodic and irrational digital rays are aperiodic.

xample

DSS with slope $\frac{2}{5}$: Period can be expressed as 01010, 00101, 10010, 01001, or 10100.

Which of these periods is chosen is not important, because the bounds of the period can be placed anywhere.

Theorem ([J.-P. Reveillès, 1991])

A word $u \in \{0,1\}^*$ is a DSS iff the corresponding digital points lie on or between two parallel real lines having a *y*-distance less than 1.

Rational vs. irrational slopes

Numbertheoretic

P. Bhowmick

Line

Time discretizati Straightness

Periodicity

Chain code properties Number-theoretic properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([R. Brons, 1974])

Rational digital rays are periodic and irrational digital rays are aperiodic.

Example

DSS with slope $\frac{2}{5}$: Period can be expressed as 01010, 00101, 10010, 01001, or 10100.

Which of these periods is chosen is not important, because the bounds of the period can be placed anywhere.

Theorem ([J.-P. Reveillès, 1991])

A word $u \in \{0,1\}^*$ is a DSS iff the corresponding digital points lie on or between two parallel real lines having a *y*-distance less than 1.

Rational vs. irrational slopes

Numbertheoretic

P. Bhowmick

Line

Time discretizati Straightness

Periodicity

Chain code properties Number-theoretic properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([R. Brons, 1974])

Rational digital rays are periodic and irrational digital rays are aperiodic.

Example

DSS with slope $\frac{2}{5}$: Period can be expressed as 01010, 00101, 10010, 01001, or 10100.

Which of these periods is chosen is not important, because the bounds of the period can be placed anywhere.

Theorem ([J.-P. Reveillès, 1991])

A word $u \in \{0,1\}^*$ is a DSS iff the corresponding digital points lie on or between two parallel real lines having a *y*-distance less than 1.

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Periodicity Chain code

properties

Number-theoretic properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([H. Freeman, 1970])

A chain code sequence should possess the following properties if it is a DSS:

1) at most two types of elements can be present, and these can differ only by unity, modulo eight;

one of the two element values always occurs singly;

 successive occurrences of the element occurring singly are as uniformly spaced as possible.

xample

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Periodicity

Chain code properties

Number-theoretic properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([H. Freeman, 1970])

A chain code sequence should possess the following properties if it is a DSS:

(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;

one of the two element values always occurs singly;

3) successive occurrences of the element occurring singly are as uniformly spaced as possible.

xample

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Periodicity Chain code

properties

properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([H. Freeman, 1970])

A chain code sequence should possess the following properties if it is a DSS:

(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;

(F2) one of the two element values always occurs singly;

3) successive occurrences of the element occurring singly are as uniformly spaced as possible.

xample

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Periodicity Chain code

properties

properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([H. Freeman, 1970])

A chain code sequence should possess the following properties if it is a DSS:

(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;

(F2) one of the two element values always occurs singly;

(F3) successive occurrences of the element occurring singly are as uniformly spaced as possible.

xample

0112112101 0110010010 0100010100 0010010010

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Periodicity Chain code

properties Number-theor

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([H. Freeman, 1970])

A chain code sequence should possess the following properties if it is a DSS:

(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;

(F2) one of the two element values always occurs singly;

Example						
	0112112101	0110010010	0100010100	0010010010		
F1						
F2						
F3						

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Periodicity Chain code

properties Number-theor

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([H. Freeman, 1970])

A chain code sequence should possess the following properties if it is a DSS:

(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;

(F2) one of the two element values always occurs singly;

Example						
	0112112101	0110010010	0100010100	0010010010		
F1						
F2						
F3						

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Periodicity Chain code

properties

number-theore properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([H. Freeman, 1970])

A chain code sequence should possess the following properties if it is a DSS:

(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;

(F2) one of the two element values always occurs singly;

Example						
	0112112101	0110010010	0100010100	0010010010		
F1	×	0110010010	0100010100	0010010010		
F2						
F3						

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Periodicity Chain code

properties

properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([H. Freeman, 1970])

A chain code sequence should possess the following properties if it is a DSS:

(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;

(F2) one of the two element values always occurs singly;

Example					
	0112112101	0110010010	0100010100	0010010010	
F1	×	0110010010	0100010100	0010010010	
F2	×	×	0100010100	0010010010	
F3	×				

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Periodicity Chain code

properties

Number-theore properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([H. Freeman, 1970])

A chain code sequence should possess the following properties if it is a DSS:

(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;

(F2) one of the two element values always occurs singly;

Example						
	0112112101	0110010010	0100010100	0010010010		
F1	×	0110010010	0100010100	0010010010		
F2	×	×	0100010100	0010010010		
F3	×	×	×	0010010010		

Numbertheoretic

P. Bhowmick

Line

Time discretizat

Pariodicity

Chain code properties

Number-theoretic properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Algorithm [R. Brons, 1974]

Brons proposed grammars for chain code generation of rational digital rays based on criteria F1, F2, and F3.

mprovement [A. Rosenfeld, 1974]

F3 is not suitable for a formal proof.

 Resented provided a formal characterization of DSSS which also allowed a further specification of FS.

Numbertheoretic

P. Bhowmick

Line

Time discretizat

Devientieter

Chain code properties

Number-theoretic properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

Surface

Algorithm [R. Brons, 1974]

Brons proposed grammars for chain code generation of rational digital rays based on criteria F1, F2, and F3.

Improvement [A. Rosenfeld, 1974]

• F3 is not suitable for a formal proof.

 Rosenfeld provided a formal characterization of DSS which also allowed a further specification of F3.

Numbertheoretic

P. Bhowmick

Line

Time discretizat

Devientieter

Chain code properties

Number-theoretic properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

Surface

Algorithm [R. Brons, 1974]

Brons proposed grammars for chain code generation of rational digital rays based on criteria F1, F2, and F3.

Improvement [A. Rosenfeld, 1974]

• F3 is not suitable for a formal proof.

 Rosenfeld provided a formal characterization of DSS which also allowed a further specification of F3.

Numbertheoretic

P. Bhowmick

Line

Time discretizat

Devientieter

Chain code properties

Number-theoretic properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT

DCT

Surface

Algorithm [R. Brons, 1974]

Brons proposed grammars for chain code generation of rational digital rays based on criteria F1, F2, and F3.

Improvement [A. Rosenfeld, 1974]

- F3 is not suitable for a formal proof.
- Rosenfeld provided a formal characterization of DSS which also allowed a further specification of F3.

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Chain code properties

Number-theoretic properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([A. Rosenfeld, 1974])

Necessary conditions for (the chain code sequences of) digital straight segments [A run is a maximum-length factor a^n , for $a \in A$.]

- The runs have at most two directions, differing by 45⁰, and for one of these directions, the run length must be 1.
- 2) The runs can have only two lengths, which are consecutive integers.

R3) One of the runs can occur only once at a time.

R4) ... for the run length that occurs in runs, these runs can themselves have only two lengths, which are consecutive integers; and so on.

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Chain code properties

Number-theoretic properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([A. Rosenfeld, 1974])

Necessary conditions for (the chain code sequences of) digital straight segments [A run is a maximum-length factor a^n , for $a \in A$.]

(R1) The runs have at most two directions, differing by 45⁰, and for one of these directions, the run length must be 1.

2) The runs can have only two lengths, which are consecutive integers.

R3) One of the runs can occur only once at a time.

(4) ... for the run length that occurs in runs, these runs can themselves have only two lengths, which are consecutive integers; and so on.

Numbertheoretic

P. Bhowmick

Line

Time discretizat Straightness

Chain code properties

Number-theoretic properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([A. Rosenfeld, 1974])

Necessary conditions for (the chain code sequences of) digital straight segments [A run is a maximum-length factor a^n , for $a \in A$.]

(R1) The runs have at most two directions, differing by 45⁰, and for one of these directions, the run length must be 1.

(R2) The runs can have only two lengths, which are consecutive integers.

3) One of the runs can occur only once at a time.

 ... for the run length that occurs in runs, these runs can themselves have only two lengths, which are consecutive integers; and so on.

Numbertheoretic

P. Bhowmick

Line

Time discretizat Straightness

Chain code properties

Number-theoretic properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([A. Rosenfeld, 1974])

Necessary conditions for (the chain code sequences of) digital straight segments [A run is a maximum-length factor a^n , for $a \in A$.]

- (R1) The runs have at most two directions, differing by 45⁰, and for one of these directions, the run length must be 1.
- (R2) The runs can have only two lengths, which are consecutive integers.

(R3) One of the runs can occur only once at a time.

 ... for the run length that occurs in runs, these runs can themselves have only two lengths, which are consecutive integers; and so on.

Numbertheoretic

P. Bhowmick

Line

Time discretizat Straightness

Chain code properties

Number-theoretic properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem ([A. Rosenfeld, 1974])

Necessary conditions for (the chain code sequences of) digital straight segments [A run is a maximum-length factor a^n , for $a \in A$.]

- (R1) The runs have at most two directions, differing by 45⁰, and for one of these directions, the run length must be 1.
- (R2) The runs can have only two lengths, which are consecutive integers.
- (R3) One of the runs can occur only once at a time.
- (R4) ... for the run length that occurs in runs, these runs can themselves have only two lengths, which are consecutive integers; and so on.

Numbertheoretic

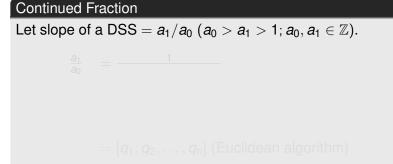
P. Bhowmick

Line

Time discretization

Straightnes

Periodicity


properties

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

$$46/87 = \frac{1}{1 + \frac{1}{1 + \frac{1}{8 + \frac{1}{5}}}} = [1, 1, 8, 5].$$

Numbertheoretic

P. Bhowmick

Line

Time discretization

Straightnes:

Periodicity

properties

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

intinued Fraction
t slope of a DSS $= a_1/a_0$ ($a_0 > a_1 > 1; a_0, a_1 \in \mathbb{Z}$).
$\frac{a_1}{a_0} = \frac{1}{a_0}$

$$46/87 = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{8 + \frac{1}{5}}}}} = [1, 1, 8, 5].$$

Numbertheoretic

P. Bhowmick

Line

Time discretization

Straightnes

Periodicity

properties Number-theoretic

properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Continued Fraction Let slope of a DSS = a_1/a_0 ($a_0 > a_1 > 1$; $a_0, a_1 \in \mathbb{Z}$). $\frac{a_1}{a_0} = \frac{1}{q_1 + \dots + q_n}$ $= [q_1, q_2, \dots, q_n]$ (Euclidean algorithm)

Numbertheoretic

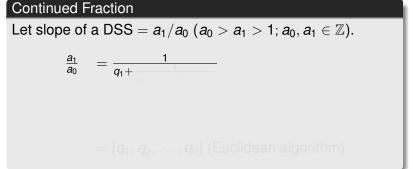
P. Bhowmick

Line

Time discretizatio

Straightnes

Periodicity


properties

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Numbertheoretic

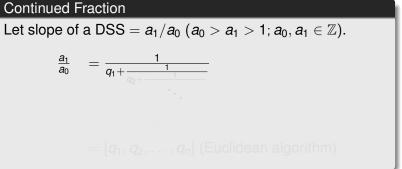
P. Bhowmick

Line

Time discretizatio

Straightnes

Periodicity


properties Number-theoretic

properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Numbertheoretic

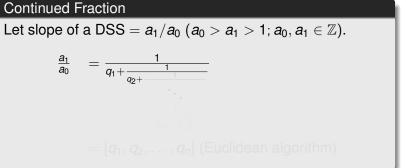
P. Bhowmick

Line

Time discretizatio

Straightnes

Periodicity


properties

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Numbertheoretic

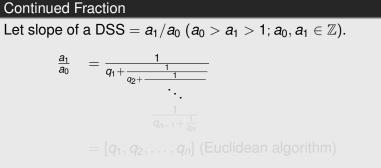
P. Bhowmick

Line

Time discretizatio

Straightnes

Periodicity


properties

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Continued Fraction

Numbertheoretic

P. Bhowmick

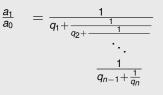
Line

Time discretizatio

Straightnes

Periodicity

properties


Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Let slope of a DSS $= a_1/a_0$ $(a_0 > a_1 > 1; a_0, a_1 \in \mathbb{Z}).$

 $= [q_1, q_2, \ldots, q_n]$ (Euclidean algorithm)

$$46/87 = \frac{1}{1 + \frac{1}{1 + \frac{1}{8 + \frac{1}{5}}}} = [1, 1, 8, 5].$$

Continued Fraction

Numbertheoretic

P. Bhowmick

Line

Time discretizatio

Straightnes

Periodicity

properties

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

$$46/87 = \frac{1}{1 + \frac{1}{1 + \frac{1}{8 + \frac{1}{5}}}} = [1, 1, 8, 5].$$

Continued Fraction

Numbertheoretic

P. Bhowmick

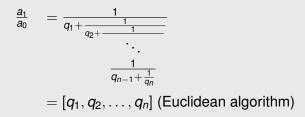
Line

Time discretizatio

Straightnes

Periodicity

properties


Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Let slope of a DSS $= a_1/a_0$ $(a_0 > a_1 > 1; a_0, a_1 \in \mathbb{Z}).$

$$46/87 = \frac{1}{1 + \frac{1}{1 + \frac{1}{8 + \frac{1}{5}}}} = [1, 1, 8, 5].$$

Numbertheoretic

P. Bhowmick

Line

Time discretize

Straightness

Periodicity

properties

Number-theoretic properties

Approximate straightness

Circle

Properties DCS DCR & DCH Segmentation Properties

DGT

Surface

Splitting a Continued Fraction

 $\frac{a_1}{a_0} = [q_1, q_2, \ldots, q_n]$

$$= \frac{\alpha_n q_n + \beta_n}{\gamma_n q_n + \delta_n}$$

where α_n s are defined by q_1, q_2, \ldots, q_n

 $=\frac{(\alpha_{n-1}q_{n-1}+\beta_{n-1})q_n+\alpha_{n-1}}{(\alpha_{n-1}q_{n-1}+\delta_{n-1})q_n+\alpha_{n-1}}$

 $(\gamma_{n-1}q_{n-1}+o_{n-1})q_n+\gamma_{n-1}$

 $=\frac{(\alpha_{n-1}q_{n-1}+\beta_{n-1})(q_n-1)+\alpha_{n-1}(q_{n-1}+1)+\beta_{n-1}}{(\gamma_{n-1}q_{n-1}+\delta_{n-1})(q_n-1)+\gamma_{n-1}(q_{n-1}+1)+\delta_{n-1}}.$

Numbertheoretic

P. Bhowmick

Line

Time discretize

Straightness

Periodicity

properties Number-theoretic

properties

Approximate straightness

Circle

Properties DCS DCR & DCH Segmentation Properties

DCG

Surface

Splitting a Continued Fraction

 $\frac{a1}{a0} = [q_1, q_2, \ldots, q_n]$

$$= \frac{\alpha_n q_n + \beta_n}{\gamma_n q_n + \delta_n}$$

where α_n s are defined by q_1, q_2, \ldots, q_n

$$=\frac{(\alpha_{n-1}q_{n-1}+\beta_{n-1})q_n+\alpha_{n-1}}{(\gamma_{n-1}q_{n-1}+\delta_{n-1})q_n+\gamma_{n-1}}$$

 $\frac{(\alpha_{n-1}q_{n-1}+\beta_{n-1})(q_n-1)+\alpha_{n-1}(q_{n-1}+1)+\beta_{n-1}}{(\gamma_{n-1}q_{n-1}+\delta_{n-1})(q_n-1)+\gamma_{n-1}(q_{n-1}+1)+\delta_{n-1}}$

Numbertheoretic

P. Bhowmick

Line

Time discretiza

Straightness

Periodicity

Number-theoretic

Approximate straightness

Circle

Properties DCS DCR & DC Segmenta

DCT

DCG

Surface

Splitting a Continued Fraction

 $\frac{a_1}{a_0} = [q_1, q_2, \ldots, q_n]$

$$= \frac{\alpha_n q_n + \beta_n}{\gamma_n q_n + \delta_n}$$

where α_n s are defined by q_1, q_2, \ldots, q_n

$$= \frac{(\alpha_{n-1}q_{n-1}+\beta_{n-1})q_n+\alpha_{n-1}}{(\gamma_{n-1}q_{n-1}+\delta_{n-1})q_n+\gamma_{n-1}} \\ = \frac{(\alpha_{n-1}q_{n-1}+\beta_{n-1})(q_n-1)+\alpha_{n-1}(q_{n-1}+1)+\beta_{n-1}}{(\gamma_{n-1}q_{n-1}+\delta_{n-1})(q_n-1)+\gamma_{n-1}(q_{n-1}+1)+\delta_{n-1}}$$

Numbertheoretic

P. Bhowmick

Line

Time discretizat

Chain code

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Concatenation of a_1/b_1 and a_2/b_2 is $(a_1/b_1) \otimes (a_2/b_2) = a/b$, where $a = (a_1 + a_2)/c$ and $b = (b_1 + b_2)/c$, for an integer cs.t. gcd(a, b) = 1.

Definition (Splitting formula)

 $[q_1, q_2, \ldots, q_n]$

Definition

$$\left(\begin{array}{c} [q_1, q_2, \dots, q_{n-1} + 1] \otimes (q_n - 1)[q_1, q_2, \dots, q_{n-1}]; \\ \text{if } n \text{ is even} \end{array} \right)$$

$$(q_n-1)[q_1, q_2, \dots, q_{n-1}] \otimes [q_1, q_2, \dots, q_{n-1}+1].$$

if *n* is odd

Numbertheoretic

P. Bhowmick

Line

Time discretizat

oraginness

Chain code

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface Concatenation of a_1/b_1 and a_2/b_2 is $(a_1/b_1) \otimes (a_2/b_2) = a/b$, where $a = (a_1 + a_2)/c$ and $b = (b_1 + b_2)/c$, for an integer cs.t. gcd(a, b) = 1.

Definition (Splitting formula)

$$[q_1, q_2, \ldots, q_n]$$

Definition

=

$$[q_1, q_2, \dots, q_{n-1} + 1] \otimes (q_n - 1)[q_1, q_2, \dots, q_{n-1}];$$

if *n* is even

$$(q_n-1)[q_1, q_2, \dots, q_{n-1}] \otimes [q_1, q_2, \dots, q_{n-1}+1].$$

if *n* is odd

Numbertheoretic

Example

P. Bhowmick

Line

- Time discretizat Straightness
- Periodicity
- Chain code

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

$\frac{46}{87}$ = [1, 1, 8, 5] (*n* is even)

$$= [1,1,9] \otimes 4 \cdot [1,1,8]$$

$$= (8 \cdot [1,1] \otimes [1,2]) \otimes 4 \cdot (7 \cdot [1,1] \otimes [1,2])$$

 $=(8\cdot [2]\otimes ([2]\otimes [1]))\otimes 4\cdot (7\cdot [2]\otimes ([2]\otimes [1])),$

which gives DSS chain codes:

```
(0101010101010101)(011)
(01010101010101)(011)
(01010101010101)(011)
(01010101010101)(011)
(01010101010101)(011).
```


Numbertheoretic

P. Bhowmick

Line

- Time discretization
- Periodicity
- Chain code
- Number-theoretic

Approximate straightness

Circle

- Construction Properties DCS DCR & DCH Segmentation Properties DCT
- DCG
- Surface

- avoiding tight enforcing of the DSS constraints (especially for a curve representing the gross pattern of a real-life image with digital imperfections)
- enabling extraction of approximately straight pieces from a digital curve
 - (straightening a part of the DC when the concerned part is not exactly "digitally straight")
- reducing the number of extracted segments (hence reducing the storage and CPU time)
- usage of integer operations only

Numbertheoretic

P. Bhowmick

Line

- Time discretization Straightness
- Periodicity
- Chain code
- Number-theoretic

Approximate straightness

- Circle
- Properties DCS DCR & DC
- Properties
- DCC
- Surface

- avoiding tight enforcing of the DSS constraints (especially for a curve representing the gross pattern of a real-life image with digital imperfections)
- enabling extraction of approximately straight pieces from a digital curve
 - (straightening a part of the DC when the concerned part is not exactly "digitally straight")
 - reducing the number of extracted segments (hence reducing the storage and CPU time)
 - usage of integer operations only

Numbertheoretic

P. Bhowmick

Line

- Time discretization Straightness
- Periodicity
- Chain cod properties
- Number-theoretic

Approximate straightness

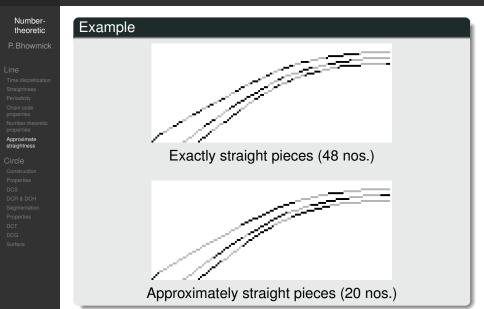
- Circle
- Properties DCS DCR & DC Segmentat
- Propert
- DCG
- Surface

- avoiding tight enforcing of the DSS constraints (especially for a curve representing the gross pattern of a real-life image with digital imperfections)
- enabling extraction of approximately straight pieces from a digital curve
 - (straightening a part of the DC when the concerned part is not exactly "digitally straight")
- reducing the number of extracted segments (hence reducing the storage and CPU time)
 - usage of integer operations only

Numbertheoretic

P. Bhowmick

Line


- Time discretization Straightness
- Periodicity
- Chain code
- Number-theoretic

Approximate straightness

- Circle
- Construction Properties DCS DCR & DC
- Segmentati Properties
- DCT
- DCG

- avoiding tight enforcing of the DSS constraints (especially for a curve representing the gross pattern of a real-life image with digital imperfections)
- enabling extraction of approximately straight pieces from a digital curve
 - (straightening a part of the DC when the concerned part is not exactly "digitally straight")
- reducing the number of extracted segments (hence reducing the storage and CPU time)
- usage of integer operations only

Numbertheoretic

P. Bhowmick

Line

- Time discretizati Straightness
- Periodicity
- Chain code properties
- Number-theoretic properties

Approximate straightness

Circle

- Construction Properties DCS DCR & DCH Segmentation Properties
- DCT
- Surface

orientations parameters

- n (non-singular element)
- s (singular element)
- I (length of leftmost run of n)
- r (length of rightmost run of n)
- **run length interval parameters**: *p* and *q* [*p*, *q*] is the range of possible lengths (excepting *I* and *r*) of *n*
- conditions:
 - $> a p \le d = [(p + 1)/2]$ $> (l - p), (r - p) \le a = [(p + 1/2)]$

Numbertheoretic

P. Bhowmick

Line

- Time discretizat Straightness
- Periodicity
- Chain code properties
- Number-theoretic properties

Approximate straightness

Circle

- Construction Properties DCS DCR & DCH Segmentatio Properties DCT
- DCG
- Surface

• orientations parameters

• n (non-singular element)

- s (singular element)
- I (length of leftmost run of n)
- r (length of rightmost run of n)
- **run length interval parameters**: *p* and *q* [*p*, *q*] is the range of possible lengths (excepting *l* and *r*) of *n*
- conditions:

$> a - p \le d = [(p + 1)/2]$ $> (l - p), (r - p) \le a = [(p + 1/2)]$

Numbertheoretic

P. Bhowmick

Line

- Time discretizat Straightness
- Periodicity
- Chain code
- Number-theoretic properties

Approximate straightness

Circle

- Construction Properties DCS DCR & DCH Segmentation Properties DCT
- DCG
- Surface

orientations parameters

- n (non-singular element)
- s (singular element)
 - I (length of leftmost run of n)
 - r (length of rightmost run of n)
- **run length interval parameters**: *p* and *q* [*p*, *q*] is the range of possible lengths (excepting *I* and *r*) of *n*
- conditions:
 - $\Rightarrow a p \le d = [(p + 1)/2]$ $\Rightarrow (l - p), (r - p) \le a = [(p + 1/2)]$

Numbertheoretic

P. Bhowmick

Line

- Time discretizati
- Periodicity
- Chain cod
- Number-theoretic

Approximate straightness

Circle

- Construction Properties DCS DCR & DCH Segmentation Properties
- DCT
- DCG

orientations parameters

- n (non-singular element)
- s (singular element)
- / (length of leftmost run of n)
- r (length of rightmost run of n)
- **run length interval parameters**: *p* and *q* [*p*, *q*] is the range of possible lengths (excepting *I* and *r*) of *n*
- conditions:
 - $\Rightarrow q p \le d = [(p + 1)/2]$ $\Rightarrow (l - p), (t - p) \le q = [(p + 1/2)]$

Numbertheoretic

P. Bhowmick

Line

- Time discretizati Straightness
- Periodicity
- Chain code
- Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentatio Properties DCT

• orientations parameters

- n (non-singular element)
- s (singular element)
- / (length of leftmost run of n)
- r (length of rightmost run of n)
- run length interval parameters: p and q
 [p, q] is the range of possible lengths (excepting l and r) of n
- conditions:

* $a - p \le d = |(p + 1)/2|$ * $(l - p), (r - p) \le a = |(p + 1/2)|$

Numbertheoretic

P. Bhowmick

Line

- Time discretizati Straightness
- Periodicity
- Chain code
- Number-theoretic properties

Approximate straightness

Circle

- Constructio Properties DCS DCR & DCI Segmentati Properties
- DCT
- Surface

• orientations parameters

- n (non-singular element)
- s (singular element)
- / (length of leftmost run of *n*)
- r (length of rightmost run of n)

• run length interval parameters: p and q

[p, q] is the range of possible lengths (excepting *I* and *r*) of *n*

• conditions:

• $q - p \le d = \lfloor (p+1)/2 \rfloor$ • $(l-p), (r-p) \le e - \lfloor (p+1/2) \rfloor$

How Approximate straightness

Numbertheoretic

P. Bhowmick

Line

- Time discretizati Straightness
- Periodicity
- Chain code
- Number-theoretic properties

Approximate straightness

Circle

- Construction Properties DCS DCR & DC
- Segmenta Properties
- DCT
- DCG

orientations parameters

- n (non-singular element)
- s (singular element)
- / (length of leftmost run of *n*)
- r (length of rightmost run of n)

• run length interval parameters: p and q

[p, q] is the range of possible lengths (excepting *I* and *r*) of *n*

• conditions:

• $q - p \le d = \lfloor (p + 1)/2 \rfloor$ • $(l - p), (r - p) \le e = \lfloor (p + 1/2) \rfloor$

How Approximate straightness

Numbertheoretic

P. Bhowmick

Line

- Time discretizati Straightness
- Periodicity
- Chain code
- Number-theoretic

Approximate straightness

Circle

- Construction Properties DCS DCR & DC
- Propertie
- DCT
- DCG

• orientations parameters

- n (non-singular element)
- s (singular element)
- / (length of leftmost run of *n*)
- r (length of rightmost run of n)

• run length interval parameters: p and q

[p, q] is the range of possible lengths (excepting *I* and *r*) of *n*

• conditions:

- $q p \leqslant d = \lfloor (p + 1)/2 \rfloor$
- $(l-p), (r-p) \leqslant e = \lfloor (p+1/2) \rfloor$

How Approximate straightness

Numbertheoretic

P. Bhowmick

Line

- Time discretizati Straightness
- Periodicity
- Chain code
- Number-theoretic

Approximate straightness

Circle

- Construction Properties DCS DCR & DCI Segmentation
- Propert
- DCT
- Surface

• orientations parameters

- n (non-singular element)
- s (singular element)
- / (length of leftmost run of *n*)
- r (length of rightmost run of n)

• run length interval parameters: p and q

[p, q] is the range of possible lengths (excepting *I* and *r*) of *n*

• conditions:

- $q-p \leqslant d = \lfloor (p+1)/2 \rfloor$
- $(I-p), (r-p) \leq e = \lfloor (p+1/2) \rfloor$

How approximate straightness

Numbertheoretic

P. Bhowmick

Line

- Time discretizat Straightness
- Periodicity Chain code
- properties
- Number-theoretic properties

Approximate straightness

Circle

- Properties DCS DCR & DCH Segmentatio Properties DCT DCG
- Surface

Theorem ([Bhowmick and Bhattacharya, 2007])

Isothetic error of a run length p_i in an ADSS (approximate DSS) comprising of N ADSS, is given by

$$\epsilon \leqslant \left(1 - \frac{1}{N}\right) \left(1 + \frac{d}{p+1}\right) \leqslant 1 + \frac{d}{p+1}.$$
 (1)

Remarks

Error incurred with an ADSS can be controlled by *d*.
For a given error bound, *d* decreases linearly with *p*.

How approximate straightness

Numbertheoretic

P. Bhowmick

Line

Time discretizat Straightness

Periodicity Chain code

properties Number-theoreti

Approximate straightness

Circle

Properties DCS DCR & DCH Segmentatio Properties DCT DCG

Surface

Theorem ([Bhowmick and Bhattacharya, 2007])

Isothetic error of a run length p_i in an ADSS (approximate DSS) comprising of N ADSS, is given by

$$\epsilon \leqslant \left(1 - \frac{1}{N}\right) \left(1 + \frac{d}{p+1}\right) \leqslant 1 + \frac{d}{p+1}.$$
 (1)

Remarks

- Error incurred with an ADSS can be controlled by d.
- For a given error bound, d decreases linearly with p.

Cumulative error (criterion C_{max})

Numbertheoretic

P. Bhowmick

Line

Time discretizatio Straightness Periodicity

Chain cod

Number-theoretic properties

Approximate straightness

Circle Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

Theorem ([Bhowmick and Bhattacharya, 2007])

An ordered set of ADSS, $\langle \mathbf{L}^{(k)} \rangle_{j_1}^{j_2}$, can be replaced by a single straight line segment, $\widetilde{\mathbf{L}}$, such that isothetic deviation of no point in $\langle \mathbf{L}^{(k)} \rangle_{j_1}^{j_2}$ from $\widetilde{\mathbf{L}}$ exceeds τ , if

$$\max_{j_1 \leqslant j \leqslant j_2 - 1} \left| \bigtriangleup \left(\boldsymbol{s}(\boldsymbol{\mathsf{L}}_{j_1}^{(k)}), \boldsymbol{e}(\boldsymbol{\mathsf{L}}_{j_1}^{(k)}), \boldsymbol{e}(\boldsymbol{\mathsf{L}}_{j_2}^{(k)}) \right) \right| \leqslant \tau \boldsymbol{d}_{\top} \left(\boldsymbol{s}(\boldsymbol{\mathsf{L}}_{j_1}^{(k)}), \boldsymbol{e}(\boldsymbol{\mathsf{L}}_{j_2}^{(k)}) \right)$$

 $\widetilde{\mathbf{L}}$ passes through the start point $s(\mathbf{L}_{j}^{(k)})$ of $\mathbf{L}_{j_{1}}^{(k)}$ and the end point $e(\mathbf{L}_{j}^{(k)})$ of $\mathbf{L}_{j_{2}}^{(k)}$; $|\triangle(p,q,r)| = 2 \times$ area of the triangle *pqr*; $d_{\top}(p,q) =$ maximum isothetic distance between *p* and *q*.

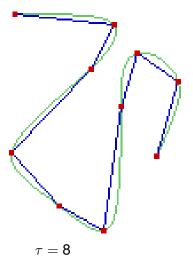
C_{max}: An example

Numbertheoretic

P. Bhowmick

Line

Time discretizatio Straightness


Chain code

Number-theoretic properties

Approximate straightness

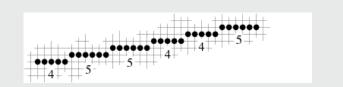
Circle

Construction Properties DCS DCR & DCH Segmentatio Properties DCT DCG

Numbertheoretic

P. Bhowmick

Line


- Time discretizati Straightness
- Chain code
- Number-theoretic

Approximate straightness

Circle

- Construction Properties DCS DCR & DCH Segmentation
- DCT
- DCG
- Surface

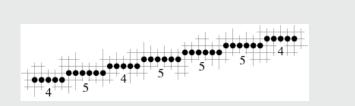
Example

 $0^{4}10^{5}10^{5}10^{4}10^{4}10^{5}$ $\Rightarrow p = 4, q = 5, l = 4, r = 5$ $\Rightarrow R3 \text{ fails}$ $\Rightarrow \text{ not a DSS but an ADSS.}$

Numbertheoretic

P. Bhowmick

Line


- Time discretizati Straightness
- Chain code
- Number-theoretic

Approximate straightness

Circle

- Construction Properties DCS DCR & DCH Segmentation Properties
- DCT
- DCG
- Surface

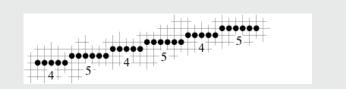
Example

 $0^{4}10^{5}10^{4}10^{5}10^{5}10^{5}10^{4}$ $\Rightarrow p = 4, q = 5, l = 4, r = 4$ $\Rightarrow R4 \text{ fails}$ $\Rightarrow \text{ not a DSS but an ADSS.}$

Numbertheoretic

P. Bhowmick

Line


- Time discretizati Straightness
- Chain code
- properties Number-theoreti

Approximate straightness

Circle

- Construction Properties DCS DCR & DCH Segmentatio Properties
- DCT
- DCG
- Surface

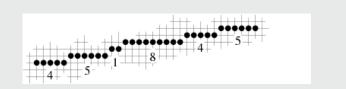
Example

 $0^{4}10^{5}10^{4}10^{5}10^{4}10^{5}$ $\Rightarrow p = 4, q = 5, l = 4, r = 5$ $\Rightarrow R1-R4 \text{ and } c1, c2$ $\Rightarrow an ADSS as well as a DSS.$

Numbertheoretic

P. Bhowmick

Line


- Time discretizati Straightness
- Chain code
- properties Number-theoreti

Approximate straightness

Circle

- Construction Properties DCS DCR & DCH Segmentatic Properties
- DCT
- DCG
- Surface

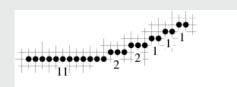
Example

 $0^4 10^5 1010^8 10^4 10^5$ $\Rightarrow p = 1, q = 8, l = 4, r = 5$ R2, c1, and c2 fail \Rightarrow neither a DSS nor an ADSS.

Numbertheoretic

P. Bhowmick

Line


- Time discretizati Straightness
- Chain code
- Number-theoretic

Approximate straightness

Circle

- Construction Properties DCS DCR & DCH Segmentatio Properties
- DCT
- DCG
- Surface

Example

 $0^{11}10^210^2101010$ $\Rightarrow p = 1, q = 2, l = 11, r = 1$ $\Rightarrow R2 \text{ and } c2 \text{ fail}$ $\Rightarrow \text{ not a DSS or an ADSS.}$

Numbertheoretic

P. Bhowmick

Line

- Time discretiza Straightness
- Chain code
- Number-theoretic

Approximate straightness

Circle

- Construction Properties DCS DCR & DCH Segmentatio Properties DCT DCG
- Surface

input

P. Bhowmick

Line

Time discretiza Straightness Periodicity

Chain code properties

Number-theoretic properties

Approximate straightness

Circle

Properties DCS DCR & DC Segmenta

DCT

DCG

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Chain code

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

P. Bhowmick

Line

Time discretiza Straightness Periodicity

Chain code properties

Number-theoretic properties

Approximate straightness

Circle

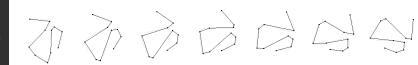
Properties DCS DCR & DC Segmental Properties

DGT

P. Bhowmick

Line

Time discretiza Straightness


Chain code

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

P. Bhowmick

Line

Time discretiza Straightness Periodicity

Chain code properties

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentatic Properties DCT DCG

Numbertheoretic

P. Bhowmick

Line

Time discretiz Straightness Periodicity

Chain code properties

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentatic Properties DCT DCG

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness Periodicity

Chain code properties

Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

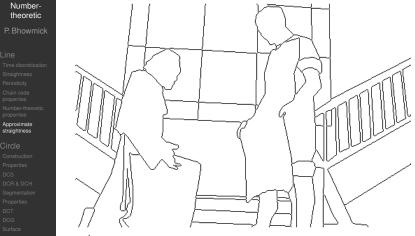
Numbertheoretic

P. Bhowmick

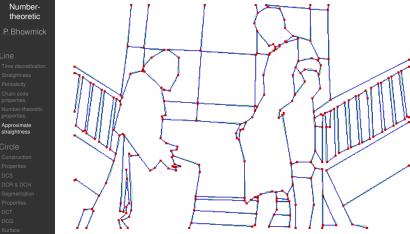
Line

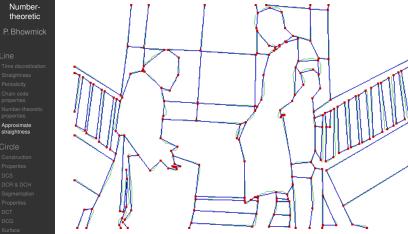
- Time discretizatio Straightness Periodicity
- Chain code properties
- Number-theoreti properties

Approximate straightness


Circle Constru Properti DCS

DCR & DCH Segmentatic Properties DCT DCG Surface


a real-world image


edge map

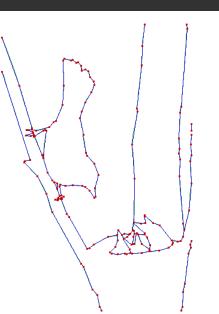
approximation for $\tau = 2$

approximation for $\tau = 4$

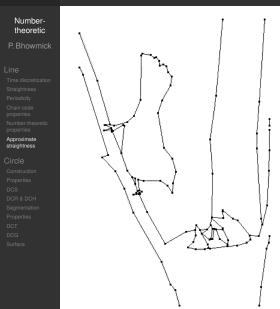
P. Bhowmick

Line

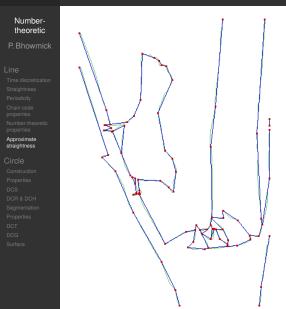
Time discretiza Straightness

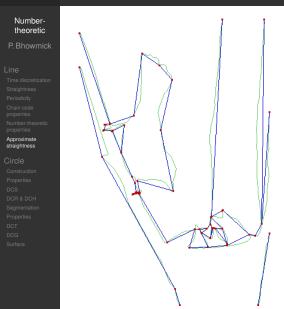

Periodicity Chain coc

properties Number-theor


Approximate straightness

Circle


Construction Properties DCS DCR & DCH Segmentatio Properties DCT DCG



Numbertheoretic

P. Bhowmick

Line

- Time discretiza Straightness
- Periodicity
- properties
- properties
- Approximate straightness

Circle

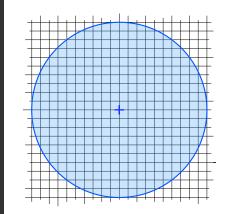
Construction Properties DCS DCR & DCH Segmentation

- Proper
- DCG
- Surface

+				-	_	_		_			_	_	-	_		-		-
1																		
Т																		
T																		
+	+		+															F
+	+		+															F
+	+		+									-						┢
+	+		+		-		-			-		-	-			-		⊢
+	+		+	-	-		-			-		-	-		-		-	┝
-	+	-	+	-	-		-	-	-	-		-	-		-		-	⊢
+	+	-	+		_		_		_	-		<u> </u>	_				-	⊢
+	+		+		_		_			_		<u> </u>	_					⊢
+			_															L
_																		L
T																		
T																		Γ
-																		

Numbertheoretic

P. Bhowmick


Line

- Time discretiza Straightness
- Periodicity
- Chain code properties
- Number-theor
- Approximate straightness

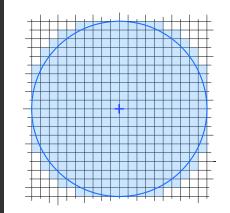
Circle

Construction Properties DCS DCR & DCH Segmentation

- Prope
- DOI
- Surfac

Numbertheoretic

P. Bhowmick

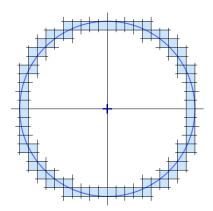

Line

- Time discretiza Straightness
- Periodicity
- Chain code properties
- Number-theor
- Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation

- Prope
- DCG
- Surfac



Numbertheoretic

Construction

Numbertheoretic

P. Bhowmick

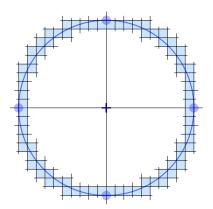
Line

Time discretiz Straightness

Periodicity

properties

Number-theor

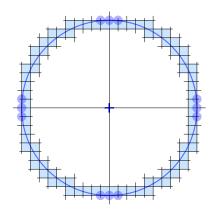

Approximate straightness

Circle

Construction Properties DCS DCR & DCH

Segmenta Properties DCT

DCG



Numbertheoretic

Construction

Numbertheoretic

P. Bhowmick

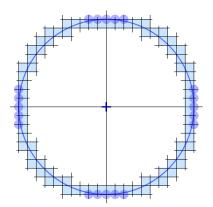
Line

Time discretiz Straightness

Chain cod

properties

Number-theo properties


Approximate straightness

Circle

Construction Properties DCS DCR & DCH

Segmentati Properties

DCG

Numbertheoretic

P. Bhowmick

Line

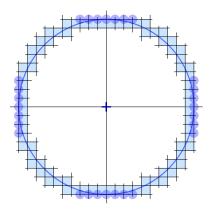
Time discreti: Straightness

Chain cod

properties

properties Approximate

straightness


Circle

Construction Properties DCS DCR & DCH Segmentation

Proper

001

0......

Numbertheoretic

P. Bhowmick

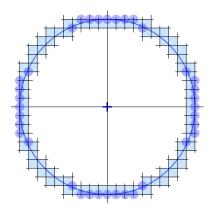
Line

Time discretiz Straightness

Chain cod

properties

properties Approximate


straightness

Circle

Construction Properties DCS DCR & DCH Segmentation

DCT

DCG

Numbertheoretic

P. Bhowmick

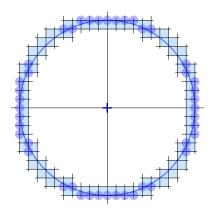
Line

Time discretiz Straightness

Chain cod

properties

properties Approximate


straightness

Circle

Construction Properties DCS DCR & DCH Segmentation

Prope

DCC

Numbertheoretic

P. Bhowmick

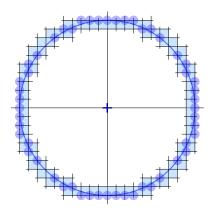
Line

Time discretiz Straightness

Chain cod

properties

properties


Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation

DCT

DCG

Numbertheoretic

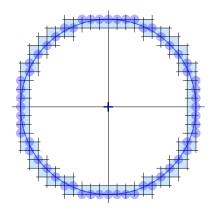
P. Bhowmick

Line

Time discretiz Straightness Periodicity

Chain cod

Number-theo

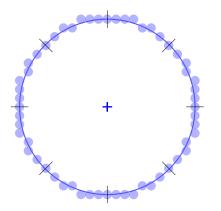

properties Approximate

Circle

Construction Properties DCS DCR & DCH

DCG

Numbertheoretic


P. Bhowmick

Line

Time discretizati Straightness Periodicity Chain code properties Number-theoreti properties Approximate straightness

CITCIE Construction

Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Number	
theoretic	С

P. Bhowmick

Line

Time discretiza Straightness

Chain code

properties

Number-theore properties

Approximate straightness

Circle

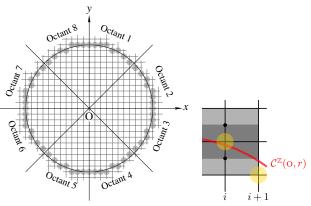
Construction

DCS DCR & DCH Segmentation Properties DCT DCG

Surface

Algorithm	Inventors	Year
Incremental	Bresenham	1977
Optimized midpoint	Foley <i>et al.</i>	1993
Short run	Hsu <i>et al.</i>	1993
Hybrid run slice	Yao & Rokne	1995
Number-theoretic ^a	Bhowmick & Bhattacharya	2008

^aP. Bhowmick and B. B. Bhattacharya, Number-theoretic interpretation and construction of a digital circle, *Discrete Applied Mathematics*, **156**:2381–2399, **2008**.


P. Bhowmick

Line

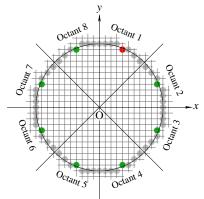
- Time discretizat
- Periodicity
- Chain code
- Number-theoretic
- Approximate straightness

Circle

- Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG
- DCG Surface

A real circle, $C^{\mathbb{R}}(o, 11)$, and the eight octants of the corresponding digital circle, $C^{\mathbb{Z}}(o, 11)$.

Property 1


P. Bhowmick

Line

- Time discretizati Straightness Periodicity
- Chain code properties
- Number-theoreti properties
- Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

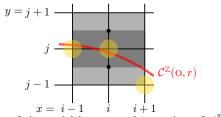
Each point p(i,j) ∈ C^ℤ(o, r) has seven other points of reflection in C^ℤ(o, r).
 (Properties of Octant 1 are applicable to other octants.)

Property 2

P. Bhowmick

Line

- Time discretizati Straightness Periodicity Chain code properties
- properties
- Approximate straightness


Circle

Construction Properties

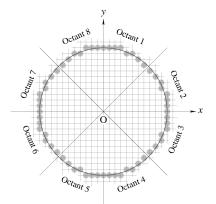
DCS DCR & DCH Segmentatio Properties

DCC

Surface

y-distance of the grid-intersection point of C^ℝ(o, r) from the digital point of C^ℤ(o, r) is less than 1/2.

Property 3


P. Bhowmick

Line

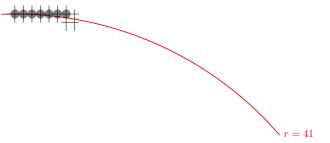
- Time discretizat Straightness Periodicity
- Chain code properties
- Number-theoreti properties
- Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

• $C^{\mathbb{Z}}(o, r)$ is a closed and irreducible digital curve.

Property 4


P. Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties Number-theoretic properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Property 4

P. Bhowmick

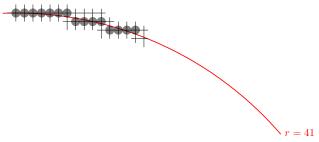
Line

Straightness Periodicity Chain code properties Number-theoretic properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface r = 41

Property 4


P. Bhowmick

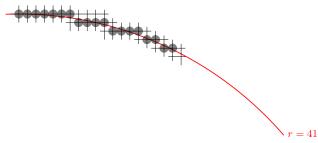
Line

Time discretizatio Straightness Periodicity Chain code properties Number-theoretic properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Property 4


P. Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties Number-theoretic properties Approximate

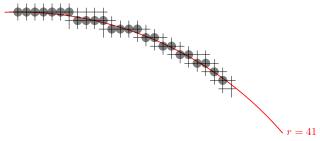
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Property 4

Numbertheoretic

P. Bhowmick


Line

Time discretization Straightness Periodicity Chain code properties Number-theoretic properties Approximate

straightness

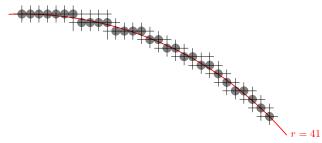
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Property 4

Numbertheoretic

P. Bhowmick


Line

Time discretization Straightness Periodicity Chain code properties Number-theoretic properties

straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Number-theoretic Properties I

Numbertheoretic

P. Bhowmick

Line

- Time discretizat Straightness
- Chain coc
- properties
- properties
- Approximate straightness

Circle

Constructio

Properties

DCS DCR & DCH Segmentation Properties DCT DCG • $r = 41 : (0, 41)0^6 70^3 70^3 70707070707^3 07^3$ • topmost run (ordinate = r = 41): s[0, r-1] = s[0, 40] = 7next run (y = r - 1 = 40): s[r, 3r - 3] = s[41, 120] = 4, next run (y = r - 2 = 39): s[3r-2, 5r-7] = s[121, 198] = 4,...

• square numeric code = $\langle 7, 4, 4, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1 \rangle$ = $\langle 7, 4^2, 2^4, 1^2, 2, 1^3 \rangle$.

Number-theoretic Properties II

Numbertheoretic

Lemma

P. Bhowmick

Line

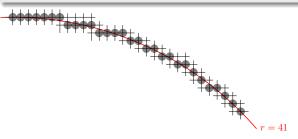
Time discretiza

Straigntness

Chain cod

properties Number-theorel

Approximate straightness


Circle

Construction

Properties

DCS DCR & DCH Segmentation Properties DCT DCG

The interval $I_k = [(2k-1)r - k(k-1), (2k+1)r - k(k+1) - 1]$ contains the squares of abscissae of the grid points of $C^{\mathbb{Z},l}(o,r)$ whose ordinates are r - k, for $k \ge 1$.

Number-theoretic Properties III

Numbertheoretic

P. Bhowmick

Line

Time discretiz

ou algitures

Chain and

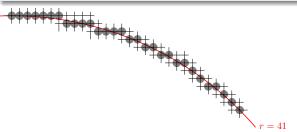
properties

Number-theoreti properties

Approximate straightness

Circle

Construction


Properties

DCS DCR & DCH Segmentation Properties DCT DCG

Surface

Lemma

The lengths of the intervals containing the squares of equi-ordinate abscissae of the grid points in $C^{\mathbb{Z},l}(o,r)$ decrease constantly by 2, starting from I_1 .

Number-theoretic Properties IV

Numbertheoretic

Theorem

P. Bhowmick

Line

Time discretizati Straightness Periodicity

Chain code

Number-theoretic

Approximate straightness

Circle

Construction

Properties

DCS DCR & DCH Segmentation Properties DCT DCG The squares of abscissae of grid points, lying on $C^{\mathbb{Z},l}(o, r)$ and having ordinate r - k, lie in the interval $[u_k, v_k := u_k + l_k - 1]$, where u_k and l_k are given as follows.

$$u_{k} = \begin{cases} u_{k-1} + l_{k-1} & \text{if } k \ge 1 \\ 0 & \text{if } k = 0 \end{cases}$$
$$l_{k} = \begin{cases} l_{k-1} - 2 & \text{if } k \ge 2 \\ 2r - 2 & \text{if } k = 1 \\ r & \text{if } k = 0 \end{cases}$$

Algorithm **DCS**

Numbertheoretic

P. Bhowmick

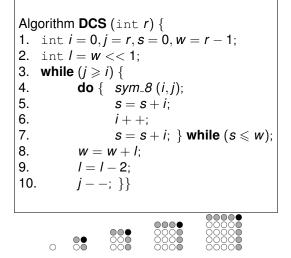
Line

Time discreti Straightness Periodicity

Chain cod

Number-theor

Approximate straightness


Circle

Constructio

Properties

DCR & DC Segmentat Properties

DCG

Number-theoretic properties I

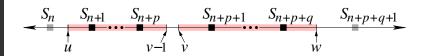
Numbertheoretic

P. Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties Number theoretic

Approximate straightness

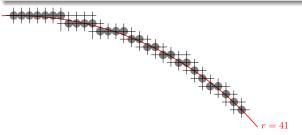

Circle

Construction Properties DCS DCR & DCH Segmentatio Properties

DCG

Lemma

The number of perfect squares in a closed interval [v, w] is at most one more than the number of perfect squares in the preceding closed interval [u, v - 1] of equal length, where the intervals are taken from the non-negative integer axis.


Number-theoretic properties II

Numbertheoretic

DCR & DCH

Theorem

The run length of grid points of $C^{\mathbb{Z},l}(o,r)$ with ordinate j-1never exceeds one more than the run length of its grid points with ordinate j.

Number-theoretic properties III

Numbertheoretic

Lemma

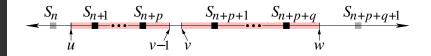
P. Bhowmick

Line

Time discretizati Straightness Pariodicity

Chain code

Number-theoreti properties


Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT

DCG

If [u, v - 1] be the interval $I_k, k \ge 1$, and [v, w] be the interval of same length as [u, v - 1], then the number of perfect squares in [v, w] is at least (floor of) half the number of perfect squares less one in [u, v - 1].

Number-theoretic properties IV

Numbertheoretic

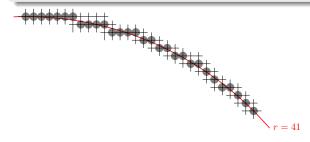
Theorem

P. Bhowmick

Line

- Time discretizati Straightness
- Periodicity
- properties
- Number-theoretic properties
- Approximate straightness

Circle


Construction Properties

DCS DCR & DCH

Segmentation Properties DCT DCG

If $\lambda(j)$ be the run length of grid points of $C^{\mathbb{Z},l}(o, r)$ with ordinate *j*, then the run length of grid points with ordinate *j* - 1 for *j* \leq *r* - 1 and *r* \geq 2, is given by

$$\lambda(j-1) \ge \left\lfloor \frac{\lambda(j)-1}{2} \right\rfloor - 1.$$

Constructive bounds

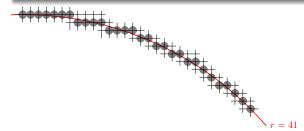
Numbertheoretic

P. Bhowmick

Line

- Time discretiza
- Periodicity
- Chain code properties
- Number-theoretic
- Approximate straightness

Circle


- Constructio Properties
- DCS

DCR & DCH

Segmentation Properties DCT DCG

Constructive bounds

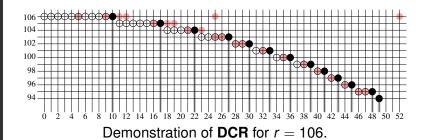
$$\left\lfloor rac{\lambda(j)-1}{2}
ight
floor -1 \leqslant \lambda(j-1) \leqslant \lambda(j)+1$$

Algorithm **DCR**

Numbertheoretic

P. Bhowmick

Line


- Time discretiz
- Straightnes
- Periodicity
- Chain code properties
- Number-theoret
- Approximate straightness

Circle

- Constructio
- Properties

DCR & DCH

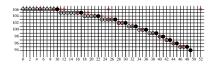
- Segmentation Properties DCT
- DCG
- Surface

Algorithm **DCR**: Square search

Numbertheoretic

P. Bhowmick

Line


Time discretization Straightness Periodicity Chain code properties Number-theoretic properties Approximate straightness

Circle

Properties DCS DCR & DCH Segmentation Properties

DCT

Algorithm DCR (int r) {			
1.	int $i = 0, j = r, w = r - 1, m;$		
2.	int $s = 0, t = r, l = w << 1;$		
3.	while $(j \ge i)$ {		
4.	while $(s < t)$ {		
5.	m = s + t;		
6.	m = m >> 1;		
7.	if $(w \leq square[m])$		
8.	t = m;		
9.	else		
10.	$s = m + 1; \}$		
11.	if $(w < square[s])$		
12.	s;		
13.	s + +;		
14.	include_run $(i, s - i, j)$;		
15.	t = s + s - i + 1;		
16.	i = s;		
17.	w = w + I;		
18.	I = I - 2;		
19.	$j; \}$		

Number-

Hybrid algorithm **DCH** I

theoretic
P. Bhowmicł
Circle
DCR & DCH

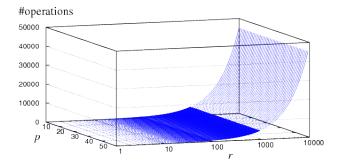
Algorithm DCH (int r, int p) { 1. int $i = 0, j = r, w = r - 1, m;$ 2. int $s = 0, t = r, l = w << 1;$ 3. while $(j \ge i)$ { 4. while $(s < t)$ {	22. $i = s - 1;$ 23. $s = square[s];$ 24. $w = w + l;$ 25. $l = l - 2;$ 26. $j;$
5. $m = s + t;$	27. while $(j \ge i)$ {
6. $m = m >> 1;$	28. do { <i>sym_8</i> (<i>i</i> , <i>j</i>);
7. if $(w \leq square[m])$	29. $s = s + i;$
8. $t = m;$	30. <i>i</i> + +;
9. else	31. $s = s + i;$ } while $(s \leq w);$
10. $s = m + 1; \}$	32. $w = w + l;$
11. if (<i>w</i> < <i>square</i> [<i>s</i>])	33. $l = l - 2;$
12. <i>s</i> – –;	34 . <i>j</i> − −; }}
13. <i>s</i> ++;	
14. include_run $(i, s - i, j)$;	
15. if (<i>s</i> − <i>i</i> < <i>p</i>)	
16. break ;	
17. $t = s + s - i + 1;$	
18. <i>i</i> = <i>s</i> ;	
19. $w = w + l;$	
20. $l = l - 2;$	
21. <i>j</i> – –; }	

Test Results...

P. Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties


properties Approximate straightness

Circle

Construction Properties

DCR & DCH

Segmentatio Properties DCT DCG Surface

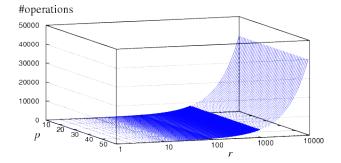
DCB

Test Results...

P. Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties Number-theoretic


Approximate straightness

Circle

Construction Properties

DCR & DCH

Segmentation Properties DCT DCG Surface

DCR

Test Results...

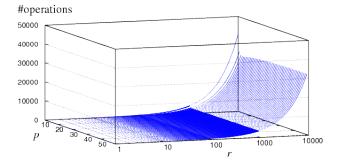
Numbertheoretic

P. Bhowmick

Line

Time discretization Straightness Periodicity Chain code properties

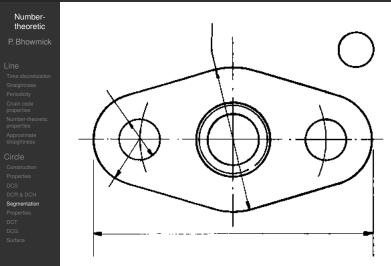
properties


straightness

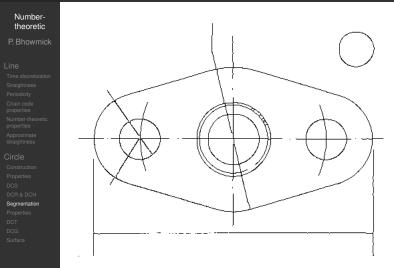
Circle

Construction Properties

DCR & DCH

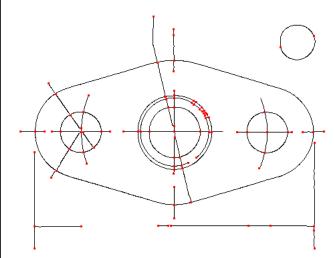

Segmentatio Properties DCT DCG Surface

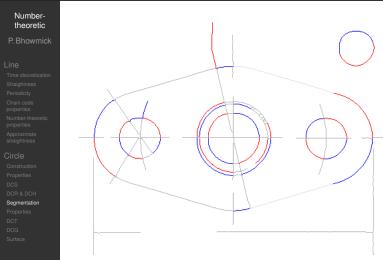
DCH



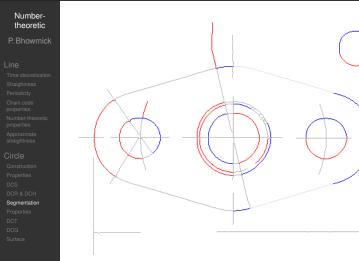
Arc Segmentation

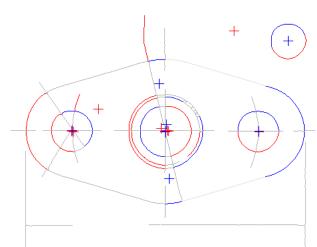
Arc Segmentation

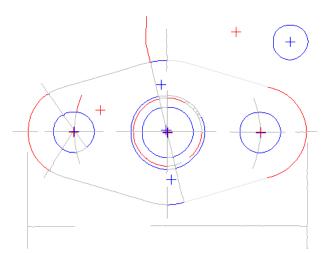


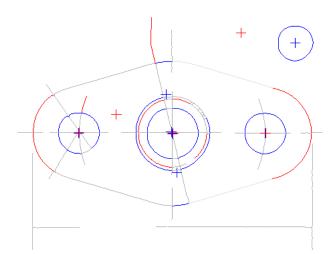

Number-

Arc Segmentation

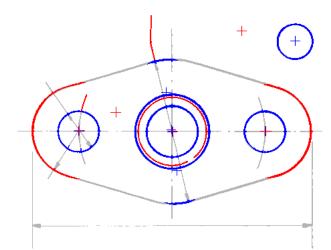








Arc Segmentation


Proper DCT DCG

Surface

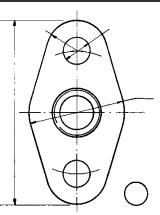
Numbertheoretic

P. Bhowmick

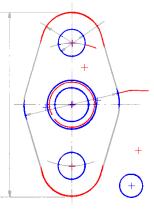
Line

Time discretizati Straightness

Periodicity


properties Number-theoi

Approximate straightness


Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

Surface

input

output

Arc Segmentation

Number- theoretic	Algorithm	Inventors	Year	
P. Bhowmick Line Time discretization Straightness Periodicity Chain gode	Hough transform	Davies 1984 ; Illingworth & Ki Yip, Tam & Leung 1992 ; Chung 2001 ; Kim & Kim 200 Liaw 2005	Leung 1992; Chen &	
properties Number-theoretic properties	Voronoi diagram	Coeurjolly <i>et al.</i>	2004	
Approximate straightness	Chord & Sagitta ^a	Bera <i>et al.</i>	2010	
Construction Properties DCS	Number-theoretic ^b	Pal & Bhowmick	2011	
DCR & DCH Segmentation				

^aS. Bera, P. Bhowmick, and B. B. Bhattacharya, Detection of Circular Arcs in a Digital Image Using Chord & Sagitta Properties, Proc. GREC 2009. LNCS 6020: 69-80.

^bS. Pal and P. Bhowmick, Determining Digital Circularity Using Integer Intervals, Journal of Mathematical Imaging & Vision (Springer), 2011 (accepted).

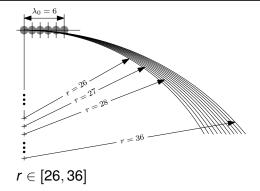
Conflicting Radii I

P. Bhowmick

Line

Time discretization Straightness Periodicity

Chain code properties


Number-theoret properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

DCG Surface

Lemma

 λ_0 is the length of top run of a digital circle $C^{\mathbb{Z}}(o, r)$ iff $r \in R_0 := [(\lambda_0 - 1)^2 + 1, \lambda_0^2].$

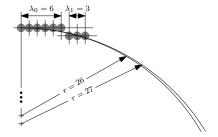
Conflicting Radii II

P. Bhowmick

Line

Time discretization Straightness

Chain cod


Number-theoret

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT

Conflicting Radii III

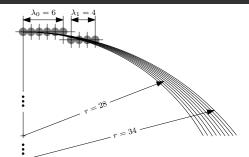
P. Bhowmick

Line

Time discretizati Straightness Periodicity

Chain code properties

Number-theore properties


Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties

DCT DCG

Surface

 $r \in [28, 34]$

Conflicting Radii IV

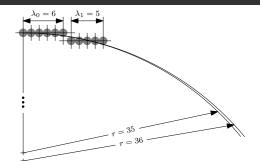
r ∈ [35, 36]

P. Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties

properties

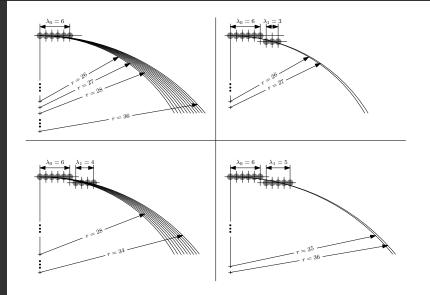

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT

DCT DCG

Surface



Radii Nesting I

Numbertheoretic

- Properties

Radii Nesting II

Numbertheoretic

P. Bhowmick

Line

Time discretiza Straightness

Chain cod

properties

properties Approximate

Circle

Construction Properties DCS DCR & DCH

Properties

DCT DCG

Lemma

 λ_0 and λ_1 are the lengths of top two runs of $C^{\mathbb{Z}}(o, r)$ iff $r \in R_0 \cap R_1$, where, $R_1 = \left[\left\lceil \frac{(\Lambda_1 - 1)^2 + 3}{3} \right\rceil, \left\lfloor \frac{\Lambda_1^2 + 2}{3} \right\rfloor \right]$, $\Lambda_1 = \lambda_0 + \lambda_1$. (If $R_0 \cap R_1 = \emptyset$, then there exists no digital circle ... λ_0 and λ_1 .)

Radii Nesting III

Numbertheoretic

P. Bhowmick

Line

Time discretizati Straightness Periodicity Chain code properties Number-theoreti

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT

DCG Surface

Theorem (Radii interval)

 $\langle \lambda_0, \dots, \lambda_n \rangle$ is the sequence of top n + 1 run-lengths of $C^{\mathbb{Z}}(o, r)$ iff

$$r \in \bigcap_{k=0}^{n} R_k$$

where,

$$R_{k} = \left[\left\lceil \frac{1}{2k+1} \left((\Lambda_{k}-1)^{2} + k(k+1) + 1 \right) \right\rceil, \left\lfloor \frac{1}{2k+1} \left(\Lambda_{k}^{2} + k(k+1) \right) \right\rfloor \right]$$

and

$$\Lambda_k = \sum_{j=0}^k \lambda_j.$$

(If $\bigcap_{k=0}^{n} R_k = \emptyset$, then there exists no digital circle whose top n + 1 runs have length $\langle \lambda_0, \lambda_1, \dots, \lambda_n \rangle$.)

Algorithm DCT

Numbertheoretic

1.	٨	\leftarrow	S	[0]
----	---	--------------	---	-----

4

5. 6.

7. 8.

- 2. $[r',r''] \leftarrow [(\Lambda-1)^2+1,\Lambda^2]$
- 3. for $k \leftarrow 1$ to n-1
 - $\Lambda \leftarrow \Lambda + S[k]$
 - $\boldsymbol{s}' \leftarrow \left\lceil ((\Lambda-1)^2 + k(k+1) + 1)/(2k+1) \right\rceil$
 - $s'' \leftarrow \left\lfloor (\Lambda^2 + k(k+1))/(2k+1)
 ight
 floor$

if
$$s'' < r'$$
 or $s' > r'$

- **print** "*S* is circular up to (k 1)th run for [r', r'']."
- 9. return
- 10. else
- 11. $[r', r''] \leftarrow [\max(r', s'), \min(r'', s'')]$
- 12. **print** "*S* is circular in entirety for [r', r'']."

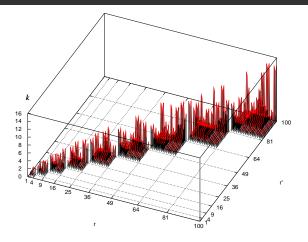
Conflicting Radii: Resolved how fast? I

.

Line

Time discretizati Straightness

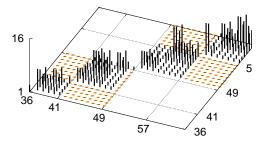
Chain cod


Number-theoreti properties

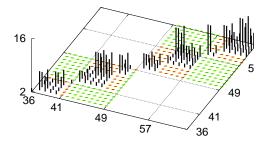
Approximate straightness

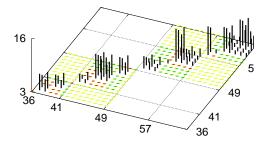
Circle

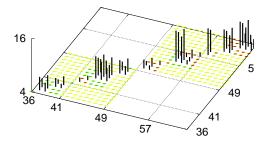
Construction Properties DCS DCR & DCH Segmentation Properties DCT


DCG Surface

Conflicting radii starting from k = 0


Conflicting Radii: Resolved how fast? II


Conflicting Radii: Resolved how fast? III



Conflicting Radii: Resolved how fast? IV

Conflicting Radii: Resolved how fast? V

General Case & DCG I

Numbertheoretic

P. Bhowmick

Line

- Time discretiz Straightness
- Chain code
- properties Number-theoret
- properties Approximate
- straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface If a digital circle of radius *r* contains a given run of length λ , then there exist two positive integers *a* and *k* such that $r \ge \lceil \max(f_{1,\lambda}(a,k), f_{2,\lambda}(a,k)) \rceil$, where

$$f_{1,\lambda}(a,k) = \frac{(a-1)^2 + k(k-1) + 1}{2k-1}$$

and

Lemma

$$f_{2,\lambda}(a,k) = \frac{(a+\lambda-1)^2 + k(k+1) + 1}{2k+1}$$

General Case & DCG II

Numbertheoretic

P. Bhowmick

Line

- Time discreti Straightness
- Periodicity
- Chain code
- Number-theoretic
- Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface If a digital circle of radius *r* contains a given run of length λ , then there exist two positive integers *a* and *k* such that $r \leq \lfloor \min(f_{3,\lambda}(a,k), f_{4,\lambda}(a,k)) \rfloor$, where

$$f_{3,\lambda}(a,k) = \frac{a^2 + k(k-1)}{2k-1}$$

and

Lemma

$$f_{4,\lambda}(a,k) = rac{(a+\lambda)^2 + k(k+1)}{2k+1}$$

General Case & DCG III

Numbertheoretic

P. Bhowmick

Line

- Time discretization Straightness
- Chain code
- properties Number-theoretic
- Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Theorem

An arbitrary run of given length λ belongs to only those digital circles whose radii are in the range

$$\mathcal{R}_{ak} = \begin{cases} r \mid r \geqslant \left[\max_{a,k \in \mathbb{Z}^+} \left(f_{1,\lambda}(a,k), f_{2,\lambda}(a,k) \right) \right] \end{cases} \\ \begin{cases} r \mid r \leqslant \left[\min_{a,k \in \mathbb{Z}^+} \left(f_{3,\lambda}(a,k), f_{4,\lambda}(a,k) \right) \right] \end{cases}. \end{cases}$$

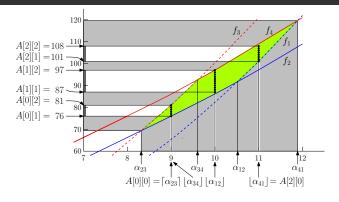
General Case & DCG IV

Numbertheoretic

P. Bhowmick

Line

Time discretiz Straightness Periodicity Chain code


properties Number-theore

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT

DCG

General Case & DCG V

Numbertheoretic

P. Bhowmick

Line

Time discretizat Straightness

Chain cod

properties Number-theore

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Points of intersection (in \mathbb{R}^2) among the parabolas $\{f_{i,\lambda} \mid i = 1, 2, 3, 4\}$ defining \mathcal{R}_{ak} .

$$(\underline{k}=2k-1,\overline{k}=2k+1,\underline{\hat{k}}=k(k-1),\overline{\hat{k}}=k(k+1),\underline{\lambda}=\lambda-1)$$

Par	abolas	Point	Abscissa of the point
$f_{1,\lambda}$	$f_{2,\lambda}$	α_{12}	$\frac{1}{2}\left(\underline{k}\lambda+\sqrt{(\underline{k}\lambda+2)^2+2(\underline{k}\lambda^2+2\underline{\hat{k}}-3)}+2\right)$
$f_{2,\lambda}$	$f_{3,\lambda}$	α_{23}	$\frac{1}{2}\left(\underline{k\underline{\lambda}}+\sqrt{(\underline{k\underline{\lambda}})^2+2(\underline{k\underline{\lambda}}^2+2\hat{\overline{k}}-1)}\right)$
$f_{3,\lambda}$	$f_{4,\lambda}$	α_{34}	$\frac{1}{2}\left(\underline{k}\lambda + \sqrt{(\underline{k}\lambda)^2 + 2(\underline{k}\lambda^2 + 2k^2)}\right)$
$f_{4,\lambda}$	$f_{1,\lambda}$	$lpha_{41}$	$\frac{1}{2}\left(\underline{k}\lambda+\overline{k}\pm\sqrt{(\underline{k}\lambda+\overline{k})^2+2(\underline{k}\lambda^2+2\underline{\hat{k}}-\overline{k}-1)}\right)$

General Case & DCG VI

Number-				3,4}.		
theoretic P. Bhowmick				Length		
Line	Parabola	Axis	Directrix	of	Vertex	Focus
Time discretization Straightness				Latus		
Periodicity Chain code				Rectum		
properties Number-theoretic properties	$f_{1,\lambda}$	<i>x</i> = 1	$\underline{k} y = 3/4$	<u>k</u>	$\left(1,(\hat{k}+1)/\underline{k}\right)$	$(1, (8\hat{\overline{k}}+5)/(4\underline{k}))$
Approximate straightness	$f_{2,\lambda}$	$x = -\underline{\lambda}$	$\overline{k} y = 3/4$	k	$\left(-\underline{\lambda},(\hat{\overline{k}}+1)/\overline{\overline{k}}\right)$	$(-\underline{\lambda}, (8\underline{\hat{k}}+5)/(4\overline{k}))$
Circle Construction	$f_{3,\lambda}$	<i>x</i> = 0	$\underline{k} y = -1/4$	<u>k</u>	$\left(0,(\hat{\underline{k}})/\underline{k}\right)$	$\left(0, (8\hat{\overline{k}}+1)/(4\underline{k})\right)$
Properties DCS	$f_{4,\lambda}$	$x = -\lambda$	$\overline{k} y = -1/4$	k	$\left(-\lambda, \hat{\overline{k}}/\overline{k}\right)$	$(-\lambda, (8\hat{k}+1)/(4\bar{k}))$
DCR & DCH Segmentation		I	1	1	· · · · · · · · · · · · · · · · · · ·	
Properties DCT						

DCG

General Case & DCG VII

Numbertheoretic

P. Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties Number-theoretic properties Approximate

Circle

Properties DCS DCR & DCH Segmentatio Properties DCT

DCG

Specifications of the parabolas $\{f_{i,\lambda} \mid i = 1, 2, 3, 4\}$. POINTS OF INTERSECTION (IN \mathbb{R}^2) AMONG THE PARABOLAS $\{f_{i,\lambda} : i = 1, 2, 3, 4\}$ DEFINING \mathcal{R}_{ak} .

To obtain the value of $\{\alpha_{ij} \mid j = (i \mod 4) + 1, i = 1, 2, 3, 4\}$, we have solved the following quadratic equations in *a*. Out of the two values of *a* obtained, say $a = C \pm \sqrt{D}$, we define α as $C + \sqrt{D}$.

$$\begin{split} & \frac{(a+\lambda-1)^2+k(k+1)+1}{2k+1} = \frac{a^2+k(k-1)}{2k-1} \\ & \text{or,} & (2k-1)(a^2+2(\lambda-1)a+(\lambda-1)^2+k(k+1)+1) = (2k+1)(a^2+k(k-1))) \\ & \text{or,} & 2a^2-2(2k-1)(\lambda-1)a-(2k-1)(\lambda-1)^2-2k^2-2k+1=0 \\ & \text{or,} & a = \frac{1}{2} \left((2k-1)(\lambda-1)\pm \sqrt{(2k-1)^2(\lambda-1)^2+2((2k-1)(\lambda-1)^2+2k^2+2k-1)} \right) \\ & \text{or,} \\ & \alpha_{23} = \frac{1}{2} \left((2k-1)(\lambda-1) + \sqrt{(2k-1)^2(\lambda-1)^2+2((2k-1)(\lambda-1)^2+2k^2+2k-1)} \right) \\ & \alpha_{23} = \frac{1}{2} \left((2k-1)(\lambda-1) + \sqrt{(2k-1)^2(\lambda-1)^2+2((2k-1)(\lambda-1)^2+2k^2+2k-1)} \right) \\ & \alpha_{23} = \frac{1}{2} \left((2k-1)(\lambda-1) + \sqrt{(2k-1)^2(\lambda-1)^2+2((2k-1)(\lambda-1)^2+2k^2+2k-1)} \right) \\ & \alpha_{23} = \frac{1}{2} \left((2k-1)(\lambda+2) + (k(k-1)+1) \\ & \alpha_{23} = \frac{1}{2} \left((2k-1)(\lambda+2) - (2k-1)((\lambda-1)^2-2k^2+2k+3=0) \\ & \text{or,} & \alpha_{23} = \frac{1}{2} \left((2k-1)(\lambda+2\pm\sqrt{((2k-1)(\lambda+2)^2+2((2k-1)(\lambda-1)^2+2k^2-2k-3)} \right) \\ \\ & \text{or,} & \alpha_{12} = \frac{1}{2} \left((2k-1)(\lambda+2+\sqrt{((2k-1)(\lambda+2)^2+2((2k-1)(\lambda-1)^2+2k^2-2k-3)} \right) \\ \end{split} \right). \end{split}$$

General Case & DCG VIII

Numbertheoretic

P. Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties Number-theoretic properties Approximate straightness

Circle

Properties DCS DCR & D0 Segmenta

пот

DCG

$$\begin{split} &\alpha_{41} \colon \frac{(a+\lambda)^2 + k(k+1)}{2k+1} = \frac{(a-1)^2 + k(k-1) + 1}{2k-1} \\ &\text{or, } (2k-1)((a+\lambda)^2 + k(k+1)) = (2k+1)((a-1)^2 + k(k-1) + 1) \\ &\text{or, } 2a^2 - 2(2k(1+\lambda) - \lambda + 1)a - (2k-1)\lambda^2 - 2k^2 + 4k + 2 = 0 \\ &\text{or,} \\ &a = \frac{1}{2} \left((2k-1)\lambda + 2k + 1 \pm \sqrt{((2k-1)\lambda + 2k+1)^2 + 2((2k-1)\lambda^2 + 2k^2 - 4k - 2)} \right) \\ &\text{or, } \alpha_{41} = \\ &\frac{1}{2} \left((2k-1)\lambda + 2k + 1 + \sqrt{((2k-1)\lambda + 2k+1)^2 + 2((2k-1)\lambda^2 + 2k^2 - 4k - 2)} \right) \\ &\alpha_{34} \colon \frac{a^2 + k(k-1)}{2k-1} = \frac{(a+\lambda)^2 + k(k+1)}{2k+1} \\ &\text{or, } (2k+1)(a^2 + k(k-1)) = (2k-1)((a+\lambda)^2 + k(k+1)) \\ &\text{or, } 2a^2 - 2(2k-1)\lambda - (2k-1)\lambda^2 - 2k^2 = 0 \\ &\text{or, } a = \frac{1}{2} \left((2k-1)\lambda \pm \sqrt{(2k-1)^2\lambda^2 + 2((2k-1)\lambda^2 + 2k^2)} \right) \\ &\text{or, } \alpha_{34} = \frac{1}{2} \left((2k-1)\lambda + \sqrt{(2k-1)^2\lambda^2 + 2((2k-1)\lambda^2 + 2k^2)} \right). \end{split}$$

Algorithm DCG

	Number-
	theoretic
P.	Bhowmick

DCG

1. $n_{\max} \leftarrow 0$

3.

5.

6. 7.

8. 9. 10. 11.

12.

14.

- 2. for $k' \leftarrow k_{\min}$ to k_{\max}
 - $\Lambda \leftarrow S[0], i \leftarrow 0$
- 4. FIND-PARAMS (A, Λ, k')
 - while i < m and $n_{max} < n > for all a's of first run$

$$[s', s''] \leftarrow [r', r''] \leftarrow [A[i][1], A[i][2]]$$

$$\Lambda \leftarrow A[i][0] + S[0], j \leftarrow 1$$

while j < n and $s'' \ge r'$ and $s' \le r'' > verifying other <math>n - 1$ runs

$$\begin{array}{l} \Lambda \leftarrow \Lambda + S[j], k \leftarrow k' + j \\ s' \leftarrow \left\lceil \frac{(\Lambda - 1)^2 + k(k+1) + 1}{2k+1} \right\rceil, s'' \leftarrow \left\lfloor \frac{\Lambda^2 + k(k+1)}{2k+1} \right\rfloor \\ \text{if } c'' > r' \text{ and } c' < r'' \end{array}$$

if
$$s'' \ge r'$$
 and $s' \le r'$

$$[r',r''] \leftarrow [\max(r',s'),\min(r'',s'')]$$

13. **if** *n*_{max} < *j*

$$n_{\max} \leftarrow j, \, k_{\mathrm{off}} \leftarrow k', \, [r_{\min}, r_{\max}] \leftarrow [r', r'']$$

15. **print** "*S* is circular for n_{max} runs; starting run = k_{off} ; $r \in [r_{\min}, r_{\max}]$."

Algorithm DCG

Procedure FIND-PARAMS

Numbertheoretic

P. Bhowmick

1. Compute $\{\alpha_{uv} \mid 1 \leq u \leq 4 \land v = (u+1) \mod 4\} \triangleright$ (from Tables) 2. $i \leftarrow 0$

Line

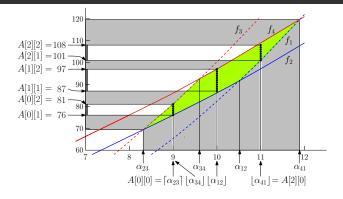
Time discretizati Straightness Periodicity Chain code properties Number-theoreti properties Approximate straightness Circle Construction

DCG

3. for $a \leftarrow \lceil \alpha_{23} \rceil$ to $\lvert \alpha_{41} \rvert$ 4. $A[i][0] \leftarrow a \triangleright \text{ computing } r'$ 5. if $a < \alpha_{12}$ 6. $A[i][1] \leftarrow [f_{2,\lambda}(a,k)]$ 7. else 8. $A[i][1] \leftarrow [f_{1,\lambda}(a,k)] \triangleright \text{ computing } r''$ 9. if $a < \alpha_{24}$ 10. $A[i][2] \leftarrow |f_{3,\lambda}(a,k)|$ 11. else 12. $A[i][2] \leftarrow |f_{4,\lambda}(a,k)|$ $i \leftarrow i + 1$ 13. 14. $m \leftarrow i$

Algorithm DCG III

Numbertheoretic

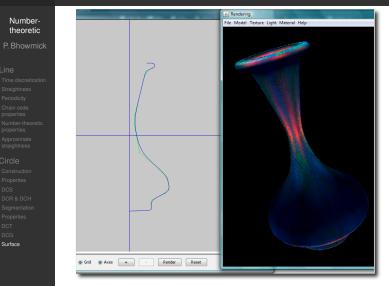

P. Bhowmick

Line

Time discretizati Straightness Periodicity Chain code properties Number-theoreti properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG



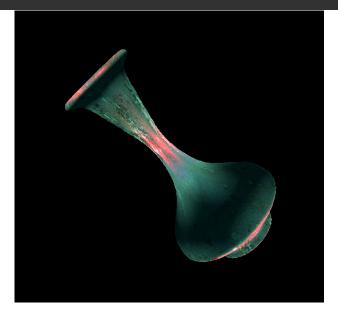
FIND-PARAMS on a run-length 7:

Solution space \mathcal{R}_{ak} of the radius intervals $\{[r'_j, r''_j] \mid j = 0, 1, 2\}$ corresponding to m = 3 square numbers lying in $\left[\lceil \alpha_{23} \rceil^2, \lfloor \alpha_{41} \rfloor^2 \right] = [9^2, 11^2].$

Snapshots of Our Algorithm

Snapshots of Our Algorithm

P. Bhowmick


Line

Time discretization Straightness Periodicity Chain code properties Number-theoretic properties Approximate

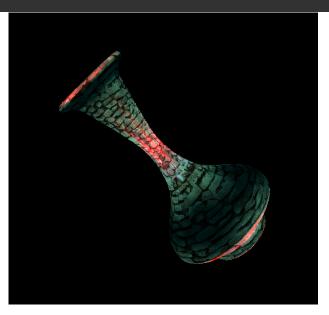
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

Surface

Number-

Snapshots of Our Algorithm



Line

Time discretizatio Straightness Periodicity Chain code properties Number-theoretic properties Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Snapshots of Our Algorithm

P. Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Numbe

Surface

Snapshots of Our Algorithm

r- C	Algorithm	Inventors	Year
ick	Polyhedra Represntn.	Galyean & Hughe	s 1991
ation	Finite Element	Han <i>et al.</i>	2007
	Cylindrical Element	Han <i>et al.</i>	2007
ic	Circular Sector	Lee <i>et al.</i>	2008
	Number-theoretic ^a	Kumar <i>et al.</i>	2010

^aG. Kumar, N.K. Sharma, and P. Bhowmick, Wheel-throwing in Digital Space Using Number-theoretic Approach, *International Journal of Arts and Technology*, 2010 (in press).

A preliminary version appeared in: *Proc. of International Conference on Arts and Technology: ArtsIT 2009*, **LNICST:** 30, Springer, pp. 181–189, 2010.

P. Bhowmick

Line

Time discretizati Straightness Periodicity Chain code properties Number-theoreti

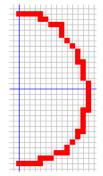
Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Disconnected generatrix

P. Bhowmick


Line

Time discretization Straightness Periodicity Chain code properties Number-theoretice properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Reducible generatrix

P. Bhowmick

Line

Time discretization Straightness Periodicity Chain code properties Number-theoretic properties

Approximate straightness

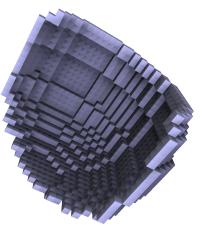
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Perfect generatrix: Connected & irreducible

Numbertheoretic

P. Bhowmick


Line

Time discretizatio Straightness Periodicity

Chain code properties

properties

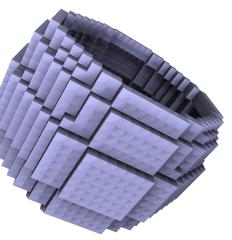
Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

open and irreducible digital surface

Numbertheoretic

P. Bhowmick

Line


Time discretization Straightness Periodicity Chain.code

properties Number-theoreti properties

Approximate straightness

Circle

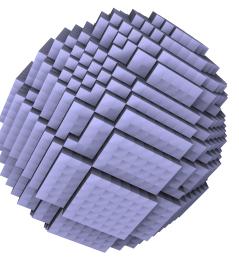
Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

open and irreducible digital surface

Numbertheoretic

P. Bhowmick

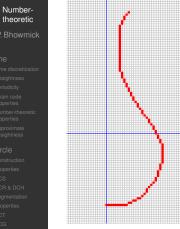
Line


Time discretizatio Straightness Periodicity

Chain code properties Number-theor

Approximate straightness

Circle


Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

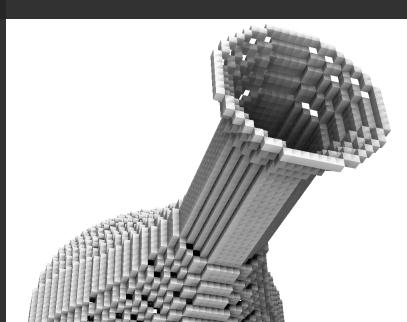
closed and irreducible digital surface

Surface of Revolution in \mathbb{Z}^3

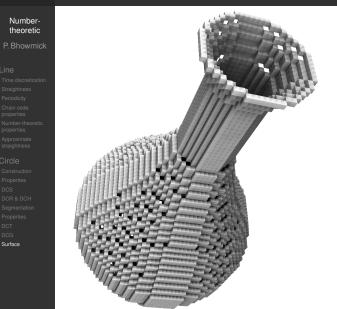
Digital generatrix

P. Bhowmick

Line


Time discretizatio Straightness Periodicity Chain code properties

Number-theoreti properties


Approximate straightness

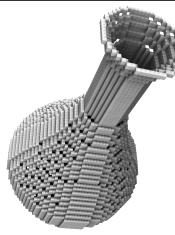
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

P. Bhowmick

Line

Time discretization


Chain cod

. . Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

A disconnected surface of revolution created due to missing voxels

P. Bhowmick

Line

Time discretization Straightness Periodicity Chain code properties Number-theoretic properties Approvimate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Numbertheoretic

P. Bhowmick

Line

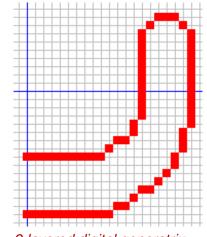
- Time discretization Straightness
- Chain code
- Number-theoret
- Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Connected and irreducible surface of revolution

Numbertheoretic


P. Bhowmick

Line

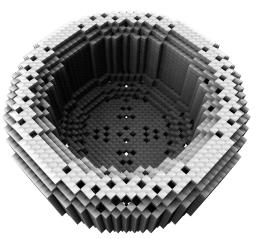
- Time discretiza Straightness Periodicity
- Chain code
- Number-theore
- Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

2-layered digital generatrix

Numbertheoretic


P. Bhowmick

Line

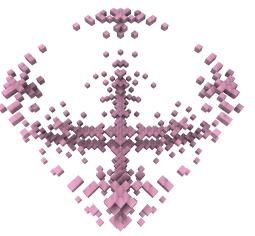
Straightness Periodicity Chain code properties Number-theoretic properties

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

A disconnected surface of revolution created due to missing voxels

Numbertheoretic


P. Bhowmick

Line

Time discretizatic Straightness Periodicity Chain code properties Number-theoretic properties Approximate straightness

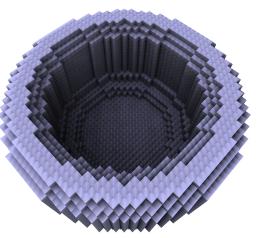
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Missing voxels

Numbertheoretic

P. Bhowmick


Line

Time discretizatior Straightness Periodicity Chain code properties Number-theoretic

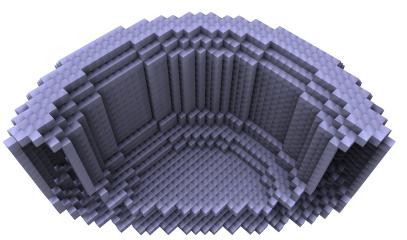
Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Connected and irreducible 2-layered surface of revolution

Numbertheoretic


P. Bhowmick

Line

- Time discretizatio Straightness Periodicity Chain code properties
- Number-theoretic properties
- Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

A fragmented piece

Numbertheoretic

P. Bhowmick

Line

Time discretization Straightness Periodicity Chain code properties Number-theoretic properties Approximate

Circle

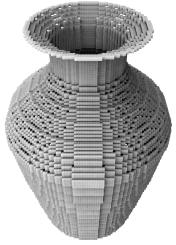
Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

A sample set of finished potteries produced by our algorithm

Missing Voxels: Parabolic Characterization I

Numbertheoretic

P. Bhowmick


Line

Time discretization Straightness Periodicity Chain code properties Number-theoretic properties

Approximate straightness

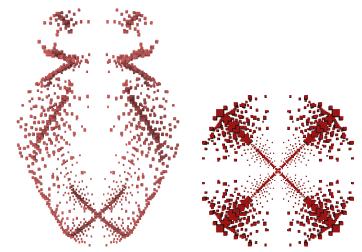
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Surface with absentee voxels

Missing Voxels: Parabolic Characterization II

Numbertheoretic


P. Bhowmick

Line

Time discretization Straightness Periodicity Chain code properties Number-theoretic properties Approximate straightness

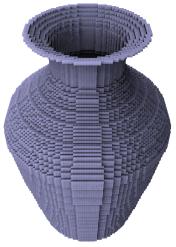
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Absentee voxels (Left: front view, Right: top view)

Missing Voxels: Parabolic Characterization III

Numbertheoretic


P. Bhowmick

Line

Time discretization Straightness Periodicity Chain code properties Number-theoretic properties Approximate

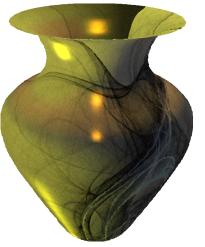
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

The perfect & irreducible digital surface of revolution

Missing Voxels: Parabolic Characterization IV

Numbertheoretic


P. Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties Number-theoretic properties Approximate

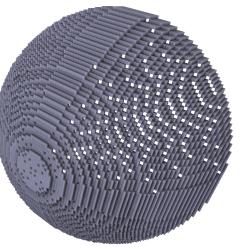
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

After a realistic finish.

Missing Voxels: Parabolic Characterization V

Numbertheoretic


P. Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties Number-theoretic properties Aporoximate

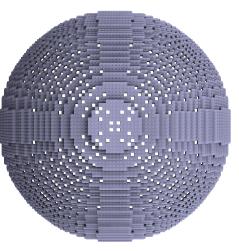
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Digital hemisphere (r = 50): Oblique view

Missing Voxels: Parabolic Characterization VI

Numbertheoretic


P. Bhowmick

Line

Time discretization Straightness Periodicity Chain code properties Number-theoretic properties Approximate straightness

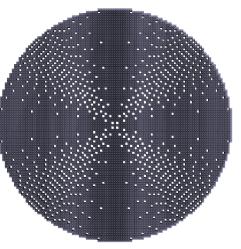
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Top view

Missing Voxels: Parabolic Characterization VII

Numbertheoretic


P. Bhowmick

Line

Time discretization Straightness Periodicity Chain code properties Number-theoretic properties Approximate straightness

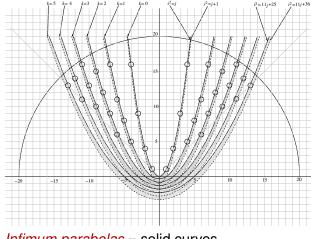
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Projection

Missing Voxels: Parabolic Characterization VIII

Numbertheoretic


P. Bhowmick

Line

Time discretization Straightness Periodicity Chain code properties Number-theoretice properties Approximate straightness

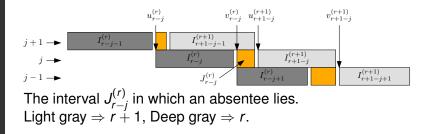
Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Infimum parabolas = solid curves *supremum parabolas* = dashed curves.

Missing Voxels: Parabolic Characterization IX

P. Bhowmick

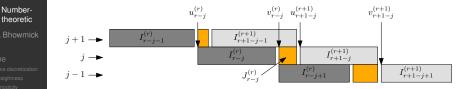

Line

Time discretiza Straightness Periodicity Chain code properties

properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

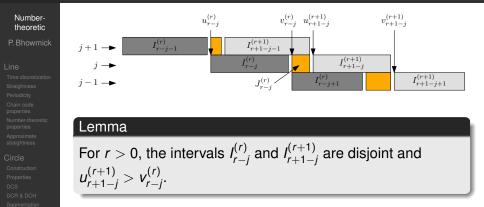

Lemma

The squares of abscissae of the pixels in $C_1^{\mathbb{Z}}(o, r)$ whose ordinates are *j* lie in the interval $I_{r-j}^{(r)} = \left[u_{r-j}^{(r)}, v_{r-j}^{(r)}\right]$, where

$$u_{r-j}^{(r)} = r^2 - j^2 - j,$$

 $v_{r-j}^{(r)} = r^2 - j^2 + j.$

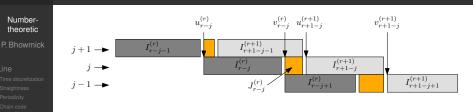
Missing Voxels: Parabolic Characterization X



The difference between the lower limit of $I_{r-j}^{(r)}$ and the upper limit of $I_{r+1-j}^{(r+1)}$ is given by

$$u_{r+1-j}^{(r+1)} - v_{r-j}^{(r)} = ((r+1)^2 - j^2 - j) - (r^2 - j^2 + j) = 2(r-j) + 1.$$

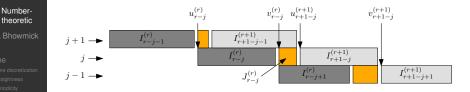
Missing Voxels: Parabolic Characterization XI



Lemma

A pixel p(i, j) is an absentee if and only if i^2 lies in $J_{r-j}^{(r)} := \left[v_{r-j}^{(r)}, u_{r+1-j}^{(r+1)}\right)$ for some $r \in \mathbb{Z}^+$.

Missing Voxels: Parabolic Characterization XII



Lemma

If p(i,j) is an absentee in Octant 1, then $(i - 1, j) \in C^{\mathbb{Z}}(o, r)$ and $(i + 1, j) \in C^{\mathbb{Z}}(o, r + 1)$ for some $r \in \mathbb{Z}^+$.

Missing Voxels: Parabolic Characterization XIII

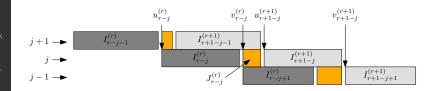
Although the previous lemma provides a way to decide whether or not a given pixel is an absentee, it requires to find for which value(s) of *r* the existence of square numbers in $J_{r-i}^{(r)}$ has to be checked. So the following theorem:

Theorem

(i, j) is an absentee if and only if $i^2 \in J_{r-j}^{(r)}$, where $r = \max \{s \in \mathbb{Z} : s^2 < i^2 + j^2\}.$

Missing Voxels: Parabolic Family I

Numbertheoretic


P. Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties Number-theoretic properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

$$v_{r-j}^{(r)} = (2k+1)j + k^2, u_{r+1-j}^{(r+1)} = (2k+1)j + (k+1)^2.$$

If p(i,j) lies on *k*th run of $C_1^{\mathbb{Z}}(o,r)$, then

$$i^2 < (2k+1)j + k^2;$$

if p(i,j) lies left of (k + 1)th run of $C_1^{\mathbb{Z}}(o, r + 1)$, then $i^2 < (2k + 1)j + (k + 1)^2$.

Missing Voxels: Parabolic Family II

Numbertheoretic

Line

Time discretization Straightness Periodicity Chain code properties Number-theoretic properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

Surface

The corresponding open parabolic regions:

$$\frac{P_k}{P_k}: x^2 < (2k+1)y + k^2,$$

$$\overline{P}_k: x^2 < (2k+1)y + (k+1)^2.$$

Evidently, the pixels or integer points lying in the region given by $\overline{P}_k \setminus \underline{P}_k$ in Octant 1 for a given pair of *j* and *k* — and hence for a given (r, j)-pair — are absentees in Octant 1.

Lemma

Number of square numbers in $J_{r-j}^{(r)} = \left| \left\{ (i,j) : (i,j) \in \left(\overline{P}_k \smallsetminus \underline{P}_k \right) \cap \mathbb{Z}_1^2 \right\} \right|.$

Missing Voxels: Parabolic Family III

Numbertheoretic Bhowmick

Line

Time discretizatio Straightness Periodicity Chain code properties Number-theoretic properties Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface From above lemma, we can derive the region of all absentees for a given value of *k* by considering all possible values of *j* for $r \ge 0$ so that r - j = k. Thus, all the integer points of Octant 1 which are contained in the following *half-open parabolic strip* are absentee points.

$$P_k := \overline{P}_k \setminus \underline{P}_k = (2k+1)y + k^2 \leqslant x^2 < (2k+1)y + (k+1)^2.$$

Lemma

All pixels in $F_k := P_k \cap \mathbb{Z}_1^2$ are absentees.

Missing Voxels: Parabolic Family IV

Numbertheoretic

Line

Time discretiza

oualgnuless

Chain code

properties

properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

Surface

The family of all the half-open parabolic strips, P_0, P_1, P_2, \ldots , thus contains all the absentees in Octant 1.

Theorem

Only and all the absentees of Octant 1 and Octant 8 lie in

$$\mathcal{F} := \left\{ \boldsymbol{P}_k \cap \mathbb{Z}_1^2 : k = 0, 1, 2, \ldots \right\}.$$

Absentees: Count I

Numbertheoretic

P. Bhowmick

Line

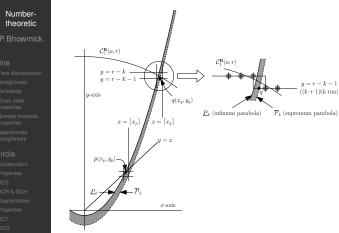
Time discretization Straightness Periodicity

Chain code properties

Number-theoretic properties

Approximate straightness

Circle


Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Lemma

For a given k, $P_k \cap \mathbb{Z}_1^2$ contains exactly one absentee on each vertical grid line.

Absentees: Count II

Surface

Absentees: Count III

Numbertheoretic

P. Bhowmick

Line

Time discretizatio Straightness

Periodicity

properties

Approximate

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

Surface

Lemma

The count of absentees contained by the parabolic strip P_k in $\mathcal{D}_1^{\mathbb{Z}}(o, r)$ is given by

$$n_{kr} = \left\lceil \sqrt{(2k+1)r - k(k+1)} \right\rceil - \left\lceil \left((2k+1) + \sqrt{8k^2 + 4k + 1} \right)/2 \right\rceil.$$

Lemma

For a given *r*, the number of half-open parabolic strips intersecting $C_1^{\mathbb{Z}}(o, r)$ is given by $m_r = r - \left\lceil r/\sqrt{2} \right\rceil + 1$.

Absentees: Count IV

Numbertheoretic

P. Bhowmick

Line

Time discretizatic Straightness Periodicity Chain code properties Number-theoretic properties

Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG

Surface

Theorem

Total count of absentees lying inside $\mathcal{C}^{\mathbb{Z}}(o,r)$ is given by

$$N_r=8\sum_{k=0}^{m_r-1}n_{kr},$$

where
$$n_{kr} = \left[\sqrt{(2k+1)r - k(k+1)}\right] - \left[2k + 1 + \frac{1}{2}\sqrt{(8k^2 + 4k + 1)}\right]$$

and $m_r = r - \left[r/\sqrt{2}\right] + 1$.

Further reading I

Numbertheoretic

P. Bhowmick

Line

Time discretizati

Periodicity

Chain code

Number-theore

Approximate straightness

Circle

Constructio Properties DCS DCR & DCI

Segmentat Properties

DCT

DCG

Surface

P. Bhowmick and B. B. Bhattacharya. Number-theoretic interpretation and construction of a digital circle. *Discrete Applied Mathematics*, 156(12):2381–2399, 2008.

P. Bhowmick and B. B. Bhattacharya. Fast polygonal approximation of digital curves using relaxed straightness properties.

IEEE Trans. PAMI, 29(9):1590-1602, 2007.

R. Brons.

Linguistic methods for description of a straight line on a grid. Comput. Graphics Image Process. **2** (1974) 48–62.

H. Freeman

Boundary encoding and processing.

in: B.S. Lipkin, A. Rosenfeld (Eds.), Picture Processing and Psychopictorics, Academic Press, NY (1970) 241–263.

Further reading II

Numbertheoretic

P. Bhowmick

Line

Straightness Periodicity Chain code properties

properties Approximate straightness

Circle

Construction Properties DCS DCR & DC Segmentat

- Propertie
- DCI

Surface

R. Klette and A. Rosenfeld.

Digital Geometry: Geometric Methods for Digital Image Analysis. Morgan Kaufmann Series in Computer Graphics and Geometric Modeling, 2004.

R. Klette and A. Rosenfeld. Digital straightness: A review.

Discrete Applied Mathematics, 139(1-3):197-230, 2004.

J.-P. Reveillès.

Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d'état, Univ. Louis Pasteur, Strasbourg, 1991.

A. Rosenfeld.

Digital straight line segments. IEEE Trans. Computers **23** (1974) 1264–1269.

Numbertheoretic

P. Bhowmick

Line

- Time discretization Straightness
- Chain code
- Number-theoretic
- Approximate straightness

Circle

Construction Properties DCS DCR & DCH Segmentation Properties DCT DCG Surface

Thank You

