Numbertheoretic
P. Bhowmick

Geometry, Vision, and Graphics:

A Number-theoretic Introduction

Partha Bhowmick

CSE, IIT Kharagpur

Research Promotion Workshop Introduction to Graph and Geometric Algorithms

26-28 March 2011 (NIT Patna, India)

Leap years

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties
DGS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Is 1900 a leap year?

An exception: $1900 \bmod 100=0$

Yes!

An oxception to exception: $2000 \bmod 400=0$ Non-non-leap years: 2000, 2400, 2800,

Leap years

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties
DGS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Is 1900 a leap year?

No!
An exception: $1900 \bmod 100=0$
Observation
Years anding with "00" are not leap years.

Yes!
An exception to exception: $2000 \bmod 400=0$ Non-non-leap years: 2000,2400, 2800 ,

Leap years

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Is 1900 a leap year?

No!
An exception: $1900 \bmod 100=0$
Observation
Years ending with "00" are not leap years.

is 2000 a leap year?
 Yes!
 An exception to exception: $2000 \bmod 400=0$

Non-non-leap years: 2000, 2400, 2800,

Leap years

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation

Is 1900 a leap year?

No!
An exception: $1900 \bmod 100=0$

Observation

Years ending with " 00 " are not leap years.

```
Is 2000 a leap year?
Yes!
An exception to exception: 2000 mod 400=0
Non-non-leap years: 2000, 2400,2800,
```


Leap years

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straghtness,

Circle
Construction
Properties DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Is 1900 a leap year?

No!
An exception: $1900 \bmod 100=0$

Observation

Years ending with " 00 " are not leap years.

Is 2000 a leap year?

Leap years

Numbertheoretic

Line
Time discretization Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate srraightiess.

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation

Is 1900 a leap year?

No!
An exception: $1900 \bmod 100=0$

Observation

Years ending with " 00 " are not leap years.

Is 2000 a leap year?

Yes!

An exception to exception: $2000 \bmod 400=0$ Non-non-leap years: 2000, 2400, 2800, ...

Leap years

Numbertheoretic

Line
Time discretization Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate srraightiess.

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation

Is 1900 a leap year?

No!
An exception: $1900 \bmod 100=0$

Observation

Years ending with " 00 " are not leap years.

Is 2000 a leap year?

Yes!

An exception to exception: $2000 \bmod 400=0$ Non-non-leap years: 2000, 2400, 2800, ...

Discretization of Gregorian calendar I

Numbertheoretic

Algorithm to determine leap years

(includes leap years before the official inception in 1582)

$$
\begin{aligned}
& \text { if (year \% } 400==0) \\
& \text { then leap } \\
& \text { else if (year \% } 100==0 \text {) } \\
& \text { then no leap } \\
& \text { else if (year \% } 4==0 \text {) } \\
& \text { then leap } \\
& \text { else no leap }
\end{aligned}
$$

Discretization of Gregorian calendar II

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties
DGS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Calendar shift with seasons
(How many days behind is calendar from seasons?)

Leap years

Numbertheoretic P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

What about

> "an exception to exception to exception to ..."?

Leap years

Numbertheoretic

What about

> "an exception to exception to exception to ..."?

or

Circle

Leap years

Numbertheoretic

What about

"an exception to exception to exception to ..."?
or
...-non-non-non-leap years?

Where and how lies the exception

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Example

slope $=5 / 45: 8888 \Rightarrow$ no exception!

Where and how lies the exception

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Example

slope $=5 / 46: 8898 \Rightarrow 9$ makes the exception.

Determining the Digital Straightness

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Numberalieoretic
properties
Approximate straightness

Problem statement

Given a sequence S of digital points, how (and what) to check that there exists a real/Euclidean line whose discretization produces S ?

Example

Determining the Digital Straightness

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number theoretic properties
Approximate straightness

Problem statement

Given a sequence S of digital points, how (and what) to check that there exists a real/Euclidean line whose discretization produces S ?

Example

Determining the Digital Straightness

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Problem statement

Given a sequence S of digital points, how (and what) to check that there exists a real/Euclidean line whose discretization produces S ?

Example

Determining the Digital Straightness

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Numberatieoretic properties
Approximate straightness

Problem statement

Given a sequence S of digital points, how (and what) to check that there exists a real/Euclidean line whose discretization produces S ?

Example

Determining the Digital Straightness

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Problem statement

Given a sequence S of digital points, how (and what) to check that there exists a real/Euclidean line whose discretization produces S ?

Example

Definitions

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation Properties DCT DGG Surface

Definition

Digital curve A sequence C of points in which each point is an 8-neighbor of its predecessor in C.
C is irreducible iff it does not remain
8 -connected after removing a point that is not its end point

Definitions

Definition

Digital curve A sequence C of points in which each point is an 8-neighbor of its predecessor in C.
C is irreducible iff it does not remain
8 -connected after removing a point that is not its end point.

Definitions

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code properties
Number-theoretic properties
Approximate. straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Definition

$$
\text { Ray } \gamma_{\alpha, \beta}=\left\{(x, \alpha x+\beta) \in \mathbb{R}^{2}: 0 \leq x<\infty\right\}
$$

Definitions

Numbertheoretic
P. Bhowmick

Line
Time discretizalion
Straightness
Periodicily
Chain code
properties
Number-cheoretic
properiies
Approximate
straghhness
Circle
Construct on

Definition

$$
\begin{aligned}
& \text { Ray } \gamma_{\alpha, \beta}=\left\{(x, \alpha x+\beta) \in \mathbb{R}^{2}: 0 \leq x<\infty\right\} . \\
& \text { Digital Ray } I_{\alpha, \beta}=\left\{\left(n, I_{n}\right) \in \mathbb{Z}^{2}: n \geqslant 0 \wedge I_{n}=\right. \\
& \lfloor\alpha n+\beta+0.5\rfloor\} \text {, considering } 0 \leqslant \alpha \leqslant 1 \text {, w.l.o.g. }
\end{aligned}
$$

chain code $=\ldots 10010010 \ldots$

Rational vs. irrational slopes

Numbertheoretic

Line
Time discretization
Theorem ([R. Brons, 1974)
Rational digital rays are periodic and irrational digital rays are aperiodic.

Periodicity
Chain code properties

Rational vs. irrational slopes

Numbertheoretic

Theorem ([R. Brons, 1974])

Rational digital rays are periodic and irrational digital rays are aperiodic.

Example

DSS with slope $\frac{2}{5}$: Period can be expressed as 01010, 00101, 10010, 01001, or 10100.
Which of these periods is chosen is not important, because the bounds of the period can be placed anywhere.

Rational vs. irrational slopes

Numbertheoretic

Theorem ([R. Brons, 1974])

Rational digital rays are periodic and irrational digital rays are aperiodic.

Example

DSS with slope $\frac{2}{5}$: Period can be expressed as 01010, 00101, 10010, 01001, or 10100.
Which of these periods is chosen is not important, because the bounds of the period can be placed anywhere.

Theorem ([J.-P. Reveillès, 1991])

A word $u \in\{0,1\}^{*}$ is a DSS iff the corresponding digital points lie on or between two parallel real lines having a y-distance less than 1.

Chain code properties

Numbertheoretic

Line
Time discretization
Straightness
Periocicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation Properties DCT
DGG Surface

Theorem ([H. Freeman, 1970])
A chain code sequence should possess the following properties if it is a DSS:

Chain code properties

Numbertheoretic

Theorem ([H. Freeman, 1970])
A chain code sequence should possess the following properties if it is a DSS:
(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;

Chain code properties

Numbertheoretic

Theorem ([H. Freeman, 1970])

A chain code sequence should possess the following properties if it is a DSS:
(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;
(F2) one of the two element values always occurs singly;

Chain code properties

Numbertheoretic

Chain code properties

Numbertheoretic

Theorem ([H. Freeman, 1970])

A chain code sequence should possess the following properties if it is a DSS:
(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;
(F2) one of the two element values always occurs singly;
(F3) successive occurrences of the element occurring singly are as uniformly spaced as possible.

Example

$$
\begin{array}{llll}
0112112101 & 0110010010 & 0100010100 & 0010010010
\end{array}
$$

Chain code properties

Numbertheoretic

Example

$$
0112112101 \quad 0110010010 \quad 0100010100 \quad 0010010010
$$

Chain code properties

Numbertheoretic

Theorem ([H. Freeman, 1970])

A chain code sequence should possess the following properties if it is a DSS:
(F1) at most two types of elements can be present, and these can differ only by unity, modulo eight;
(F2) one of the two element values always occurs singly;
(F3) successive occurrences of the element occurring singly are as uniformly spaced as possible.

Example

F1	0112112101	0110010010	0100010100	0010010010
\times	0110010010	0100010100	0010010010	

Chain code properties

Numbertheoretic

Example

	0112112101	0110010010	0100010100	0010010010
F1	\times	0110010010	0100010100	0010010010
F2	\times	\times	0100010100	0010010010

Chain code properties

Numbertheoretic

Example

	0112112101	0110010010	0100010100	0010010010
F1	\times	0110010010	0100010100	0010010010
F2	\times	\times	0100010100	0010010010
F3	\times	\times	\times	0010010010

Chain code properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Algorithm [R. Brons, 1974]

Brons proposed grammars for chain code generation of rational digital rays based on criteria F1, F2, and F3.

Chain code properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code properties
Number-theoretic properties
Approximate straightiness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Algorithm [R. Brons, 1974]

Brons proposed grammars for chain code generation of rational digital rays based on criteria F1, F2, and F3.

Improvement [A. Rosenfeld, 1974]

Chain code properties

Numbertheoretic

Algorithm [R. Brons, 1974]

Brons proposed grammars for chain code generation of rational digital rays based on criteria F1, F2, and F3.

Improvement [A. Rosenfeld, 1974]

- F3 is not suitable for a formal proof.

Chain code properties

Algorithm [R. Brons, 1974]

Brons proposed grammars for chain code generation of rational digital rays based on criteria F1, F2, and F3.

Improvement [A. Rosenfeld, 1974]

- F3 is not suitable for a formal proof.
- Rosenfeld provided a formal characterization of DSS which also allowed a further specification of F3.

Chain code properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH

Theorem ([A. Rosenfeld, 1974])

Necessary conditions for (the chain code sequences of) digital straight segments [A run is a maximum-length factor a^{n}, for $a \in A$.]

Chain code properties

Numbertheoretic

Theorem ([A. Rosenfeld, 1974])

Necessary conditions for (the chain code sequences of) digital straight segments [A run is a maximum-length factor a^{n}, for $a \in A$.]
(R1) The runs have at most two directions, differing by 45°, and for one of these directions, the run length must be 1 .
(R2) The runs can have only two lengths, which are consecutive integers.
\square

Chain code properties

Numbertheoretic

Theorem ([A. Rosenfeld, 1974])

Necessary conditions for (the chain code sequences of) digital straight segments [A run is a maximum-length factor a^{n}, for $a \in A$.]
(R1) The runs have at most two directions, differing by 45°, and for one of these directions, the run length must be 1 .
(R2) The runs can have only two lengths, which are consecutive integers.
(R3) One of the runs can occur only once at a time. . for the run length that occurs in runs, these runs can themselves have only two lengths, which are consecutive integers; and so on.

Chain code properties

Theorem ([A. Rosenfeld, 1974])

Necessary conditions for (the chain code sequences of) digital straight segments [A run is a maximum-length factor a^{n}, for $a \in A$.]
(R1) The runs have at most two directions, differing by 45°, and for one of these directions, the run length must be 1.
(R2) The runs can have only two lengths, which are consecutive integers.
(R3) One of the runs can occur only once at a time.

Chain code properties

Theorem ([A. Rosenfeld, 1974])

Necessary conditions for (the chain code sequences of) digital straight segments [A run is a maximum-length factor a^{n}, for $a \in A$.]
(R1) The runs have at most two directions, differing by 45°, and for one of these directions, the run length must be 1.
(R2) The runs can have only two lengths, which are consecutive integers.
(R3) One of the runs can occur only once at a time.
(R4) ... for the run length that occurs in runs, these runs can themselves have only two lengths, which are consecutive integers; and so on.

Number-theoretic properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Continued Fraction

Let slope of a DSS $=a_{1} / a_{0}\left(a_{0}>a_{1}>1 ; a_{0}, a_{1} \in \mathbb{Z}\right)$.

Number-theoretic properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Continued Fraction

Let slope of a DSS $=a_{1} / a_{0}\left(a_{0}>a_{1}>1 ; a_{0}, a_{1} \in \mathbb{Z}\right)$.

$$
\frac{a_{1}}{a_{0}}
$$

Number-theoretic properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properities
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Continued Fraction

Let slope of a DSS $=a_{1} / a_{0}\left(a_{0}>a_{1}>1 ; a_{0}, a_{1} \in \mathbb{Z}\right)$.

$$
\frac{a_{1}}{a_{0}}=\frac{1}{q_{1}+}
$$

Number-theoretic properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
Number-theoretic
properties
Approximate
straightness.
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Continued Fraction

Let slope of a DSS $=a_{1} / a_{0}\left(a_{0}>a_{1}>1 ; a_{0}, a_{1} \in \mathbb{Z}\right)$.

$$
\frac{a_{1}}{a_{0}}=\frac{1}{q_{1}+}
$$

Number-theoretic properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
Number-theoretic
properties
Approximate
straightness.
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properlies
DCT
DCG
Surface

Continued Fraction

Let slope of a DSS $=a_{1} / a_{0}\left(a_{0}>a_{1}>1 ; a_{0}, a_{1} \in \mathbb{Z}\right)$.

$$
\frac{a_{1}}{a_{0}}=\frac{1}{q_{1}+\frac{1}{a^{2}}}
$$

Number-theoretic properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Continued Fraction

Let slope of a DSS $=a_{1} / a_{0}\left(a_{0}>a_{1}>1 ; a_{0}, a_{1} \in \mathbb{Z}\right)$.

$$
\frac{a_{1}}{a_{0}}=\frac{1}{q_{1}+\frac{1}{a_{2}+}}
$$

Number-theoretic properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Continued Fraction

Let slope of a DSS $=a_{1} / a_{0}\left(a_{0}>a_{1}>1 ; a_{0}, a_{1} \in \mathbb{Z}\right)$.

$$
\frac{a_{1}}{a_{0}}=\frac{1}{q_{1}+\frac{1}{q_{2}+\frac{1}{\ddots}}}
$$

Number-theoretic properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properlies
DCT
DCG
Surface

Continued Fraction

Let slope of a DSS $=a_{1} / a_{0}\left(a_{0}>a_{1}>1 ; a_{0}, a_{1} \in \mathbb{Z}\right)$.

$$
\frac{a_{1}}{a_{0}}=\frac{1}{q_{1}+\frac{1}{q_{2}+\frac{1}{q^{2}} \frac{1}{q_{n-1}+\frac{1}{q_{n}}}}}
$$

Number-theoretic properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Continued Fraction

Let slope of a DSS $=a_{1} / a_{0}\left(a_{0}>a_{1}>1 ; a_{0}, a_{1} \in \mathbb{Z}\right)$.

$$
\begin{aligned}
& \frac{a_{1}}{a_{0}}=\frac{1}{q_{1}+\frac{1}{q_{2}+\frac{1}{\ddots}}} \\
& \frac{1}{q_{n-1}+\frac{1}{q_{n}}}
\end{aligned}
$$

Number-theoretic properties

Numbertheoretic
P. Bhowmick

Continued Fraction

Let slope of $a \operatorname{DSS}=a_{1} / a_{0}\left(a_{0}>a_{1}>1 ; a_{0}, a_{1} \in \mathbb{Z}\right)$.

$$
\begin{aligned}
& \frac{a_{1}}{a_{0}}=\frac{1}{q_{1}+\frac{1}{q_{2}+\frac{1}{\ddots}}} \\
& \frac{1}{q_{n-1}+\frac{1}{q_{n}}}
\end{aligned}
$$

Example

$$
46 / 87=\frac{1}{1+\frac{1}{1+\frac{1}{8+\frac{1}{5}}}}=[1,1,8,5] .
$$

Number-theoretic properties

[Klette and Rosenfeld, 2004, Klette and Rosenfeld, 2004a]

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Splitting a Continued Fraction

$$
\begin{aligned}
\frac{a 1}{a 0} & =\left[q_{1}, q_{2}, \ldots, q_{n}\right] \\
& =\frac{\alpha_{n} q_{n}+\beta_{n}}{\gamma_{n} q_{n}+\delta_{n}}
\end{aligned}
$$

where $\alpha_{n} \mathrm{~s}$ are defined by $q_{1}, q_{2}, \ldots, q_{n}$

Number-theoretic properties

[Klette and Rosenfeld, 2004, Klette and Rosenfeld, 2004a]

Numbertheoretic

Splitting a Continued Fraction

$$
\begin{aligned}
\frac{a 1}{a 0} & =\left[q_{1}, q_{2}, \ldots, q_{n}\right] \\
& =\frac{\alpha_{n} q_{n}+\beta_{n}}{\gamma_{n} q_{n}+\delta_{n}}
\end{aligned}
$$

where α_{n} s are defined by $q_{1}, q_{2}, \ldots, q_{n}$

$$
=\frac{\left(\alpha_{n-1} q_{n-1}+\beta_{n-1}\right) q_{n}+\alpha_{n-1}}{\left(\gamma_{n-1} q_{n-1}+\delta_{n-1}\right) q_{n}+\gamma_{n-1}}
$$

Number-theoretic properties

[Klette and Rosenfeld, 2004, Klette and Rosenfeld, 2004a]

Numbertheoretic

Splitting a Continued Fraction

$$
\begin{aligned}
\frac{a 1}{a 0} & =\left[q_{1}, q_{2}, \ldots, q_{n}\right] \\
& =\frac{\alpha_{n} q_{n}+\beta_{n}}{\gamma_{n} q_{n}+\delta_{n}}
\end{aligned}
$$

where $\alpha_{n} \mathrm{~s}$ are defined by $q_{1}, q_{2}, \ldots, q_{n}$

$$
\begin{aligned}
& =\frac{\left(\alpha_{n-1} q_{n-1}+\beta_{n-1}\right) q_{n}+\alpha_{n-1}}{\left(\gamma_{n-1} q_{n-1}+\delta_{n-1}\right) q_{n}+\gamma_{n-1}} \\
& =\frac{\left(\alpha_{n-1} q_{n-1}+\beta_{n-1}\right)\left(q_{n}-1\right)+\alpha_{n-1}\left(q_{n-1}+1\right)+\beta_{n-1}}{\left(\gamma_{n-1} q_{n-1}+\delta_{n-1}\right)\left(q_{n}-1\right)+\gamma_{n-1}\left(q_{n-1}+1\right)+\delta_{n-1}} .
\end{aligned}
$$

Number-theoretic properties

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation

Definition

Concatenation of a_{1} / b_{1} and a_{2} / b_{2} is
$\left(a_{1} / b_{1}\right) \otimes\left(a_{2} / b_{2}\right)=a / b$,
where $a=\left(a_{1}+a_{2}\right) / c$ and $b=\left(b_{1}+b_{2}\right) / c$, for an integer c s.t. $\operatorname{gcd}(a, b)=1$.

Definition (Splitting formula)

Number-theoretic properties

Numbertheoretic

Line
Time discretization Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT

Definition

Concatenation of a_{1} / b_{1} and a_{2} / b_{2} is
$\left(a_{1} / b_{1}\right) \otimes\left(a_{2} / b_{2}\right)=a / b$,
where $a=\left(a_{1}+a_{2}\right) / c$ and $b=\left(b_{1}+b_{2}\right) / c$, for an integer c s.t. $\operatorname{gcd}(a, b)=1$.

Definition (Splitting formula)

$$
\begin{aligned}
& {\left[q_{1}, q_{2}, \ldots, q_{n}\right]} \\
& =\left\{\begin{array}{c}
{\left[q_{1}, q_{2}, \ldots, q_{n-1}+1\right] \otimes\left(q_{n}-1\right)\left[q_{1}, q_{2}, \ldots, q_{n-1}\right] ;} \\
\text { if } n \text { is even } \\
\left(q_{n}-1\right)\left[q_{1}, q_{2}, \ldots, q_{n-1}\right] \otimes\left[q_{1}, q_{2}, \ldots, q_{n-1}+1\right] . \\
\text { if } n \text { is odd }
\end{array}\right.
\end{aligned}
$$

Number-theoretic properties

[Klette and Rosenfeld, 2004, Klette and Rosenfeld, 2004a]

Numbertheoretic

Example

$$
\begin{aligned}
\frac{46}{87} & =[1,1,8,5](n \text { is even }) \\
& =[1,1,9] \otimes 4 \cdot[1,1,8] \\
& =(8 \cdot[1,1] \otimes[1,2]) \otimes 4 \cdot(7 \cdot[1,1] \otimes[1,2]) \\
& =(8 \cdot[2] \otimes([2] \otimes[1])) \otimes 4 \cdot(7 \cdot[2] \otimes([2] \otimes[1])),
\end{aligned}
$$

which gives DSS chain codes:
(0101010101010101)(011) (01010101010101)(011) (01010101010101)(011) (01010101010101)(011) (01010101010101)(011).

Approximate straightness

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code properties

- avoiding tight enforcing of the DSS constraints (especially for a curve representing the gross pattern of a real-life image with digital imperfections)
enabling extraction of approximately straight pieces from a digital curve

Approximate straightness

Numbertheoretic
P. Bhowmick

Line

- avoiding tight enforcing of the DSS constraints (especially for a curve representing the gross pattern of a real-life image with digital imperfections)
- enabling extraction of approximately straight pieces from a digital curve (straightening a part of the DC when the concerned part is not exactly "digitally straight")
- reducing the number of extracted segments
- usage of integer operations only

Approximate straightness

Numbertheoretic
P. Bhowmick

Line

- avoiding tight enforcing of the DSS constraints (especially for a curve representing the gross pattern of a real-life image with digital imperfections)
- enabling extraction of approximately straight pieces from a digital curve (straightening a part of the DC when the concerned part is not exactly "digitally straight")
- reducing the number of extracted segments (hence reducing the storage and CPU time)

Approximate straightness

Numbertheoretic
P. Bhowmick

Line

- avoiding tight enforcing of the DSS constraints (especially for a curve representing the gross pattern of a real-life image with digital imperfections)
- enabling extraction of approximately straight pieces from a digital curve (straightening a part of the DC when the concerned part is not exactly "digitally straight")
- reducing the number of extracted segments (hence reducing the storage and CPU time)
- usage of integer operations only

Why Approximate straightness

Numbertheoretic

Example

Exactly straight pieces (48 nos.)

How Approximate straightness

Numbertheoretic

- orientations parameters

How Approximate straightness

Numbertheoretic

- orientations parameters
- n (non-singular element)

How Approximate straightness

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
proponics
Approximate straightness

Circle

Construction
Properties
DCS
DCR \& DCH
Segmentation
Properlies
DCT
DCG
Surface

- orientations parameters
- n (non-singular element)
- s (singular element)

How Approximate straightness

Numbertheoretic
P. Bhowmick

- orientations parameters
- n (non-singular element)
- s (singular element)
- I (length of leftmost run of n)

How Approximate straightness

Numbertheoretic
P. Bhowmick

- orientations parameters
- n (non-singular element)
- s (singular element)
- I (length of leftmost run of n)
- r (length of rightmost run of n)
- run length interval parameters: p and q $[p, q]$ is the range of possible lengths (excepting / and
- conditions

How Approximate straightness

Numbertheoretic

- orientations parameters
- n (non-singular element)
- s (singular element)
- I (length of leftmost run of n)
- r (length of rightmost run of n)
- run length interval parameters: p and q $[p, q]$ is the range of possible lengths (excepting / and r) of n

How Approximate straightness

Numbertheoretic

- orientations parameters
- n (non-singular element)
- s (singular element)
- I (length of leftmost run of n)
- r (length of rightmost run of n)
- run length interval parameters: p and q
$[p, q]$ is the range of possible lengths (excepting / and
r) of n
- conditions:

How Approximate straightness

- orientations parameters
- n (non-singular element)
- s (singular element)
- I (length of leftmost run of n)
- r (length of rightmost run of n)
- run length interval parameters: p and q
$[p, q]$ is the range of possible lengths (excepting / and
r) of n
- conditions:
- $q-p \leqslant d=\lfloor(p+1) / 2\rfloor$

How Approximate straightness

- orientations parameters
- n (non-singular element)
- s (singular element)
- I (length of leftmost run of n)
- r (length of rightmost run of n)
- run length interval parameters: p and q
$[p, q]$ is the range of possible lengths (excepting / and
$r)$ of n
- conditions:
- $q-p \leqslant d=\lfloor(p+1) / 2\rfloor$
- $(I-p),(r-p) \leqslant e=\lfloor(p+1 / 2)\rfloor$

How approximate straightness

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic

$$
\begin{equation*}
\epsilon \leqslant\left(1-\frac{1}{N}\right)\left(1+\frac{d}{p+1}\right) \leqslant 1+\frac{d}{p+1} . \tag{1}
\end{equation*}
$$

How approximate straightness

Numbertheoretic

Theorem ([Bhowmick and Bhattacharya, 2007])

Isothetic error of a run length p_{i} in an ADSS (approximate DSS) comprising of N ADSS, is given by

$$
\begin{equation*}
\epsilon \leqslant\left(1-\frac{1}{N}\right)\left(1+\frac{d}{p+1}\right) \leqslant 1+\frac{d}{p+1} . \tag{1}
\end{equation*}
$$

Remarks

- Error incurred with an ADSS can be controlled by d.
- For a given error bound, d decreases linearly with p.

Cumulative error (criterion $\mathrm{C}_{\text {max }}$)

Theorem ([Bhowmick and Bhattacharya, 2007])

An ordered set of ADSS, $\left\langle\mathbf{L}^{(k)}\right\rangle_{j_{1}}^{j_{2}}$, can be replaced by a single straight line segment, $\widetilde{\mathbf{L}}$, such that isothetic deviation of no point in $\left\langle\mathbf{L}^{(k)}\right\rangle_{j_{1}}^{j_{2}}$ from $\tilde{\mathbf{L}}$ exceeds τ, if

$$
\max _{j_{1} \leqslant j \leqslant j_{2}-1}\left|\triangle\left(s\left(\mathbf{L}_{j_{1}}^{(k)}\right), e\left(\mathbf{L}_{j}^{(k)}\right), e\left(\mathbf{L}_{j_{2}}^{(k)}\right)\right)\right| \leqslant \tau d_{\top}\left(s\left(\mathbf{L}_{j_{1}}^{(k)}\right), e\left(\mathbf{L}_{j_{2}}^{(k)}\right)\right)
$$

$\widetilde{\mathrm{L}}$ passes through the start point $s\left(\mathbf{L}_{j}^{(k)}\right)$ of $\mathbf{L}_{j_{1}}^{(k)}$ and the end point $e\left(\mathbf{L}_{j}^{(k)}\right)$ of $\mathbf{L}_{j_{2}}^{(k)}$;
$|\triangle(p, q, r)|=2 \times$ area of the triangle $p q r ;$
$d_{T}(p, q)=$ maximum isothetic distance between p and q.

$\mathrm{C}_{\text {max }}$: An example

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness

Circle

Construction
Properties

DCS

DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

$$
\tau=8
$$

Approximate straightness: Example

Numbertheoretic
P. Bhowmick

Example

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number - theoretic
properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

$0^{4} 10^{5} 10^{5} 10^{4} 10^{4} 10^{5}$
$\Rightarrow p=4, q=5, l=4, r=5$
\Rightarrow R3 fails
\Rightarrow not a DSS but an ADSS.

Approximate straightness: Example

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Example

$$
\begin{aligned}
& 0^{4} 10^{5} 10^{4} 10^{5} 10^{5} 10^{5} 10^{4} \\
& \Rightarrow p=4, q=5, l=4, r=4 \\
& \Rightarrow \text { R4 fails } \\
& \Rightarrow \text { not a DSS but an ADSS. }
\end{aligned}
$$

Approximate straightness: Example

Numbertheoretic
P. Bhowmick

Example

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Approximate straightness: Example

Numbertheoretic
P. Bhowmick

Example

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number - theoretic
properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

$0^{4} 10^{5} 1010^{8} 10^{4} 10^{5}$
$\Rightarrow p=1, q=8, I=4, r=5$
R2, c1, and c2 fail
\Rightarrow neither a DSS nor an ADSS.

Approximate straightness: Example

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties
DGS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Example

$$
\begin{aligned}
& 0^{11} 10^{2} 10^{2} 101010 \\
& \Rightarrow p=1, q=2, I=11, r=1 \\
& \Rightarrow \text { R2 and c2 fail } \\
& \Rightarrow \text { not a DSS or an ADSS. }
\end{aligned}
$$

Results (test curve)

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

input

Results (test curve)

Numbertheoretic
P. Bhowmick

Line
Time discretization Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

$$
\tau=1
$$

Results (test curve)

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle

Construction
Properties
DGS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

$\tau=2$

Results (test curve)

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

$$
\tau=4
$$

Results (test curve)

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle

Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Results (test curve)

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

$$
\tau=8
$$

Results (test curve)

Number-

 theoreticP. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness

Circle

Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Results (test curve)

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness

Circle

Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Results (statue)

Numbertheoretic
P. Bhowmick

Line
Time discretization Straightness
Periodicity
Chain code properties

a real-world image

Results (statue)

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicily
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle

Construction
Properties
DCS
DCR \& DCH

Segmentation

Properies

DCT

DCG
Surface

Results (statue)

Numbertheoretic
P. Bhowmick

Line

Time discretizalion
Straightness
Periodicily

Chain code

properties
Number-theoretic properties
Approximate straightness

Circle

Construction
Properties
DCS
DCR \& DCH Segmentation Properies

DCT

DCG
Surface

Results (statue)

Numbertheoretic
P. Bhowmick

Line

Time discretizalion
Straightness
Periodicily

Chain code

properties
Number-theoretic properties
Approximate straightness

Circle

Construction
Properties
DCS
DCR \& DCH Segmentation Properies

DCT

DCG
Surface

Results (nestlings)

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle

Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Results (nestlings)

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle

Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Results (nestlings)

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle

Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Results (nestlings)

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle

Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Results (nestlings)

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle

Construction
Properties
DGS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Construction by Digitization

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic

properties

Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Construction by Digitization

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Construction by Digitization

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Construction by Digitization

> Number- theoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightiness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT

DCG

Surface

Construction by Digitization

> Number- theoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightiness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT

DCG

Surface

Construction by Digitization

> Number- theoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightiness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT

DCG

Surface

Construction by Digitization

> Number- theoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT

DGG

Surface

Construction by Digitization

> Number- theoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicily
Chain code
properties
Number-theorelic
properties
Approximate
straightiness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT

DCG

Surface

Construction by Digitization

> Number- theoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT

DCG

Surface

Construction by Digitization

> Number- theoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT

DCG

Surface

Construction by Digitization

> Number- theoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicily
Chain code
properties
Number-theoreic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properilies
DCT

DCG

Surface

Construction by Digitization

> Number- theoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT

DCG

Surface

Construction by Digitization

Number-

 theoreticP. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT

DCG

Surface

Construction by Digitization

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties DCS
DCR \& DCH
Segmentation

Algorithm	Inventors	Year
Incremental	Bresenham	1977
Optimized midpoint	Foley et al.	1993
Short run	Hsu et al.	1993
Hybrid run slice	Yao \& Rokne	1995
Number-theoretic ${ }^{\text {a }}$	Bhowmick \& Bhattacharya	2008
PP. Bhowmick and B. B. Bhattacharya, Number-theoretic interpretation and construction of a digital circle, Discrete Applied Mathematics, 156 :2381-2399, 2008.		

Octants

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DGG
Surface

A real circle, $\mathcal{C}^{\mathbb{R}}(0,11)$, and the eight octants of the corresponding digital circle, $\mathcal{C}^{\mathbb{Z}}(0,11)$.

Property 1

Numbertheoretic

- Each point $p(i, j) \in \mathcal{C}^{\mathbb{Z}}(o, r)$ has seven other points of reflection in $\mathcal{C}^{\mathbb{Z}}(o, r)$.
(Properties of Octant 1 are applicable to other octants.)

Property 2

Numbertheoretic

P. Bhowmick

Line
Time discretization
Straightness
Periodicily
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties DCS
DCR \& DCH
Segmentation
Properities
DCT
DCG
Surface

- y-distance of the grid-intersection point of $\mathcal{C}^{\mathbb{R}}(o, r)$ from the digital point of $\mathcal{C}^{\mathbb{Z}}(o, r)$ is less than $1 / 2$.

Property 3

Numbertheoretic
P. Bhowmick

Line
Time discretizalion
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties DCS
DCR \& DCH
Segmentation

- $\mathcal{C}^{\mathbb{Z}}(o, r)$ is a closed and irreducible digital curve.

Property 4

Numbertheoretic
P. Bhowmick

Line
Time ciscretizalion
Straightiness
Periodicily
Chain code
properties
Number-theorelic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properies
DCT
DCG
Surface

An upper run is usually longer than a lower run in Octant 1.

Property 4

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number -theoretic
properties
Approximate
straightiness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

An upper run is usually longer than a lower run in Octant 1.

Property 4

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number -theoretic
properties
Approximate
straightiness
Circle
Construction
Properties DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

An upper run is usually longer than a lower run in Octant 1.

Property 4

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number -theoretic
properties
Approximate
straightiness
Circle
Construction
Properties DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

An upper run is usually longer than a lower run in Octant 1.

Property 4

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number -theoretic
properties
Approximate
straightiness
Circle
Construction
Properties DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

An upper run is usually longer than a lower run in Octant 1.

Property 4

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number - theoretic
properties
Approximate
straightiness
Circle
Construction
Properties DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

An upper run is usually longer than a lower run in Octant 1.

Number-theoretic Properties I

Numbertheoretic

$s[0, r-1]=s[0,40]=7$,
next run $(y=r-1=40): s[r, 3 r-3]=s[41,120]=4$,
next run ($y=r-2=39$):
$s[3 r-2,5 r-7]=s[121,198]=4, \ldots$

- square numeric code $=\langle 7,4,4,2,2,2,2,1,1,2,1,1,1\rangle$ $=\left\langle 7,4^{2}, 2^{4}, 1^{2}, 2,1^{3}\right\rangle$.

Number-theoretic Properties II

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Lemma
The interval $I_{k}=[(2 k-1) r-k(k-1),(2 k+1) r-k(k+1)-1]$ contains the squares of abscissae of the grid points of $\mathcal{C}^{\mathbb{Z}, l}(o, r)$ whose ordinates are $r-k$, for $k \geqslant 1$.

Number-theoretic Properties III

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightiness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation

Lemma
The lengths of the intervals containing the squares of equi-ordinate abscissae of the grid points in $\mathcal{C}^{\mathbb{Z}, I}(o, r)$ decrease constantly by 2 , starting from I_{1}.

Number-theoretic Properties IV

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate sfraightness

Circle

Theorem

The squares of abscissae of grid points, lying on $\mathcal{C}^{\mathbb{Z}, I}(o, r)$ and having ordinate $r-k$, lie in the interval
[$u_{k}, v_{k}:=u_{k}+I_{k}-1$], where u_{k} and I_{k} are given as follows.

$$
\begin{aligned}
& u_{k}= \begin{cases}u_{k-1}+I_{k-1} & \text { if } k \geqslant 1 \\
0 & \text { if } k=0\end{cases} \\
& I_{k}= \begin{cases}I_{k-1}-2 & \text { if } k \geqslant 2 \\
2 r-2 & \text { if } k=1 \\
r & \text { if } k=0\end{cases}
\end{aligned}
$$

Algorithm DCS

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties

DCR \& DCH
Segmentation
Properties
DCT
DCG Surface

Algorithm DCS (int r) \{

1. int $i=0, j=r, s=0, w=r-1$;
2. int $I=w \ll 1$;
3. while $(j \geqslant i)\{$
4. do \{ sym_8 (i,j); $s=s+i ;$
$i++$;
$s=s+i ;\}$ while $(s \leqslant w) ;$
$w=w+l ;$
$I=I-2$;
5. $j--;\}\}$

Number-theoretic properties I

Numbertheoretic

Lemma

The number of perfect squares in a closed interval $[v, w]$ is at most one more than the number of perfect squares in the preceding closed interval $[u, v-1]$ of equal length, where the intervals are taken from the non-negative integer axis.

Number-theoretic properties II

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightiness.

Circle
Construction
Properties
DCS
DCR \& DCH

Theorem

The run length of grid points of $\mathcal{C}^{\mathbb{Z}, I}(o, r)$ with ordinate $j-1$ never exceeds one more than the run length of its grid points with ordinate j.

Number-theoretic properties III

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code properties

Lemma
If $[u, v-1]$ be the interval $I_{k}, k \geqslant 1$, and $[v, w]$ be the interval of same length as $[u, v-1]$, then the number of perfect squares in $[v, w]$ is at least (floor of) half the number of perfect squares less one in $[u, v-1]$.

Number-theoretic properties IV

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties

Theorem

If $\lambda(j)$ be the run length of grid points of $\mathcal{C}^{\mathbb{Z}, I}(o, r)$ with ordinate j, then the run length of grid points with ordinate $j-1$ for $j \leqslant r-1$ and $r \geqslant 2$, is given by

$$
\lambda(j-1) \geqslant\left\lfloor\frac{\lambda(j)-1}{2}\right\rfloor-1 .
$$

Constructive bounds

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DGG
Surface

Constructive bounds

$$
\left\lfloor\frac{\lambda(j)-1}{2}\right\rfloor-1 \leqslant \lambda(j-1) \leqslant \lambda(j)+1
$$

Algorithm DCR

Number-
theoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightiness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Algorithm DCR: Square search

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number -theoretic properties
Approximate straightness.

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Algorithm DCR (int r) $\{$

1. int $i=0, j=r, w=r-1, m$;
2. int $s=0, t=r, l=w \ll 1$;
3. while $(j \geqslant i)$ \{
4. while $(s<t)\{$
5. $\quad m=s+t$;
6. $\quad m=m \gg 1$;
7. if $(w \leqslant$ square $[m])$

$$
t=m ;
$$

else

$$
s=m+1 ;\}
$$

if ($w<$ square $[s]$)
$s-$-;
13. $s++$;
14. include_run ($i, s-i, j$);
15. $t=s+s-i+1$;
16. $\quad i=s$;
17. $w=w+l$;
18. $\quad I=I-2$;
19. $j--;\}\}$

Hybrid algorithm DCH I

Numbertheoretic
P. Bhowmick

Line
Time discretizalion
Straighness
Periodicily
Chain code
properties
Number theoreicic properties
Approximate straightness

Circle

Construction
Properties
DCS
DCR \& DCH Segmentation Properilies DCT

Algorithm DCH (int r, int p) $\{$

1. int $i=0, j=r, w=r-1, m$;
2. int $s=0, t=r, I=w \ll 1$;
3. while $(j \geqslant i)$ \{
4. while $(s<t)\{$
5. $\quad m=s+t$;
6. $\quad m=m \gg 1$;
7. \quad if $(w \leqslant$ square $[m])$
8. $\quad t=m$;
9. else
10. $\quad s=m+1 ;\}$
11. if $(w<$ square $[s])$
12. $s-$;
13. $s++$;
14. include_run $(i, s-i, j)$;
15. if $(s-i<p)$
16. break;
17. $t=s+s-i+1$;
18. $i=s$;
19. $w=w+l$;
20. $\quad I=I-2$;
21. $j--;\}$
22. $i=s-1$;
23. $s=$ square $[s]$;
24. $w=w+l$;
25. $I=I-2$;
26. $j--$;
27. while $(j \geqslant i)$ \{
28. do $\left\{\right.$ sym_ $^{2}(i, j)$;
29. $s=s+i$;
30. $i++$;
31. $s=s+i ;\}$ while $(s \leqslant w)$;
32. $w=w+l$;
33. $I=I-2$;
34. $j--;\}\}$

Test Results...

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface
\#operations

DCB

Test Results...

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

DCR

Test Results...

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface
\#operations

DCH

Arc Segmentation

Numbertheoretic
P. Bhowmick

Line

Time discretizalion
Straighness
Periodicily
Chain code
properties
Number-theoretic
properties
Approximate
straghtiness
Circle
Construction
Properties
DCS
DGR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Arc Segmentation

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DGS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Arc Segmentation

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Arc Segmentation

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DGS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Arc Segmentation

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DGS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Arc Segmentation

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DGS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Arc Segmentation

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DGS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Arc Segmentation

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Arc Segmentation

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate
straightness
Circle
Construction
Properties

DCS

DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Arc Segmentation

Numbertheoretic
P. Bhowmick

Line

Time discretizalion
Straightness
Periodicily
Chain code
properties
Number-theoretic properties
Approximate straghhness

Arc Segmentation

Numbertheoretic
${ }^{\text {as S. Bera, P. Bhowmick, and B. B. Bhattacharya, }}$
Detection of Circular Arcs in a Digital Image Using Chord \& Sagitta Properties,
Proc. GREC 2009, LNCS 6020:69-80.
${ }^{b}$ S. Pal and P. Bhowmick,
Determining Digital Circularity Using Integer Intervals,
Journal of Mathematical Imaging \& Vision (Springer), 2011 (accepted).

Conflicting Radii I

Numbertheoretic
P. Bhowmick

Line

Time discretizalion
Straightness
Periodicily
Chain code
properties
Number-heorelic
properties
Approximate
straghtness
Circle
Construction
Properties
DCS
DCR\& DCH
Segmentation
Properties

Lemma

λ_{0} is the length of top run of a digital circle $\mathcal{C}^{\mathbb{Z}}(o, r)$ iff $r \in R_{0}:=\left[\left(\lambda_{0}-1\right)^{2}+1, \lambda_{0}^{2}\right]$.

Conflicting Radil II

Number-

 theoreticP. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
$r \in[26,27]$
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Conflicting Radii III

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS

DCR \& DCH Segmentation
Properties
DCT
DCG
Surface

Conflicting Radii IV

Number-

 theoreticP. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS

DCR \& DCH Segmentation
Properties
DCT
DCG
Surface

Radii Nesting I

Numbertheoretic
P. Bhowmick

Line

Time discretizalion
Straighness
Periodicily
Chain code
properties
Number-theoretic
properties
Approximate
straghtness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Radii Nesting II

Numbertheoretic
P. Bhowmick

Line
Time discrelization
Straighness
Periodicily
Chain code
properties
Number-heorelic properties
Approximate straightess

Circle
Construction
Properties
DCS
DCR \& DCH

Lemma

λ_{0} and λ_{1} are the lengths of top two runs of $\mathcal{C}^{\mathbb{Z}}(o, r)$ iff $r \in R_{0} \cap R_{1}$, where, $R_{1}=\left[\left\lceil\frac{\left(\Lambda_{1}-1\right)^{2}+3}{3}\right\rceil,\left\lfloor\frac{\Lambda_{1}^{2}+2}{3}\right\rfloor\right]$, $\Lambda_{1}=\lambda_{0}+\lambda_{1}$. (If $R_{0} \cap R_{1}=\emptyset$, then there exists no digital circle $\ldots \lambda_{0}$ and λ_{1}.)

Radii Nesting III

Numbertheoretic
P. Bhowmick

Line
Time discretizalion Straighness
Periodicity
Chain code
properties
Number-theorelic properties
Approximate straighness

Circle
Construction

Theorem (Radii interval)

$\left\langle\lambda_{0}, \ldots, \lambda_{n}\right\rangle$ is the sequence of top $n+1$ run-lengths of $\mathcal{C}^{\mathbb{Z}}(o, r)$ iff

$$
r \in \bigcap_{k=0}^{n} R_{k}
$$

where,

$$
R_{k}=\left[\left[\frac{1}{2 k+1}\left(\left(\Lambda_{k}-1\right)^{2}+k(k+1)+1\right)\right],\left\lfloor\frac{1}{2 k+1}\left(\Lambda_{k}^{2}+k(k+1)\right)\right]\right\rfloor
$$

and

$$
\Lambda_{k}=\sum_{j=0}^{k} \lambda_{j}
$$

(If $\bigcap_{n}^{n} R_{k}=\emptyset$, then there exists no digital circle whose top $n+1$ runs have length $\left\langle\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right\rangle$.)

Algorithm DCT

Numbertheoretic
P. Bhowmick

1. $\wedge \leftarrow S[0]$
2. $\left[r^{\prime}, r^{\prime \prime}\right] \leftarrow\left[(\Lambda-1)^{2}+1, \Lambda^{2}\right]$
3. for $k \leftarrow 1$ to $n-1$
4. $\quad \wedge \leftarrow \Lambda+S[k]$
5. $s^{\prime} \leftarrow\left\lceil\left((\Lambda-1)^{2}+k(k+1)+1\right) /(2 k+1)\right\rceil$
6. $s^{\prime \prime} \leftarrow\left\lfloor\left(\Lambda^{2}+k(k+1)\right) /(2 k+1)\right\rfloor$
7. if $s^{\prime \prime}<r^{\prime}$ or $s^{\prime}>r^{\prime \prime}$

8
9. return
10. else
11. $\quad\left[r^{\prime}, r^{\prime \prime}\right] \leftarrow\left[\max \left(r^{\prime}, s^{\prime}\right), \min \left(r^{\prime \prime}, s^{\prime \prime}\right)\right]$
12. print " S is circular in entirety for $\left[r^{\prime}, r^{\prime \prime}\right]$."

Conflicting Radii: Resolved how fast? I

Numbertheoretic
P. Bhowmick

Line

Time discretizalion
Straighness
Periodicily
Chain code
properies
Number-theoretic
properties
Approximate
straghtiness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation

Conflicting radii starting from $k=0$

Conflicting Radit: Resolved how fast? II

Number-
theoretic

P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Constructon
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG

Resolving the conflicting radii r^{\prime} with increasing k

$k=1$

Conflicting Radii: Resolved how fast? III

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightiness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Resolving the conflicting radii r^{\prime} with increasing k

$k=2$

Conflicting Radii: Resolved how fast? IV

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number -theoretic
properties
Approximate straightiness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG

Resolving the conflicting radii r^{\prime} with increasing k

$k=3$

Conflicting Radii: Resolved how fast? V

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straighiness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation

DCG

Resolving the conflicting radii r^{\prime} with increasing k

$k=4$

General Case \& DCG I

Numbertheoretic
P. Bhowmick

Line
Time discretization Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Lemma

If a digital circle of radius r contains a given run of length λ, then there exist two positive integers a and k such that $r \geqslant\left\lceil\max \left(f_{1, \lambda}(a, k), f_{2, \lambda}(a, k)\right)\right\rceil$, where

$$
f_{1, \lambda}(a, k)=\frac{(a-1)^{2}+k(k-1)+1}{2 k-1}
$$

and

$$
f_{2, \lambda}(a, k)=\frac{(a+\lambda-1)^{2}+k(k+1)+1}{2 k+1} .
$$

General Case \& DCG II

Numbertheoretic
P. Bhowmick

Lemma
If a digital circle of radius r contains a given run of length λ, then there exist two positive integers a and k such that $r \leqslant\left\lfloor\min \left(f_{3, \lambda}(a, k), f_{4, \lambda}(a, k)\right)\right\rfloor$, where

$$
f_{3, \lambda}(a, k)=\frac{a^{2}+k(k-1)}{2 k-1}
$$

and

$$
f_{4, \lambda}(a, k)=\frac{(a+\lambda)^{2}+k(k+1)}{2 k+1}
$$

General Case \& DCG III

Numbertheoretic
P. Bhowmick

Theorem

An arbitrary run of given length λ belongs to only those digital circles whose radii are in the range

$$
\mathcal{R}_{a k}=\begin{aligned}
& \left\{r \mid r \geqslant\left[\max _{a, k \in \mathbb{Z}^{+}}\left(f_{1, \lambda}(a, k), f_{2, \lambda}(a, k)\right)\right]\right\} \\
& \left\{r \mid r \leqslant\left\lfloor\min _{a, k \in \mathbb{Z}^{+}}\left(f_{3, \lambda}(a, k), f_{4, \lambda}(a, k)\right) \mid\right\} .\right.
\end{aligned}
$$

General Case \& DCG IV

Numbertheoretic
P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

General Case \& DCG V

Numbertheoretic
P. Bhowmick

Points of intersection (in \mathbb{R}^{2}) among the parabolas $\left\{f_{i, \lambda} \mid i=1,2,3,4\right\}$ defining $\mathcal{R}_{a k}$.

$$
(\underline{k}=2 k-1, \bar{k}=2 k+1, \underline{\hat{k}}=k(k-1), \hat{\bar{k}}=k(k+1), \underline{\lambda}=\lambda-1)
$$

Parabolas		Point	Abscissa of the point
$f_{1, \lambda}$	$f_{2, \lambda}$	α_{12}	$\frac{1}{2}\left(\underline{k} \lambda+\sqrt{(\underline{k} \lambda+2)^{2}+2\left(\underline{k \lambda^{2}}+2 \hat{k}-3\right)}+2\right)$
$f_{2, \lambda}$	$f_{3, \lambda}$	α_{23}	$\frac{1}{2}\left(\underline{k} \lambda+\sqrt{(\underline{k} \lambda)^{2}+2\left(\underline{k \lambda^{2}}+2 \hat{\bar{k}}-1\right)}\right)$
$f_{3, \lambda}$	$f_{4, \lambda}$	α_{34}	$\frac{1}{2}\left(\underline{k} \lambda+\sqrt{(\underline{k} \lambda)^{2}+2\left(\underline{k} \lambda^{2}+2 k^{2}\right)}\right)$
$f_{4, \lambda}$	$f_{1, \lambda}$	α_{41}	$\frac{1}{2}\left(\underline{k} \lambda+\bar{k} \pm \sqrt{(\underline{k} \lambda+\bar{k})^{2}+2\left(\underline{k} \lambda^{2}+2 \hat{k}-\bar{k}-1\right)}\right)$

General Case \& DCG VI

Numbertheoretic
P. Bhowmick

Line
Time discretizalion
Straighness
Periodicily
Chain code
properties
Number-heorelic
properties
Approximate straightess

Circle
Construction

Specifications of the parabolas $\left\{f_{i, \lambda} \mid i=1,2,3,4\right\}$.

Parabola	Axis	Directrix	Length of Latus Rectum	Vertex	Focus
$f_{1, \lambda}$	$x=1$	$\underline{k} y=3 / 4$	\underline{k}	$(1,(\hat{k}+1) / \underline{k})$	$(1,(8 \hat{\hat{k}}+5) /(4 \underline{k}))$
$f_{2, \lambda}$	$x=-\lambda$	$\bar{k} y=3 / 4$	\bar{k}	$(-\underline{\lambda},(\hat{\bar{k}}+1) / \bar{k})$	$(-\underline{\lambda},(8 \hat{k}+5) /(4 \bar{k}))$
$f_{3, \lambda}$	$x=0$	$\underline{k} y=-1 / 4$	\underline{k}	$(0,(\hat{k}) / \underline{k})$	$(0,(8 \hat{k}+1) /(4 \underline{k}))$
$f_{4, \lambda}$	$x=-\lambda$	$\bar{k} y=-1 / 4$	\bar{k}	$(-\lambda, \hat{k} / \bar{k})$	$(-\lambda,(8 \underline{\hat{k}}+1) /(4 \bar{k}))$

General Case \& DCG VII

Numbertheoretic
P. Bhowmick

Line

Time discretization Straightness
Periodicity
Chain code properties

Specifications of the parabolas $\left\{f_{i, \lambda} \mid i=1,2,3,4\right\}$. Points of intersection (in \mathbb{R}^{2}) among the parabolas $\left\{f_{i, \lambda}: i=1,2,3,4\right\}$ defining $\mathcal{R}_{a k}$.
To obtain the value of $\left\{\alpha_{i j} \mid j=(i \bmod 4)+1, i=1,2,3,4\right\}$, we have solved the following quadratic equations in a. Out of the two values of a obtained, say $a=C \pm \sqrt{D}$, we define α as $C+\sqrt{D}$.

$$
\begin{aligned}
\alpha_{23}: & \frac{(a+\lambda-1)^{2}+k(k+1)+1}{2 k+1}=\frac{a^{2}+k(k-1)}{2 k-1} \\
& \text { or, }(2 k-1)\left(a^{2}+2(\lambda-1) a+(\lambda-1)^{2}+k(k+1)+1\right)=(2 k+1)\left(a^{2}+k(k-1)\right) \\
& \text { or, } 2 a^{2}-2(2 k-1)(\lambda-1) a-(2 k-1)(\lambda-1)^{2}-2 k^{2}-2 k+1=0 \\
& \text { or, } a=\frac{1}{2}\left((2 k-1)(\lambda-1) \pm \sqrt{(2 k-1)^{2}(\lambda-1)^{2}+2\left((2 k-1)(\lambda-1)^{2}+2 k^{2}+2 k-1\right)}\right) \\
& \text { or, } \\
& \alpha_{23}=\frac{1}{2}\left((2 k-1)(\lambda-1)+\sqrt{(2 k-1)^{2}(\lambda-1)^{2}+2\left((2 k-1)(\lambda-1)^{2}+2 k^{2}+2 k-1\right)}\right) . \\
\alpha_{12}: & \frac{(a-1)^{2}+k(k-1)+1}{2 k-1}=\frac{(a+\lambda-1)^{2}+k(k+1)+1}{2 k+1} \\
& \text { or, }(2 k+1)\left((a-1)^{2}+k(k-1)+1\right)=(2 k-1)\left((a+\lambda-1)^{2}+k(k+1)+1\right) \\
& \text { or, } 2 a^{2}-2((2 k-1) \lambda+2) a-(2 k-1)(\lambda-1)^{2}-2 k^{2}+2 k+3=0 \\
& \text { or, } a=\frac{1}{2}\left((2 k-1) \lambda+2 \pm \sqrt{((2 k-1) \lambda+2)^{2}+2\left((2 k-1)(\lambda-1)^{2}+2 k^{2}-2 k-3\right)}\right) \\
& \text { or, } \alpha_{12}=\frac{1}{2}\left((2 k-1) \lambda+2+\sqrt{((2 k-1) \lambda+2)^{2}+2\left((2 k-1)(\lambda-1)^{2}+2 k^{2}-2 k-3\right)}\right) .
\end{aligned}
$$

General Case \& DCG VIII

Numbertheoretic
P. Bhowmick

Line
Time discretization Straighness
Periodicily
Chain code
properties
Number-theoreicic properties
Approximate straightness

Circle
Construction
Properties
DCS
DGR \& DCH

$$
\begin{aligned}
\alpha_{41}: & \frac{(a+\lambda)^{2}+k(k+1)}{2 k+1}=\frac{(a-1)^{2}+k(k-1)+1}{2 k-1} \\
& \text { or, }(2 k-1)\left((a+\lambda)^{2}+k(k+1)\right)=(2 k+1)\left((a-1)^{2}+k(k-1)+1\right) \\
& \text { or, } 2 a^{2}-2(2 k(1+\lambda)-\lambda+1) a-(2 k-1) \lambda^{2}-2 k^{2}+4 k+2=0 \\
& \text { or, } \\
& a=\frac{1}{2}\left((2 k-1) \lambda+2 k+1 \pm \sqrt{((2 k-1) \lambda+2 k+1)^{2}+2\left((2 k-1) \lambda^{2}+2 k^{2}-4 k-2\right)}\right) \\
& \text { or, } \alpha_{41}= \\
& \frac{1}{2}\left((2 k-1) \lambda+2 k+1+\sqrt{((2 k-1) \lambda+2 k+1)^{2}+2\left((2 k-1) \lambda^{2}+2 k^{2}-4 k-2\right)}\right) . \\
\alpha_{34}: & \frac{a^{2}+k(k-1)}{2 k-1}=\frac{(a+\lambda)^{2}+k(k+1)}{2 k+1} \\
& \text { or, }(2 k+1)\left(a^{2}+k(k-1)\right)=(2 k-1)\left((a+\lambda)^{2}+k(k+1)\right) \\
& \text { or, } 2 a^{2}-2(2 k-1) \lambda-(2 k-1) \lambda^{2}-2 k^{2}=0 \\
& \text { or, } a=\frac{1}{2}\left((2 k-1) \lambda \pm \sqrt{(2 k-1)^{2} \lambda^{2}+2\left((2 k-1) \lambda^{2}+2 k^{2}\right)}\right) \\
& \text { or, } \alpha_{34}=\frac{1}{2}\left((2 k-1) \lambda+\sqrt{(2 k-1)^{2} \lambda^{2}+2\left((2 k-1) \lambda^{2}+2 k^{2}\right)}\right) .
\end{aligned}
$$

Numbertheoretic

1. $n_{\max } \leftarrow 0$
2. for $k^{\prime} \leftarrow k_{\text {min }}$ to $k_{\text {max }}$
3. $\quad \Lambda \leftarrow S[0], i \leftarrow 0$
4. $\operatorname{Find}-\operatorname{PaRAMS}\left(A, \Lambda, k^{\prime}\right)$
5. while $i<m$ and $n_{\max }<n \triangleright$ for all a's of first run
6. $\quad\left[s^{\prime}, s^{\prime \prime}\right] \leftarrow\left[r^{\prime}, r^{\prime \prime}\right] \leftarrow[A[i][1], A[i][2]]$
7. $\quad \Lambda \leftarrow A[i][0]+S[0], j \leftarrow 1$
8.
9.
10.
11.
12.
13. if $n_{\max }<j$
14.

$$
n_{\max } \leftarrow j, k_{\text {off }} \leftarrow k^{\prime},\left[r_{\min }, r_{\max }\right] \leftarrow\left[r^{\prime}, r^{\prime \prime}\right]
$$

15. print " S is circular for $n_{\max }$ runs; starting run $=k_{\text {off }} ; r \in\left[r_{\min }, r_{\max }\right]$."

II

Numbertheoretic
P. Bhowmick

Line
Time discrelization
Straighness
Periodicily
Chain code
properties
Number- theoretic
properties
Approximate
straightess.
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation

Surface

Procedure Find-Params

1. Compute $\left\{\alpha_{u v} \mid 1 \leqslant u \leqslant 4 \wedge v=(u+1) \bmod 4\right\} \triangleright$ (from Tables)
2. $i \leftarrow 0$
3. for $a \leftarrow\left\lceil\alpha_{23}\right\rceil$ to $\left\lfloor\alpha_{41}\right\rfloor$
4. $A[i][0] \leftarrow a \triangleright$ computing r^{\prime}
5. if $a<\alpha_{12}$
6.
7. else
8. $A[i][1] \leftarrow\left\lceil f_{1, \lambda}(a, k)\right\rceil \triangleright$ computing $r^{\prime \prime}$
9. if $a<\alpha_{34}$
10. $A[i][2] \leftarrow\left\lfloor f_{3, \lambda}(a, k)\right\rfloor$
11. else
12. $A[i][2] \leftarrow\left\lfloor f_{4, \lambda}(a, k)\right\rfloor$
13. $\quad i \leftarrow i+1$
14. $m \leftarrow i$

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties DCS
DCR \& DCH

Surface

Find-Params on a run-length 7:
Solution space $\mathcal{R}_{a k}$ of the radius intervals $\left\{\left[r_{j}^{\prime}, r_{j}^{\prime \prime}\right] \mid j=0,1,2\right\}$ corresponding to $m=3$ square numbers lying in

$$
\left[\left[\alpha_{23}\right\rfloor^{2},\left\lfloor\alpha_{41}\right\rfloor^{2}\right]=\left[9^{2}, 11^{2}\right] .
$$

Snapshots of Our Algorithm

Numbertheoretic
P. Bhowmick

Line
Time discretizalion
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Snapshots of Our Algorithm

Numbertheoretic
P. Bhowmick

Line
Time discretizalion
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Snapshots of Our Algorithm

Numbertheoretic
P. Bhowmick

Line
Time discretizalion Straightness
Periodicily
Chain code properties
Number-theorelic properties
Approximate straightiness

Circle
Construction
Properties
DCS
DCR \& DCH

Snapshots of Our Algorithm

Numbertheoretic
P. Bhowmick

Line
Time discretizalion Straightness
Periodicity
Chain code properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Snapshots of Our Algorithm

Numbertheoretic

Algorithm
Polyhedra Represntn.
Finite Element Han et al. 2007
Cylindrical Element Han et al. 2007
Circular Sector
Lee et al.
2008
Number-theoretic ${ }^{\text {a }} \quad$ Kumar et al. 2010
${ }^{a}$ G. Kumar, N.K. Sharma, and P. Bhowmick, Wheel-throwing in Digital Space Using Number-theoretic Approach, International Journal of Arts and Technology, 2010 (in press).

A preliminary version appeared in:
Proc. of International Conference on Arts and Technology: ArtsIT 2009, LNICST: 30, Springer, pp. 181-189, 2010.

Theoretical Foundation: A Glimpse

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number - theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Theoretical Foundation: A Glimpse

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightiess
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Theoretical Foundation: A Glimpse

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number -theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Theoretical Foundation: A Glimpse

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties DCS
DCR \& DCH
Segmentation
Properties

open and irreducible digital surface

Theoretical Foundation: A Glimpse

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties DCS
DCR \& DCH
Segmentation
Properties

open and irreducible digital surface

Theoretical Foundation: A Glimpse

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

closed and irreducible digital surface

Surface of Revolution in \mathbb{Z}^{3}

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightiness.

Digital generatrix

Surface of Revolution in \mathbb{Z}^{3}

Number-

 theoreticP. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code properties

Surface of Revolution in \mathbb{Z}^{3}

> Number- theoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties

DCS

DCR \& DCH

Surface of Revolution in \mathbb{Z}^{3}

Numbertheoretic
P. Bhowmick

Line

Time discreitization
Straightness
Periodicily
Chain code
propertics
Number-theoretic properties
Approximate straighness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation

A disconnected surface of revolution created due to missing voxels

Surface of Revolution in \mathbb{Z}^{3}

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Missing voxels

Surface of Revolution in \mathbb{Z}^{3}

Numbertheoretic
P. Bhowmick

Line
Time discretizalion
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Connected and irreducible surface of revolution

Double-layered Surface of Revolution in \mathbb{Z}^{3}

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code properties
Number -theoretic properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

2-layered digital generatrix

Double-layered Surface of Revolution in \mathbb{Z}^{3}

Numbertheoretic
P. Bhowmick

Line
Time discretizatior Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties DCS
DCR \& DCH

A disconnected surface of revolution created due to missing voxels

Double-layered Surface of Revolution in \mathbb{Z}^{3}

Numbertheoretic
P. Bhowmick

Line

Time discretizalion
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties DCS
DCR \& DCH Segmentation Properties

Surface

Missing voxels

Double-layered Surface of Revolution in \mathbb{Z}^{3}

Numbertheoretic
P. Bhowmick

Connected and irreducible 2-layered surface of revolution

Double-layered Surface of Revolution in \mathbb{Z}^{3}

Numbertheoretic P. Bhowmick Line
Time discretization Straightness Periodicity Chain code properties

A fragmented piece

Double-layered Surface of Revolution in \mathbb{Z}^{3}

Numbertheoretic

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties

DCS

DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

A sample set of finished potteries produced by our algorithm

Missing Voxels: Parabolic Characterization I

Numbertheoretic
P. Bhowmick

Line
Time discrelization
Straightness
Periodicily
Chain code
properties
Number-theoreilic properties
Approximate
straighness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properies
DCT
DCG
Surface

Surface with absentee voxels

Missing Voxels: Parabolic Characterization II

Numbertheoretic

Line

Time discretization
Straightness
Periodicily
Chain code
properties
Number-theoretic properties
Approximate straghtness

Circle
Construction
Properties
DCS
DCR\& DCH
Segmentation

Absentee voxels (Left: front view, Right: top view)

Missing Voxels: Parabolic Characterization III

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightiness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

The perfect \& irreducible digital surface of revolution

Missing Voxels: Parabolic Characterization IV

Numbertheoretic P. Bhowmick

Line
Time discretizalion
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT

Surface

After a realistic finish.

Missing Voxels: Parabolic Characterization V

Numbertheoretic
P. Bhowmick

Line
Time discretization Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties DCS
DCR \& DCH

Digital hemisphere ($r=50$): Oblique view

Missing Voxels: Parabolic Characterization VI

Numbertheoretic
P. Bhowmick

Line
Time discrelization
Straightness
Periodicily
Chain code
properties
Number-4heoretic properties
Approximate straighness

Circle
Construction
Properties DCS
DCR \& DCH

Top view

Missing Voxels: Parabolic Characterization VII

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicily
Chain code
properties
Number theorelic
properties
Approximate straighness

Circle
Construction
Properties
DCS
DCR \& DCH

Projection

Missing Voxels: Parabolic Characterization VIII

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DCG
Surface

Infimum parabolas = solid curves supremum parabolas = dashed curves.

Missing Voxels: Parabolic Characterization IX

Numbertheoretic
P. Bhowmick

The interval $J_{r-j}^{(r)}$ in which an absentee lies. Light gray $\Rightarrow r+1$, Deep gray $\Rightarrow r$.

Lemma

The squares of abscissae of the pixels in $\mathcal{C}_{1}^{\mathbb{Z}}(o, r)$ whose ordinates are j lie in the interval $I_{r-j}^{(r)}=\left[u_{r-j}^{(r)}, v_{r-j}^{(r)}\right)$, where

$$
\begin{aligned}
& u_{r-j}^{(r)}=r^{2}-j^{2}-j \\
& v_{r-j}^{(r)}=r^{2}-j^{2}+j
\end{aligned}
$$

Missing Voxels: Parabolic Characterization X

Numbertheoretic

The difference between the lower limit of $I_{r-j}^{(r)}$ and the upper limit of $I_{r+1-j}^{(r+1)}$ is given by

$$
u_{r+1-j}^{(r+1)}-v_{r-j}^{(r)}=\left((r+1)^{2}-j^{2}-j\right)-\left(r^{2}-j^{2}+j\right)=2(r-j)+1
$$

Missing Voxels: Parabolic Characterization XI

Numbertheoretic
P. Bhowmick

Line
Time discretization Straightness
Periodicity
Chain code properties
Number-theoretic properties
Approximate straightness

Lemma

For $r>0$, the intervals $I_{r-j}^{(r)}$ and $I_{r+1-j}^{(r+1)}$ are disjoint and $u_{r+1-j}^{(r+1)}>v_{r-j}^{(r)}$.

Lemma

A pixel $p(i, j)$ is an absentee if and only if i^{2} lies in $J_{r-j}^{(r)}:=\left[v_{r-j}^{(r)}, u_{r+1-j}^{(r+1)}\right)$ for some $r \in \mathbb{Z}^{+}$.

Missing Voxels: Parabolic Characterization XII

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate straightness

Circle
Construction
Properties DCS
DCR \& DCH
Segmentation
Properties
DCT
Surface

Lemma

If $p(i, j)$ is an absentee in Octant 1 , then $(i-1, j) \in \mathcal{C}^{\mathbb{Z}}(o, r)$ and $(i+1, j) \in \mathcal{C}^{\mathbb{Z}}(o, r+1)$ for some $r \in \mathbb{Z}^{+}$.

Missing Voxels: Parabolic Characterization XIII

Numbertheoretic

Although the previous lemma provides a way to decide whether or not a given pixel is an absentee, it requires to find for which value(s) of r the existence of square numbers in $J_{r-j}^{(r)}$ has to be checked. So the following theorem:

Theorem

(i, j) is an absentee if and only if $i^{2} \in J_{r-j}^{(r)}$, where $r=\max \left\{s \in \mathbb{Z}: s^{2}<i^{2}+j^{2}\right\}$.

Missing Voxels: Parabolic Family I

Numbertheoretic
P. Bhowmick

Line

Time discrelization Straightness Periodicily
Chain code properties

If $p(i, j)$ lies on k th run of $\mathcal{C}_{1}^{\mathbb{Z}}(o, r)$, then

$$
i^{2}<(2 k+1) j+k^{2}
$$

if $p(i, j)$ lies left of $(k+1)$ th run of $\mathcal{C}_{1}^{\mathbb{Z}}(o, r+1)$, then

$$
i^{2}<(2 k+1) j+(k+1)^{2} .
$$

Missing Voxels: Parabolic Family II

Numbertheoretic

The corresponding open parabolic regions:

$$
\begin{aligned}
& \underline{P}_{k}: x^{2}<(2 k+1) y+k^{2}, \\
& \bar{P}_{k}: x^{2}<(2 k+1) y+(k+1)^{2} .
\end{aligned}
$$

Evidently, the pixels or integer points lying in the region given by $\bar{P}_{k} \backslash \underline{P}_{k}$ in Octant 1 for a given pair of j and $k-$ and hence for a given (r, j)-pair - are absentees in Octant 1.

Lemma

Number of square numbers in

$$
J_{r-j}^{(r)}=\left|\left\{(i, j):(i, j) \in\left(\bar{P}_{k} \backslash \underline{P}_{k}\right) \cap \mathbb{Z}_{1}^{2}\right\}\right|
$$

Missing Voxels: Parabolic Family III

Numbertheoretic

From above lemma, we can derive the region of all absentees for a given value of k by considering all possible values of j for $r \geqslant 0$ so that $r-j=k$. Thus, all the integer points of Octant 1 which are contained in the following half-open parabolic strip are absentee points.
$P_{k}:=\bar{P}_{k} \backslash \underline{P}_{k}=(2 k+1) y+k^{2} \leqslant x^{2}<(2 k+1) y+(k+1)^{2}$.

Lemma

All pixels in $F_{k}:=P_{k} \cap \mathbb{Z}_{1}^{2}$ are absentees.

Missing Voxels: Parabolic Family IV

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic properties
Approximate straightness

Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation

The family of all the half-open parabolic strips, $P_{0}, P_{1}, P_{2}, \ldots$, thus contains all the absentees in Octant 1.

Theorem

Only and all the absentees of Octant 1 and Octant 8 lie in

$$
\mathcal{F}:=\left\{P_{k} \cap \mathbb{Z}_{1}^{2}: k=0,1,2, \ldots\right\} .
$$

Absentees: Count I

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightiness.
Circle
Construction
Properties
DCS
DCR \& DCH
Segmentation
Properlies
DCT
DCG
Surface

Lemma

For a given $k, P_{k} \cap \mathbb{Z}_{1}^{2}$ contains exactly one absentee on each vertical grid line.

Absentees: Count II

Numbertheoretic P. Bhowmick

Line

Time discretization
Straightness
Periodicity
Chain code
properties
Number-theoretic
properties
Approximate
straightness
Circle
Construction
Properties

DCS

DCR \& DCH
Segmentation
Properties
DCT
DCG

Surface

Absentees: Count III

Numbertheoretic

Line
Time discretization Straightness
Periodicity
Chain code properties

Lemma

The count of absentees contained by the parabolic strip P_{k} in $\mathcal{D}_{1}^{\mathbb{Z}}(o, r)$ is given by

$$
n_{k r}=\lceil\sqrt{(2 k+1) r-k(k+1)}\rceil-\left\lceil\left((2 k+1)+\sqrt{8 k^{2}+4 k+1}\right) / 2\right\rceil
$$

Lemma

For a given r, the number of half-open parabolic strips intersecting $\mathcal{C}_{1}^{\mathbb{Z}}(o, r)$ is given by $m_{r}=r-\lceil r / \sqrt{2}\rceil+1$.

Absentees: Count IV

Numbertheoretic
P. Bhowmick

Theorem

Total count of absentees lying inside $\mathcal{C}^{\mathbb{Z}}(o, r)$ is given by

$$
N_{r}=8 \sum_{k=0}^{m_{r}-1} n_{k r},
$$

where $n_{k r}=$
$\lceil\sqrt{(2 k+1) r-k(k+1)}\rceil-\left\lceil 2 k+1+\frac{1}{2} \sqrt{\left(8 k^{2}+4 k+1\right)}\right\rceil$
and $m_{r}=r-\lceil r / \sqrt{2}\rceil+1$.

Further reading I

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code properties
P. Phowmick and B. B. Bhattacharya.

Number-theoretic interpretation and construction of a digital circle.
Discrete Applied Mathematics, 156(12):2381-2399, 2008.
P. Bhowmick and B. B. Bhattacharya.

Fast polygonal approximation of digital curves using relaxed straightness properties.
IEEE Trans. PAMI, 29(9):1590-1602, 2007.
R R. Brons.
Linguistic methods for description of a straight line on a grid. Comput. Graphics Image Process. 2 (1974) 48-62.
H. Freeman

Boundary encoding and processing.
in: B.S. Lipkin, A. Rosenfeld (Eds.), Picture Processing and Psychopictorics, Academic Press, NY (1970) 241-263.

Further reading II

Numbertheoretic
P. Bhowmick

Line
Time discretization Straightness
Periodicity
Chain code properties properties
R. Klette and A. Rosenfeld.

Digital Geometry: Geometric Methods for Digital Image Analysis. Morgan Kaufmann Series in Computer Graphics and Geometric Modeling, 2004.
R. Klette and A. Rosenfeld.

Digital straightness: A review.
Discrete Applied Mathematics, 139(1-3):197-230, 2004.
圊 J.-P. Reveillès.
Géométrie discrète, calcul en nombres entiers et algorithmique.
Thèse d'état, Univ. Louis Pasteur, Strasbourg, 1991.
R A. Rosenfeld.
Digital straight line segments.
IEEE Trans. Computers 23 (1974) 1264-1269.

Numbertheoretic
P. Bhowmick

Line
Time discretization
Straightness
Periodicity
Chain code properties
Number-theoretic
properties
Approximate straightness

Circle

Construction
Properties
DCS
DCR \& DCH
Segmentation
Properties
DCT
DGG
Surface

Thank You

