Introduction to
Computing
with
Geometry

Adrian Bowyer and John Woodwark

INFORMATION GEOMETERS

First published 1993

Information Geometers Ltd
47 Stockers Avenue
Winchester
SO22 5LB
UK

books@inge.com

ISBN 1-874728-03-8

This PDF version is basically the master at 110% enlargement

from which the original edition was printed. Necessary changes

have been made to pagination, typefaces and figures, and some
typographical errors have been corrected.

© Information Geometers Ltd 1993.

Typeset and designed by the author.

... we are geometricians only by chance.

DR JOHNSON

L XN ST W=

[
W= o

Contents

Foreword

Introduction

Geometric basics

Parametric curves and surfaces
Bernstein-basis curves and surfaces
General implicit curves and surfaces
Tessellations

Approximations

Storing geometry

Transforms

Intersections

Distances and offsets

Geometric algorithms

Geometric programming

References and Bibliography

16
31
ol
67
7
88
102
116
127
139
??
159
173

Foreword

Information Geometers has run its “Computing with (Geometry”
course a number of times in the last few years with the authors
as presenters. This book is the material presented on the course.

Computing with geometry is a large (and in some places muddy)
field. Here we have tried to cover all of it to a more-or-less uniform
depth, measured in terms of utility. This means that some topics
(such as interval arithmetic) get rather more coverage than would
be expected from the frequency with which they appear in the liter-
ature, whereas others (such as parametric surfaces) get less. In the
former case some extra attention is perhaps overdue, and in the lat-
ter the associated literature is so vast that a proportional treatment
would have reduced the rest of the book to an appendix. We hope
we’ve struck a reasonable balance. An annotated list of references
is provided to allow you to dig deeper into topics that interest you
particularly.

We acknowledge the helpful feedback in developing this text that
we have received from participants on our courses. This book is a
snapshot of an evolving document and, despite our best efforts to
stabilize it for this printing, we expect that mistakes and (certainly)
opportunities for improvement remain. We would be most grateful
to hear of any that you find.

1

Introduction

If computer programs involving money are the dullest, then those
involving geometry are the most interesting. Money is very useful
stuff, but it is strictly, strictly, one-dimensional'. However much
we have (and we could certainly do with more) it is just a bigger
pile. With geometry, we have two, three or more dimensions to play
with. These are not convertible—while there may be two dollars to
the pound, no amount of ups or downs ever make a right or left—
and so geometric programs have to be able to carry and maintain
multi-dimensional information consistently.

But if we can cope with this complexity, geometric programs allow
us to escape from the computer and start affecting more than num-
bers on a page. We can take data from cameras and other scanners,
create pictures and animations, have metal cut into pretty shapes
by numerically controlled (NC) machine tools, and move robots and
autonomous vehicles.

We assume that you have had some experience in programming;
C, FORTRAN and PROLOG are the languages we use for examples.
If you have experience of one or two of these languages, you should
find some hints as to the sorts of geometric elements, operations,
structures and algorithms that you may come across when you start
computing with geometry.

Computing with geometry is a large area of activity. It can be
subdivided into a number of segments based on communities of re-

1Our Financial Wizard got very huffy about this. Don’t we understand
the difference between Capital and Ezpense? Alas, this is almost certainly our
problem....

Introduction 7

search interest, or on applications, or on both—where these co-
incide. Below, we attempt to beat the bounds of the subject by
roughly describing the characteristics of seven such segments, each
identified by a buzz-phrase. In this book, we do not try to relate
to any particular application area, although there is probably some
bias towards computer-aided design and manufacture.

Computer graphics

Computer graphics? has been in every sense the most visible man-
ifestation of computing with geometry. The many introductory
books dealing with the subject have made a lot of people familiar
with:

Algorithms (such as Bresenham’s algorithm) for drawing on
raster screens.
Clipping and windows.
Transforms (including perspective).
Wire-frames and polygons.
‘Hidden-line” and ‘hidden-surface’ algorithms.
Well, some of the above will be mentioned, but we take an icono-

clastic view of this sort of graphics: it is an invaluable debugging
tool.

Graphics in general is a river which has reached its delta, and
recent work is spreading in many different directions, such as:
Global (‘radiosity’) lighting.
Facial animation.
Fall and motion of fabric.
Dynamics and collisions.
These sorts of problem use much more complicated geometry—
in particular geometric structures (for instance to support solutions
based on finite-element (FE) methods)—and are therefore of more

interest. However, they also overlap with other subjects, from chore-
ography to cubism, which are not on the geometrical menu.

2Called “graphics” from now on.

Introduction

i Graph}i:&
AR
nata e

vigualiratiaon -

~

1(i)—An attempt to show the relationship between com-
puting with geometry (the shaded region) and the seven re-
search and application areas itemized in the text. A simple
diagram of this sort can only be one try at drawing—with
a very broad brush—the very complicated relationships
that actually exist. Note that most of the research and
application and areas have some part that is not shaded,
meaning that they have significant non-geometric aspect.
At the same time, the shaded region is itself larger than
the application areas, meaning that there are (of course)
applications of geometric computing (such as geographic
information systems—GIS) which are not shown in this il-
lustration.

Introduction 9

Computer vision and image processing

Computer vision and image processing has a large and frighten-
ingly technical literature. Many image-processing techniques can
be classed as signal processing—for example, frequency transforms
and image filters—and are outside our present scope. So is the ar-
tificial intelligence (Al) aspect of vision. Somewhere between pixels
and perception is the reconstruction of shapes from one or more
views of a scene; many of the topics we will cover are relevant to
that activity.

Computer-aided design

Computer-aided design (CAD) is a rather general term; it includes
subjects such as logic design which are not geometric. As well as
encompassing many geometric topics, subjects such as mechanism
design and solid modelling systems fit in here. Real computer-aided
design systems often involve nasty-but-practical heuristics and ap-
proximations which may not easily be pigeon-holed into recognizable
and respectable fields of intellectual endeavour.

Computer-aided geometric design

Computer-aided geometric design (CAGD) is usually used to refer to
the study of free-form curves and surfaces. The modern grapefruit
(to digress for a moment) is said to be a cross between the orange
and an East Indian fruit called the pumilo, which is the size of a
football but only contains as much flesh as the grapefruit; the rest is
pith. Computer-aided geometric design has something in common
with this fruit: a disproportionate amount of highly speculative
academic work surrounding a central core of very useful techniques.
We have tried not to be overawed by the size of the literature.

Computational geometry

Computational geometry is a phrase mostly used to refer to the
study of geometrical algorithms, and particularly to their theoretical
efficiency, or order. That means, if an algorithm runs in 10 seconds
on 10 points, how long does it take on 1007 For instance, if it takes
100 seconds, we call it an order n algorithm; if it takes 10000, it’s
order n?; if it takes 200, it’s O(nlogn), and so on. While their

10 Introduction

analyses may be complicated, the geometrical entities with which
computational geometers concern themselves are often simple, such
as a set of points. However, there is growing interest in the efficiency
of algebraic manipulations, a lever on more complicated elements.

Data visualization

Data visualization is a new-ish term covering the manipulation and
display of large amounts of data typically obtained from sensors such
as satellites and body-scanners. These are like image data but the
dimenstonality of the data is higher; for instance, satellites collect
electromagnetic radiation across the spectrum, and body-scans can
be done with different types of instrument. The central problem is
letting someone (often called ‘the scientist’) make sense of three or
more dimensions. And a big part of that problem is constructing
algorithms which are efficient when faced with the large amount of
data involved in most applications.

Numerical control and robotics

You can worry a lot about geometric code when it’s controlling a
few tonnes of machine tool or industrial robot. A servomotor can-
not move instantaneously to somewhere, as a cursor on a graphics
screen will (well, nearly); and you cannot build a mechanical actua-
tor which is infinitely thin, as the light rays coming to a camera are
(well, nearly). These twin problems of dynamics and path planning
affect the sort of geometry we need to do: things like calculating
moments of inertia, trajectories, and offsets from surfaces.

From geometry to program

To get from a geometric concept to a program, we need to go through
this sequence:

geometry — algebra — algorithm — program.

Each of these little arrows hides big problems.

Geometry — algebra

From geometry to program 11

We usually start off with some description of a problem, such as
“where does such-and-such a straight line meet such-and-such a
plane?”. To get anywhere, we must first convert the straight line
and the plane into an algebraic form in a coordinate system (usu-
ally Cartesian coordinates), and decide what has to be solved to find
where they intersect. That all has to be done before actually writing
an algorithm, although the requirements of an algorithmic solution
must be borne in mind from the outset. This is a unique and diffi-
cult part of computing with geometry, and often we get no further
without needing to think again. For instance “construct a surface
a constant distance from an existing surface” (the offset problem)
develops really fierce algebra very quickly. We will usually recast
that problem at this first stage, into the form “find a (useful) set
of points a constant distance from a given surface”; that’s a lot less
general, but a lot easier. Falling back on procedural or approximate
solutions (yes, as soon as this) is often the better part of valour.

Even if the coordinate algebra goes well, there are other things to
think about at this stage; for instance, if we wish to use only some
parts of a whole geometric shape represented by an equation (as we
usually do) then we need some formalism to cut and connect them;
converting such bounding requirements into a graph-structure, or
to set-theoretic algebra, can be another part of the process of inter-
preting the geometry that this first arrow represents.

Algebra — algorithm

Now we’re on common ground with other bits of scientific program-
ming. However, the sort of equations that come out of geometric
problems have their own personality. For instance, computer alge-
bra systems® are a common and practical tool for many applica-
tions, particularly symbolic differentiation and integration. Geom-
etric problems tend to produce large sets of non-linear equations
that break algebra systems like eggs; we’ve seen many omelettes.
Only recently has this difficulty been recognized and at least one
specialized geometric algebra system has been built.

Even so, in general we must make further concessions to the prob-
lem at this stage. We've tried to identify four levels at which we

3Called “algebra systems” from now on.

12 Introduction

may be able to manage the algebra — algorithm transition:
Symbolic: the algebra system level; our algorithm will accept a
range of equations, and works out what to do with them on the
fly. This product is on the market, in the form of libraries of
algebraic functions®.

Analytic: the level at which we’re usually happy to be; the
algorithm is the direct embodiment of an algebraic solution.
Numerical: the level where we often end up; the problem can be
formulated, but there is no closed-form solution®. We can often
use a standard numerical method (e.g. relaxation) for simulta-
neous equations.

Approximate: the bargain basement; we don’t even fancy the

‘proper’ algebra, and are working with a simplification.
These levels of attack are usually far from the whole story. They
can be, and usually are, nested. For instance, we might approximate
the geometry of a problem, and then formulate an analytic solution
to that simpler geometry. The bounding problem recurs here, and
in fact proliferates to become the whole question of an appropriate
data structure.

Algorithm — program

Our last ‘arrow’ is more difficult to differentiate from standard good
programming practice. We may be constrained or helped by a par-
ticular circumstance relating to the application of geometry (an ex-
ample constraint: the language available on a numerically controlled
machine tool; an example help: integer coordinates on a display
screen). We may need to be prepared to descend to low-level code on
occasions; geometrical (particularly graphical) programs are notori-
ous for inner loops that must run very fast; and accuracy problems
are common. Against this, we have our debugging aid, the display
screen, for feedback, even when there’s no graphics (odd singular,
graphics...) in the final program.

4Though only just (1993); for example, as an extension to the NAG library.
5 A closed-form solution is an answer that can be written down straight away;

—b+ Vb% — dac

2a
to the problem of finding the roots of a quadratic, but there is no closed-form
solution to the problem of finding the roots of a quintic.

for example the schoolbook formula is a closed-form solution

From geometry to program

)

Dimensioral complexikby

1(ii)—Dimensional, analytic and combinatorial complex-
ity are independent, and thus themselves define a sort of
‘three-dimensional space’.

13

14 Introduction

Dimensional, analytic and combinatorial snags

Having looked at geometric programming as a process, at the risk
of some repetition, we can classify the problems it presents from
another viewpoint; that is, where is the complezity in a geometric
problem? Tt tends to occur in three separate forms, involving: lots
of dimensions, tricksy equations, and too many (different) bits of
geometry at once. See Illustration 1(ii), which is not new °.

Dimensional complexity

Geometry works remarkably differently in different numbers of di-
mensions. For instance, angles are well-behaved things in two di-
mensions, little devils in three. (Compare a globe and a clock face.
What direction is West at the North Pole? You don’t get this prob-
lem on a clock.) And beyond three dimensions things are worse; you
can treat a moving solid as a four-dimensional object, but it doesn’t
help much, the equations are not symmetrical; the time dimension
sticks out like a sore thumb.

Analytic complexity

We have already said a bit about this. Equations can be nice or
they can be nasty; the pecking order goes something like this: [in-
ear, quadratic, cubic, rational quadratic, with square roots, quartic

plus, high-degree rational, with trig functions, with transcendentals,

complete collapse.... These problems immediately become much
worse when intersections, blends, and other combinations of equa-
tions must be considered. There are also other algebras—set theory,
graph theory—to worry about under the heading of analytic com-
plexity, as if there wasn’t enough already.

Combinatorial complexity

This occurs most obviously when we have a lot of data; even a good
number of points can cause problems. (You see, we can’t order
points in more than one dimension, so nice database techniques

1t’s in Computing Shape (see the References and Bibliography for details of
books and papers mentioned in the text), but the idea is originally attributable
to Charles Lang, we believe.

Dimensional, analytic and combinatorial snags 15

come unstuck.) A good deal of computational geometry is about
points, and efficient algorithms for dealing with lots of them. More
complicated geometric entities give other combinatorial problems;
we may need to make pairwise comparisons and worse. For example,
to find all the edges formed by a number of intersecting surfaces, we
need to compare every pair; to find the vertices, every set of three.
This is an order n? algorithm for starters.

An additional, but different, combinatorial blow hits us when we
have a lot of different types of geometry to deal with in one program.
If (in a mere two dimensions) we want to find intersections between
straight lines, we write a routine to do it; if we introduce circles,
we need three routines: line-line, circle-circle, and line-circle. If
we have ellipses, we need six routines, and so on. This hits you the
programmer (because you have to write the routines); it doesn’t just
affect the length of time the program takes. It’s a powerful incentive
for algebraically more general routines, but it sends us looping back
to the three arrows in the previous section....

2

Geometric basics

Dimensions

Let’s assume everyone’s familiar with things being in one dimension—
along a straight line: in two dimensions—in a plane: or in three

dimensions—in space. Now, if you think we’re going to charge off

into n dimensions at the drop of a hat, you're mistaken. In fact,

there’s a lot of hyperbole about n dimensions around. Permit us to
make some statements that will set the ground rules for the following

chapters.

Dimensionality looks easy to extend but it isn’t

One, two, three dimensions sounds like one, two, three apples (or
pears)—i.e. more of the same; but that’s not how dimensionality
works. Adding dimensions to a problem qualitatively changes the
structures we can create, the algorithms we can use, and what is
and is not feasible.

In one dimension, everything is very easy (i.e. it’s like program-
ming with money); in fact there’s not really any geometry at
all. But, we often solve geometric problems by creating one-
dimensional structures, and using the one-dimensional spaces
defined to sort values into ascending or descending order, which
we can’t do in any higher-dimensional spaces.

In two dimensions, we can see everything on a computer screen,
which is a big help. Many quite complicated structures (e.g.

Dimensions 17

polygon edges) are one-dimensional structures embedded in the
space, so we can hop back into a single dimension and do sorting
(e.g. to order the vertices of a polygon).

In three dimensions, we have to project even to get on to a com-
puter screen. On the other hand, we can describe objects to be
built in the real world. We now have one-dimensional structures
(curves) and two-dimensional structures (surfaces) embedded
in our space. A polyhedron—for example—is an assembly of
straight lines (edges) and surfaces (faces) and, unlike a polygon,
there is no nice way of ordering them.

One, two or three dimensions sounds rather elementary. Why not
four, five—or more? Many equations generalize deceptively easily
into n dimensions, but that doesn’t mean we can do anything sen-
sible with them. In particular:

Just because mathematics—and the computer—can deal with
more than three dimensions, don’t expect this to help your in-
tuitive understanding of higher-dimensional spaces: although
there have been valiant attempts to persuade us differently (see
Banchoff’s book).

It is easy to generate data that is many-dimensional: for in-
stance a multi-spectral Landsat picture has two spatial dimen-
sions and perhaps four or five dimensions of sensor data in that
space. But that does not mean that we have a multi-dimensional
space in which all the dimensions have equal weight and mean-
ing, in the way that spatial dimensions do.

Let’s jump ahead of this chapter, and look at some illustrations.
Time is sometimes said to be the fourth dimension. But the things
that happen in time—either physically or algebraically—are not
equivalent to things happening in an additional spatial dimension.
To be more precise, temporal equations that are useful are rarely
symmetrical between x, y, z and time; and those that are symmet-
rical are rarely useful.

We can generate examples without going above three dimensions.
Take the implicit equation of a circle (this is where we get a little
ahead of this chapter; if you're worried, come back here later):

(x—20)*+ (y —y0)> — 1> =0,

18 Geometric basics

Add in time: an obvious thing would be to model the circle moving
in a straight line. Suppose its trajectory is the parametric line

r = I0+ft
- y0+gt7

where ¢ is time: seconds if you like. So after ¢ seconds the circle will
have become:

(x— 20+ ft)* + (y —yo + gt)* —r° = 0.

Fine: if we replace t with 2 we get a quadric surface to be sure, but
it’s an elliptical cylinder: not very symmetrical, and nothing like a
sphere.

Look at the thing the other way around. Take that sphere equa-
tion:
(x—xo)2+(y—yo)2—|—(2—20)2—7“2:O.

Supposing we were to replace z with ¢ (for time), what have we got?
Not a moving circle at all, but a circle that is changing its radius
according to the formula:

N T

(where p and ¢ are composite constants derived from 2z, and r).
Even in this simple case, there is no obvious intuitive link between
the moving two-dimensional shapes and the static three-dimensional
ones. In practice things are much worse; the ‘temporal equations’
of three-dimensional movements contain trigonometric terms, for
representing rotations, which make them very difficult to handle.

There have been practical attempts to generalize animation, for
instance, to a four-dimensional problem, with time as the fourth
dimension; because the generality is to a greater or lesser extent
illusory, they have not been notably successful (e.g. see Glassner’s
1988 paper, and Woodwark’s letter about it).

Projection 19

Projection

One of the nattiest things we can do to get around dimensional
problems is to reduce the dimensionality of our data by throwing
some of the dimensions away. That is what we do when we make a
picture from a three-dimensional scene, and it is called projection.

Just throwing away a coordinate is seldom the best way of achiev-
ing this. For instance, in generating a picture of objects seen in
perspective, there is quite a complicated relationship between the
original three object coordinates and the two new screen coordinates.
Further, we often want to throw away a good lot of data en route:
in other words to sample the original geometry. In a picture of a
solid object, for instance, we only want to see its faces nearest to
the viewer.

That wvisibility problem is in turn itself susceptible to projection
techniques. Ray-tracing is a well-known rendering technique; the
object to be viewed is projected on to a number of straight lines,
each of which corresponds to a ray going from one of the dots (pizels,
for the initiated) on the graphics screen into the scene. In this case,
the sampling is an intersection process (see Illustration 2(i)). The
payoff from this approach is just the advantage of working in a
single dimension that was mentioned above; the data about how
far different objects are from the viewer can be sorted, and so the
nearest intersection—which is also the nearest part of the scene—
to the viewer is found quickly. In this case, the sampling is not
an intrinsic property of the problem, but of the graphics device; a
television-type picture is of course made up of a lot of dots.

In other cases, projection is not a big help. For instance, in ap-
plying surface patterns to an object, it would seem natural to work
on the two-dimensional space defined by their surfaces. In practice,
this is often very difficult because, although the surfaces are two-
dimensional, they are great distortions of regular two-dimensional
space; so it takes some effort to place a pattern on even a simple ob-
ject without it becoming wildly distorted. Think of trying to draw
a chequerboard pattern on to a cone; either we get a nasty seam, or
we squash the pattern to nothing at the cone’s apex.

To apply a pattern to an object, it turns out to be much easier
if we can define that pattern in three dimensions (see Perlin’s well-

Geometric basics

a1

/, }, j

{_ .
]

2(i)—Ray-tracing; the object is projected on to the ray by
intersection; the nearest intersection to the viewer deter-
mines part of the picture.

Points and vectors 21

known SIGGRAPH paper). Although we have to take care to define
it in such a way that we only need to evaluate it on the surface of
the object, we don’t need to take any account of the (weird and
wonderful) shapes of the objects that will actually be patterned.

Points and vectors

If we’ve got some dimensions—a space—we’re happy with, what
about something to put in it? Points are a good start: just lists
of coordinate values. A point is a list of displacements in each co-
ordinate (x,y,...) from the origin (0,0,...). Sometimes we’d like
to carry these displacements around, and use them to position our-
selves from a point we’ve already got. These ‘floating’ points are
called wvectors. If you add a vector to a point, you define another
point, if you add two vectors you get another vector.... In fact we
have a little algebra of the things:

P-P =
V4V =
V-V =
P+V =
P-V =
P+P =

T TS < <

Ha! The sum of two points is undefined®.

Looked at another way, vectors define a movement through a
certain distance in a specified direction. We can separate out the
distance and the direction by normalizing the vector. Take a three-
dimensional vector a, (4, Ya, 24). First extract the magnitude:

la] = /22 + y2 + 22.

This is the Pythagorean distance formula; we’ll be seeing more of it
later. If we divide all the components of the vector by this magni-
tude we get a new, normalized, vector: with a length of 1, but the

'Tn other words, the set of points and vectors is not closed under the opera-
tions of addition and subtraction.

22 Geometric basics

direction unchanged:

~ Lo Ya Za
- (_, ve _> |
|al” |a]” ||
What about multiplication? We can easily multiply a vector by

a constant, to get a longer or shorter one. There are also two very
useful ways to combine vectors:

The dot product of two vectors a and b yields a scalar (i.e.
a number) equal to |a||b|cosf, where 0 is the angle between
them. This is a good way to find out the angle between vectors,
especially unit vectors. We can get the product directly from the
components of the vector, just by multiplying them together:

a.b = z.xp + Yayp + a2

The cross product generates a new vector perpendicular to the
two that are being multiplied, with a length equal to the (ordi-
nary) product of their lengths:

axb= ((yaZb - ybza)7 (ZL’bZa - J]aZb), (xayb - xbya)) .

These two products of vectors are classic material for the ‘inner
loops’ of geometric programs. They need to run very quickly, al-
though there is little that can be done to reduce the number of
arithmetic operations necessary. Think twice before encapsulating
them in subroutines or functions however; the overhead from calling
them could become a big factor in your code’s performance. The
slightly unfashionable idea of macros—routines that are expanded
into ‘in-line’ code at the time of compilation—are an excellent com-
promise between legibility and efficiency in this context.

Implicit and parametric geometry

What about some more exciting geometric elements? When you
were at school you probably learned about the straight line y =
mx + ¢, and then found out that that equation couldn’t represent
vertical lines, which had to be x = k; oh, and then lines near vertical

Implicit and parametric geometry 23

have very large values of m, so you’d be better off with a form
x=m'y+ ... and a lot more of that nasty sort of stuff.

Those explicit equations of curves of the form y = f(z) or z =
f(y) (and explicit surfaces, z = f(x,y) etc.) are only useful for
describing functions, such as a signal varying with time, which are
single-valued—so we know that they won’t double back on them-
selves. In those cases (see Chapter 4) explicit equations are actually
much easier to deal with than the more general geometric elements
that we shall now look at.

If we wish to formulate geometric elements that are not tied to
alignment to a particular axis, then we have two choices:

Implicit equations

Implicit equations classify all the points in the plane, or in space,
into two sets; so the curve or surface you are trying to define is
the boundary between the two sets. The simplest way to do this is
to evaluate a formula f(z,y)—or f(z,y, 2) in three dimensions—at
every point. The result is a number; if it’s negative, the point is on
one side of the curve or surface; if it’s positive, the point is on the
other. We can also think of this as a mapping from the space on to
a one-dimensional straight line, as shown in Illustration 2(ii).

The curve or surface itself is the set of points which map on to
the origin of that one-dimensional straight line: those for which
f(z,y) = 0or f(x,y,z) = 0. They are called implicit curves and
surfaces, because they are implied by the point classification. They
are also referred to as half-spaces, because they divide the coordinate
space up into two halves: points classified as positive and points
classified as negative. The two halves are not in any sense equal, of
course, and one may be bounded and the other not (as in the case
of a circle) or both unbounded (as in the case of a plane).

However, because half-spaces divide up space, they must have a
dimensionality that is one lower than the space in which they are
embedded. So, in the plane, all implicit equations describe curves;
in three-dimensional space, they all describe surfaces; and in four
dimensions they describe volumes (visualize that if you can).

24

Geometric basics

2(ii)—Curves as mappings: an implicit plane curve maps
from two to one dimensions; the parametric version maps
the other way, from one to two dimensions.

Implicit and parametric geometry 25

Parametric equations

Parametric equations are obtained by introducing one or more ex-
tra variables, or parameters, and calculating x, y—and z etc.—as
functions of them:

r = ¢i(t,u,v,.)
Yy = ¢2(t7u77}7 .)
Z = ng()

You can think of the parameters as another set of coordinates.
(If the parameters were the same x, y, z coordinates, then these
would be transform equations—see Chapter 9.) A parametric curve
or surface can also be seen as a mapping in the opposite sense to
an implicit one: in the case of a curve—look at Ilustration 2(ii)
again—going from a one-dimensional straight line to a two- or three-
dimensional space.

However, because we can determine the number of coordinates
and the number of parameters independently, there is no fixed re-
lationship between the sort of geometrical element we can describe
with a parametric equation and the space in which we are working.
We can perform mappings which embed a two-dimensional space
in a four-dimensional space, or whatever else we fancy. But by far
the most useful parametric equations are functions of a single pa-
rameter in two and three dimensions (planar and space curves) and
functions of two parameters in space (surfaces).

To summarize:

Implicit equations Classify points Fixed dimensionality
in the space relative to the space

Parametric equations | Generate points on | Any dimensionality
the element

In general, it is not easy to convert between the implicit and para-
metric equations of a geometric element (see Chapter 11). However,
simpler shapes do have both implicit and parametric equations, and
we shall spend the rest of this section looking at the simplest ones:
the straight line, plane, circle and sphere. If you want more details,

26 Geometric basics

financial considerations prompt us to recommend that other effort
of ours: A Programmer’s Geometry.

The straight line and plane

The implicit straight line is ax + by 4+ ¢ = 0; the parametric straight
line is:

r = o+ ft
= Yo+ gt
By extension the plane is ax + by + cz +d = 0 and

r = Xy + flt + fgu
= Yo+ nt+ gau
Z = Zy+ hlt + hgu.

The circle and sphere
We have already seen that the implicit equation of the circle is
(z —x0)> + (y —yo)* —1° = 0,
which is easily extended to the sphere:
(x = 20)* + (y — y0)* + (2 — 2)* = r? = 0.

The centre is (xg, Yo, 20) and the radius is . The classic parametric
equation of the circle is:

x =29+ rcost

Yy =1+ rsinf
and the classic, but not-too-useful, sphere is:

xr = xo+rcostcosy
= Yo+ rsinfcosy

z = 29+ rsiny.

The angles 6 and 1 are latitude and longitude respectively. There
are two problems worth mentioning here. First, for computational

Bounding geometry 27

reasons we don’t like trig functions (they take too long), so com-
monly replace cos and sin with the half-angle formulae:

2t
sinf = ——
1+ ¢2
1—¢

cos =
1+ t2
h t = tan-—.
where an2

These have their own problems (see A Programmer’s Geometry);
they only do 90° worth of the circle. Second, the sphere is the
first example of a nasty parameterization 2. Geographers before and
after Mercator have struggled with this well-known problem; even
for such a simple shape there is—horrors— no perfect solution: nor
even a universally acceptable best effort.

Bounding geometry

In practice, we seldom want an infinite curve; we’ve got to clip it to
get, it into a picture, if for nothing else. We want straight-line seg-
ments, circular arcs, and pieces of other curves and of surfaces too.
The bounding that generates these pieces is a process of selecting
part of something, and throwing the rest away. Implicit geometry
classifies things, and so is the obvious tool for this job.

An element of implicit geometry classifies a space into two parts.
The shape of the boundary between the parts is determined by
the equation of the geometric object. When such equations are
constructed from the usual algebraic operators, the result is—except
in certain special and complicated cases—a smooth curve, surface
etc. To get a shape with sharp corners—such as a rectangle in
the plane—we need to introduce operators which can combine the
regions classified by several ‘ordinary’ algebraic equations. If we
consider an implicit piece of geometry as a set of points, we can see

2Note that the word parameterization has two meanings: “choice of parame-
ters” (as here) and “conversion from implicit to parametric form” (the opposite
of implicitization). There seems no easy way around this terminological trap.

28 Geometric basics

that we combine these sets using the operators which already exist
in set theory; here we shall need only the intersection operator, N.

For example, if the four sides of a rectangle aligned with the
coordinate axes are:

r = xo,
x = x1 (11> w0),
Yy = Yo,

and y = yi (51> %),

we can generate four sets of points from the inequalities:

Zo
T
Yo
Y1

e 8 8
IN IV IN IV

and combine them:

(x> m0) N (x <21) N (y > 50) N (Y < 9n).

Any point which satisfies that equality is inside (okay, purists—or
on the edges or corners of) the rectangle.

Just to make things more complicated, note that we could have
achieved the same bounds by replacing N with a minimum function:

min ((x — x0), (1 —), (¥ — %), (1 —y)) > 0.

Although this is not a continuously differentiable function, it is an
implicit equation in its own right. When we come on to talk about
penalty functions (Chapter 5) it will become apparent how this way
of formulating set operations might be useful. Combining implicit
functions with set-theoretic operators is a catching disease, and is in
fact the foundation of set-theoretic (or constructive solid geometry—
CsG) solid modelling, which we resist the temptation to expand into
here....

What about parametric equations? They can easily be bounded
by implicit equations in terms of the parameters (t, u, and so on are
now the coordinates—so we say that these are implicit equations in

Bounding geometry 29

parameter space). As regards curves, they have a one-dimensional
parameter space, so this bounding isn’t usually thought of as geom-
etric at all. We just specify a beginning and an ending parameter
for the curve—say ty and ;. But of course we are really using the
intersection of the two one-dimensional implicit functions:

to
t.

IN 1V

t
t

In two dimensions, it becomes clearer what’s going on. Typically,
parametric surfaces are arranged as patches, and these are pieces
of surface delineated by a rectangle (and that’s usually a square)
in parameter space. Again, in practice we just specify the limiting
values of the two parameters (typically 0 and 1), and don’t do a
song and dance about the geometry of the bounds.

We could bound any region in parameter space, and triangular
patches are quite common?®. These areas of parametric surface are
then matched—by interpolation processes we will look at—to curves
and other patches in three-dimensional ‘real’ space. This takes us a
certain distance in many applications, but eventually we will have,
say, another surface that intersects a patch, and we will want to
represent the result of that operation on the patch by bounding
the pieces that are created. At this point, we often have no ob-
vious bounding equations, either in parametric or real space. We
can choose to work in either space, whichever is more convenient
(“convenient” is an overstatement in this context, as you will see in
Chapter 10).

Parametric equations can also bound things, but this is a much
trickier business; now, an implicit equation, or a set-theoretic com-
bination of implicit equations, cuts space into two parts. If we can
make a curve or surface that cuts space into two parts out of other
(i.e. parametric) elements, then that is a de facto half-space. A
simple example is a polygon made up of parametric straight line
segments. As long as the polygon is complete, we know that it de-
fines an inside and an outside. The problem is classifying a point,

3They are needed for the corners of objects with rounded edges; they are
not, in fact, usually done by setting up a triangular boundary in the space of
the two parameters, but by setting up a parametric system in the triangle itself.

30 Geometric basics

|

2(iii)—Using a ‘ray-test’ to find out whether a point is
inside a polygon: if the number of intersections is odd, it
is.

since we have no implicit equation. We’ve got to do that in a most
oblique way, by shooting out a straight line from the point of interest
to infinity, and counting how many times it crosses the polygon (see
Mlustration 2(iii)); the Jordan curve theorem tells us that whether
the final count is odd or even determines whether we’re inside the
polygon or not. This is a classic area of activity (especially in three
dimensions), and if we went any deeper into the matter we’d be
talking about another type of solid representation, the boundary
model....

3

Parametric
curves and surfaces

We have seen that in two dimensions the straight line and circle
can be expressed by equations for x and y, in terms of an auxiliary
parameter t. As the value of ¢ changes, new values of = and y are
generated. In three dimensions, we need only add another equation
for z. Thus a straight line in space is:

= l’o—i—ft
= Yo+ gt
z = Z()—|—ht.

You may (or may not) find it helpful to think of these parametric
equations as mappings from a one-dimensional coordinate system
with the single coordinate ¢ into our usual two- or three-dimensional
space. Thus, the equation of the straight line! provides a way to
get from any value of ¢ to a value of x, y or z (but not a way to
get from values of x,y, z to a value of ¢, as only points on the curve
have a corresponding value of t).

If we introduce a second parameter into the equations above, then
we are mapping from a two-dimensional space (we’ll use ¢ and u for
its two dimensions) into real space. But if we drop an equation and
map from the ¢,u space into another two-dimensional space, then
what we have is a two-dimensional transform: or, with three equa-
tions and three parameters, a three-dimensional transform. You can
think of Chapter 9 when you get there in terms of parametric equa-
tions if it makes you happier. It makes most people quite a lot less
happy, so we won’t pursue that avenue.

LOr curve, if we have 2,3 and so on in the equation.

32 Parametric curves and surfaces

Let’s back up a bit here; if we map from ¢, u space into a three-
dimensional coordinate system (i.e. z,y,z as usual), we create a
surface. The parametric equation of a plane

r = Xy + flt + fgu
= Yo+ gt + gou
zZ = Zy+ hlt + hgu

has already appeared.

It’s pretty tempting to try more adventurous expressions in terms
of t or t and u in the above equations. It is especially attractive
because the whole essence of the parametric form is that it makes it
easy to generate points on the curve or surface, and to bound them
to a particular range of parameter values. If we can evaluate the
expressions we have created, then we can get points; and we can get
them within a particular range (interval) of values of ¢, or within a
rectangle in the t, u plane. Of course that doesn’t mean that other
operations are so easy (more of that later).

Arguably the simplest way to extend parametric equations is to
make the functions of the parameter(s) an arbitrary polynomial:

= a0+a1t—|—a2t2+'“

or, with two parameters,

T = ag+ ait + asu + astu + asit? + asu® + agt?u + artu® + agt® + - -

Alternatively we might consider rational polynomials; going back to
one parameter—to keep things a little bit simpler—we have:

ap + art + agt* + - -
bo + byt + bot? + - - -

y = —

Interpolation 33

(Wonderful thing, the ellipsis...) Rationals give us the opportunity
to represent conic sections exactly, using the t = tang parameteri-
zation we saw in the last chapter. The alternative is to approximate
them with a single high-degree polynomial. It can be shown (the
Weierstrass theorem) that we can do this to arbitrary precision, but
in general high-degree equations are not attractive. However, while
rationals allow us to do more with lower-degree equations, the exis-
tence of the denominator causes an obvious problem: what happens
if it is allowed to come close to, or to cross, zero? We can adopt a
polynomial that is guaranteed to remain positive, such as the 142
term in that circle parameterization, or simply ensure that the range
of parameters within which we are working does not cause trouble.
It makes things less straightforward, though, and for the rest of this
chapter we shall ignore rational equations.

A more immediate problem is, what values are we going to use for
all these constants a, b etc.?” We will start to answer that question
below, commencing with curves, and moving on to discuss surfaces.

Interpolation

When we looked at the straight line and the plane, we used notation
of this sort: x = x+ ft; now we have changed to x = a;+ast+ast*+

. You may think that we’ve just run out of letters, and that’s
true, but the main point is that, in the equations for the straight line
and plane, each of the coefficients had a meaning. Take the straight
line in space, for instance; (o, Yo, z0) is the point where ¢ = 0 and
(f,g,h) is a vector in the direction of the line.

When we start adding terms in higher powers of ¢, the coefficients
have no intuitive meaning. We must therefore control curves and
surfaces in a less direct way. The most common method is to make
the curve or surface obey certain constraints, and the most com-
mon constraints are position and tangent direction, although other
constraints, such as higher derivatives and curvature, are also used.
Constructing a geometric element to obey constraints of this sort is
called interpolation.

In general, the more coeflicients there are in the equation of a
curve or surface, the more constraints it is able to meet. That

34 Parametric curves and surfaces

means two things:

We need enough coefficients for the job in hand (unless we're
going to use more than one curve or surface—see later).

We don’t want too many coefficients, as the extra degrees of
freedom that these provide for us (or encumber us with) have
to be mopped up some other way.

So, let’s look at the sort of interpolations we can do with points,
straight lines and circles. A straight line is able to fulfil two con-
straints: it can go through two points, or go through a point and
be tangent to a circle. A circle has three degrees of freedom, so it
can go through three points, go through two and be tangent to a
straight line, be tangent to two circles and a line, and loads more;
or we can fix its radius, and it has two degrees of freedom like a
line. Although the geometry in point, straight-line and circle con-
structions is simple, the constructions are interesting because there
are independent position and tangent constraints in many different
combinations.

With more general parametric polynomials, we are normally re-
stricted to specifying position and tangent values at particular val-
ues of the parameter.

Lagrange interpolation

Lagrangian interpolation makes the curve or surface pass through a
number of points. It can pass through a point for every coefficient in
each equation. For instance, a quadratic will go through three. We
decide what the actual values of the coefficients will be by solving a
set of simultaneous equations in the coefficients. These are obtained
by substituting the coordinates of each point— (x,y,...)—and the
value that we want the parameter(s) to have at that point—¢,...—
into the curve or surface equations.

Hermite interpolation

In Hermite interpolation, we differentiate the equations of the curve
or surface, and solve simultaneous equations for both position and
tangent value at each of the points being interpolated. Thus twice
as many coefficients are required as in the Lagrange case. A par-
ticularly important case is constructing a curve between two end

Interpolation 35

3(i)—Lagrange and Hermite interpolation used to con-
struct a parametric cubic curve segment.

points, with known tangent values at each. That requires a curve
with four coefficients in each equation, which are cubics; there is
also an equivalent patch which runs between four corner points,
and has 16 coefficients. Cubics are frequent sightings in computing
with geometry: see Illustration 3(i).

The problem of parameterization

Interpolating parametric curves, deciding what the parameter val-
ues at each point will be—the issue of parameterization—is crucial.
(That is a problem that does not occur with explicit, single-valued,
curves and surfaces: and so we can see why these are preferred for
drawing graphs and so on. And techniques from ‘graphing’ applica-
tions usually exploit this limitation, which is why we should be wary
of trying to transplant them to more general geometric problems.)
So, the problem with interpolating parametric curves is that, while
the positions and tangent directions may be provided, we have to
estimate the parameter values that the curve ‘should’ have when it
passes each point, and the magnitude as well as direction of deriva-
tives. In the case of Lagrange interpolation, the simplest choice is
to space parametric values equally between point data. This works
if the points are themselves quite evenly spaced; otherwise some-
thing better is needed. Since parameterization is related to curve

36 Parametric curves and surfaces

length, we would like to know what the length of the curve will
be between each data point; but that is putting the cart before the
horse, because we haven’t got the curve yet. One could implement a
technique of successive refinement—set up one curve, get the curve
lengths from it, and thus obtain new parameter values at the data
points, and repeat the exercise—but this rigmarole is not usually at-
tempted; it would probably be difficult even to prove that it would
converge.

The usual solution is chord-length parameterization, where the
parameter values at the points are based on the lengths of the
straight-line segments connecting them. This is a good workhorse,
giving trouble only when there are abrupt ‘corners’ implied by the
data, and changes of spacing. Further refinements involve taking
the angle between successive spans into account (see Farin’s book
Curves and Surfaces for Computer Aided Geometric Design for more
detail).

With Hermite interpolation, similar problems occur; and it must

dz
be remembered that magnitudes of derivatives of the form — etc.,

are related to the actual size of the curve in the units of length being
used. Thus, if we scale a curve by scaling the values of its Hermite
coefficients, we must scale the derivatives explicitly. That’s easy
enough for a simple scaling, but what about a shear transform?

All these remarks have been addressed to the problem of inter-
polation, but also apply to curve fitting. Again, this is a process
that works well with explicit geometry, and fairly well with implic-
its (except that normalization causes a problem). With parametric
geometry, we again have to decide in advance what parameter value
each point will correspond to. But if the points are at all dense, this
is difficult: chord-length parameterization is certainly useless.

We conclude this section with C code for Lagrange and Hermite
interpolation. The first procedure works out the Lagrangian inter-
polating cubic parametric polynomial through four points in three
dimensions. The points will be supplied in px, py, and pz. The
parameter on the curve at the first point will be 0, and the param-
eter at the last point 1; the coefficients of the polynomial will be
returned in polyx, polyy, and polyz; polyx[3] is the coefficient of

Interpolation

37

t3 in x and so on. The parameter values at the middle two points

on the curve will be returned in t1 and t2.
#include <math.h>

#include <stdio.h>

/* Absolute value macro */

#define fabs(a) (((a) < 0.0) 7 (-(a)) : (a))
/* Almost O - adjust for your application */
#define ACCY (1.0e-6)

int lagrange(px,py,pz,tl,t2,polyx,polyy,polyz)

float px[4],polyx[4];
float py [4]1,polyy[4];
float pz[4],polyz[4];
float *t1,xt2;
{
float xd,yd,zd,dfl;
int 1i;
/%
Sum the distances between the points to use to
scale t1 and t2. Note the extremely tiresome
casting that needs to be done because all of the
standard C maths library is in doubles.
*/
dfl = 0.0;
for(i = 1; i < 4; i++)
{
xd = px[i] - px[i-1];

yd = pylil - pyli-11;

zd = pz[i] - pzli-1];

dfl = dfl + (float)sqrt((double)
(xd*xd + yd*yd + zd*zd));

38 Parametric curves and surfaces

if (1 == 1) *t1
if (i == 2) *t2

dfl;
dfl;

if (dfl < ACCY)
{
fprintf (stderr,
"Lagrange: curve too short: %f\n",dfl);
return(1);

xt1
*t2

xt1/df1;
*t2/df1;

Call the procedure to compute the coefficients in
each coordinate.

if (lagrange_coeffs(px,polyx,tl,t2)) return(2);
if (lagrange_coeffs(py,polyy,tl,t2)) return(3);
if (lagrange_coeffs(pz,polyz,tl,t2)) return(4);

return(0) ;

} /% lagrange */

Procedure to compute the coefficients in one
dimension of the Lagrangian cubic through four
points. The code reflects the algebra.

*/

int lagrange_coeffs(p,poly,tl,t2)
float pl4],poly[4];
float *tl,*t2;
{
float di1,d2,d3,tl1s,t2s,tlc,t2c,denom,tt;

Interpolation 39

di = p[1] - pl0];
d2 = p[2] - pl[0];
d3 = p[3] - ploO];
tls = (xtl1)*(*xtl);
t2s = (xt2)*x(*t2);
tlc = tlsx(xtl1);

t2c = t2s*(*t2);

denom = (t2s - (*t2))*tlc;

if (fabs(denom) < ACCY)
{
fprintf (stderr,
"Lagrange_coeffs: increments too short: %f\n",
denom) ;
return(l);

tt = (-t2¢c + (*t2))*tls + (t2¢c - t28)*x(xtl);

poly[3] = (d3x(*t2) - d2)x*tls +
(-d3*t2s + d2)*(xtl1) +
d1*t2s - di*(*t2)/denom + tt;
poly[2] = (-d3*(xt2) + d2)*tlc +
(d3*t2¢c - d2)*(xt1) +
di*xt2c + di*(*t2)/denom + tt;
poly[1] = (d3*t2s - d2)*tlc + (-d3*t2c + d2)*tls +
dixt2c - dlxt2s/denom + tt;
poly[0] = p[0];
return(0) ;

} /* lagrange_coeffs */

The second procedure computes the Hermite interpolant in three

40 Parametric curves and surfaces

dimensions through two points with two gradient vectors at the
ends. The points are p0 and pl, and the gradients are g0 and
gl. The coefficients of the interpolating polynomial are returned in
polyx, polyy, and polyz. The algebra in this case is much simpler
than that for Lagrangian interpolation.

void hermite(pO,pl,g0,gl,polyx,polyy,polyz)
float pO[3],p1[3],g0[3],g1[3];

float polyx[4],polyy[4],polyz[4];

{

void hermite_coeffs();

hermite_coeffs(p0[0],p1[0],g0[0],g1[0],polyx);
hermite_coeffs(p0[1],p1[1],g0[1],g1[1],polyy);
hermite_coeffs(p0[2],p1[2],g0[2],g1[2],polyz);

} /* hermite */
void hermite_coeffs(p0,pl,g0,gl,poly)

float pO,pl,g0,gl;
float polyl[4];

{
float d,g;
d =pl - p0 - g0;
g =gl - g0;
poly[0] = pO;
polyl[1] = g0;
poly[2] = 3.0%d - g;
poly[3] = -2.0%d + g;

} /* hermite_coeffs */

Surface patches

Surface patches 41

o

3(ii)—A parametric patch Q = F(¢,u) defined over the
interval 0 <t <1,0<u<1.

Surface patches are parametric surfaces of the form

x = fi(t,u)
Yy = fQ(tau)
z = f3(t,u)

(which we can also write with vector coefficients, as Q = F(t,u) a
paper-saving measure that will be increasingly used in this chapter).
A patch can be defined over any parametric portion of the (t,u)
parameter space, but is easiest to deal with over the two-dimensional
interval:

The primary constraint on these square areas of surface is that
their boundary should match the boundaries of adjacent patches.
This can be met in two ways:

Define the patch in terms of its boundaries; this is the approach
taken in the Coons patch (see Coons’ 1967 paper), where the

42 Parametric curves and surfaces

interior of the patch is the result of a blending operation per-
formed on its four boundary curves.

Explicitly choose a patch equation that gives known types of
curves at the boundaries.

The Cartesian product patch has equations in which the terms
are products of powers of ¢ from 0 to 3 (i.e. 1,¢,¢%, %) and the same
powers of u (i.e. 1,u,u? u?). There are 16 such terms in the equation
corresponding to each coordinate:

r = apt’u® + a1tPu® + ast3u + ast’
2 3 2, 2 2 2

astu” + ast"u” + agt”u + art

agtu3 + CLgtU2 + alotu + Cbnt

3 2
a12U” + a13u” + apu + ags.

+ o+ 4

Of course there are corresponding equations in y and z, making 48
terms in all. Tt’s easy to see what curves we will get at the edges of
the patch. At the edge u = 0, for instance, the equation degenerates
to:

xr = CL3t3 + CL7t2 + ant + a1s.

In fact, for any fized value of t or u, we get out a cubic iso-parametric
curve in the other parameter.

As well as knowing the position of the boundary curves, we need
to match tangents—and maybe higher derivatives, radius of curva-
ture etc.—across the boundaries. Let’s find an expression for the
tangent across the u = 0 edge of a Cartesian product patch. First
differentiate with respect to u:

ox
= = 3at’u® + 2a1t3u + ayt?
ou
Bast?u® + 2a5t*u + agt?
3agtu® + 2agtu + ayot

2
3&12U + 2@13U + Q4.

+ +

Then set u = 0 again:

ox

- = Cl2t3 + Cl6t2 + alot + ay4.
OUu=0

Surface patches 43

Any other patch which has the same boundary curve and derivative
polynomial? at its edge will match this patch at its u = 0 edge;
similar constraints apply at the other edges?.

In a common case, we have a network of space curves ready-
designed. Annoyingly, it works out that bicubic patches have just
one too many degrees of freedom (in each dimension) to surface such
a network without the supply of additional data. (Higher-degree
patches have lots of extra degrees of freedom, quadratics don’t have
enough.) If the patches are being determined by a Hermite tech-
nique, or as a geometric relationship between the allowable positions
of the internal points in adjacent patches (or—looking ahead—the
corresponding vertices of a Bézier control mesh), then the extra
degrees of freedom emerge as so-called twist vectors at the patch

corners:
9*Q(t, u)
otou

See Illustration 3(iii) for a sketch of both of these cases. Suggested
solutions to this problem have padded out many a thesis. (That’s
why they’re called higher-degree patches....)

For now, let’s look at something simple. How do we draw a patch?
The simplest way is to make a line drawing of an iso-parametric grid.
Let’s look at some code to do that. We could simply write a routine
to evaluate x, y and z in the obvious way, and keep calling that; but
it’s not very efficient because, along iso-parametric curves, either ¢
or u is fixed, and so we would be doing a lot of recalculation. The
code that follows draws an iso-parametric straight line at a specified
value of u, varying ¢ in n steps. We assume that the coefficients are
available as three sets of variables ax[16], ay[16], az[16], which
correspond to the subscripts in the equations above and the three
coordinate axes.

Here’s the result; note the nested or Horner forms* of the equa-

2For some applications, continuity on higher derivatives is required.

3Continuity of parametric derivative is not an essential condition for smooth-
ness; patches might also join smoothly if the tangent derivatives at the mutual
edge were in the same directions but had different magnitudes; or the deriva-
tives might not match at all, but there could still be a common normal (i.e. the
surfaces could be locally coplanar) at the joint.

4The Horner form of a polynomial ag + at + ast® + ast® + - - - is ag +t(a; +

44

Parametric curves and surfaces

3(iii)—The extra degree of freedom of a cubic patch in
interpolating over a network of curves: twist vectors in the
Hermite case, and constraints on inner point positions in
the Lagrange interpolation. Each constraint is shared with
four adjacent patches, thus yielding an average of one per
patch, except at the edge of a patched surface.

Surface patches

45

tions appear again. In this case they save pre-calculation of u? and
u? at the beginning of the loop and of ¢? and 3 within it.

Plotting is performed by two somewhat notional routines called
move(x,y,z) and plot(x,y,z), which move the ‘pen’ in ‘pen up’
and ‘pen down’ mode respectively. We assume that they are kindly
going to deal with projection, clipping and so on for us.

float ax[16], ay[16], az[16];

/%

* The next coefficients are to be used in

the inner

* loop, so we don’t want lots of array-subscript

* arithmetic; hence no cx[4] etc.

*/

float cx_0,cx_1,cx_2,cx_3, cy_0,cy_1,cy_

cz_0,cz_1,cz_2,cz_3;

float ¢, u, dt, x, y, z;

int i, n;

cx_0 = ax[3] + ux(ax[2] + ux(ax[1] +
cx_1 = ax[7] + ux(ax[6] + ux(ax[b] +
cx_2 = ax[11] + ux(ax[10] + ux(ax[9] +
cx_3 = ax[15] + ux(ax[14] + u*(ax[13] +
cy_0 = ay[3] + ux(ay[2] + ux(ay[1] +
cy_1 = ay[7] + ux(ayl6] + ux(ay[b] +
cy_2 = ay[11] + ux(ay[10] + ux(ay[9] +
cy_3 = ay[15] + ux(ay[14] + ux(ay[13] +
cz_0 = az[3] + ux(az[2] + ux(azl[1] +
cz_1 = az[7] + ux(az[6] + ux(az[b] +
cz_2 = az[11] + ux(az[10] + ux(az[9] +
cz_3 = az[15] + ux(az[14] + u*(az[13] +

2,cy_3,

uxax[0]));
uxax[4]));
u*xax[8]));
u*xax[12]));

uxay[0]));
uxay[4]));
uxay[8]));
uxay[12]));

uxaz[0]));
uxaz[4]));
u*az[8]));
u*az[12]));

t(ag+t(az+---))). It saves arithmetic when the polynomial is being evaluated.

46 Parametric curves and surfaces

t = 0.0;
dt = 1.0/(float) (n-1);

move (¢x_3,cy_3,cz_3);

for (i=1; i<n; i++) /* We want to loop n-1 times */

{

t =t + dt;

x = cx_3 + t*x(cx_2 + t*x(cx_1 + t*xcx_0));
y = cy_3 + tx(cy_2 + t*x(cy_1 + txcy_0));
z =c¢z_3 + tx(cz_2 + tx(cz_1 + t*xcz_0));

plot(x,y,z);

Splines

It is not feasible to make a long curve or complicated surface with a
single high-degree polynomial. One problem is that of parameteri-
zation; poorly chosen parameter values at the data points make the
curve more and more wiggly as the degree of the curve increases.
Also, high-degree polynomials (this category usually starts some-
where between degree 6 and 10) are expensive to compute—because
of the number of terms—and extremely sensitive to inaccuracies in
their coefficients. (There is more about this in the next chapter.)

The obvious solution (well, fairly obvious solution) is to knot a lot
of simple pieces of curve or surface together, and a lot of energy has
been frittered away over this very matter. Why? It is, you might
think, as easy to make ten curves as one, if the conditions that
each one is to meet are precisely and individually defined; but usu-
ally they are not. More frequently we have some data specified for
each span, typically its position; and other requirements, typically
tangent or curvature continuity, are specified over the whole curve
or surface. So we need to invent values for local data that satisfy
the global constraint, and possibly are also optimal in some defined
way. Perhaps we want to minimize or maximize the integral of some

Splines 47

quantity over the curve or surface, or perhaps we’ll be satisfied with
a curve that is optimal in the designer’s opinion.

The word spline covers all such piecewise curve and surface tech-
niques, and we’ll classify splines into three types:

Sequential splining

This is a term that we’ve just made up: a phrase to describe the
simplest approach to the generation of piecewise curves and surfaces.
We start with one piece of the curve or surface—usually the largest
and most important—and then join further pieces to it. These extra
pieces will need at least enough degrees of freedom to meet the
constraints imposed by what’s already in place, and you’d better
have some more in hand, otherwise the new geometry is totally
determined, and will probably start to oscillate wildly a few curve
or surface elements out from the original piece of geometry.

This is rather a faint-hearted way to go about designing long
curves, but it’s very simple; each new curve segment meets no, one,
or two defined end-conditions, and can be created by Hermite inter-
polation or similar processes. For surface patches, this method of
construction is a common one; adding new patches is more compli-
cated, as the number of conditions to be met grows with the number
of edges that are shared with patches that have already been created
(see Hlustration 3(iv)). Thus, knowing the order in which to create
a patched surface is a significant piece of design expertise, and so
the method is difficult to automate.

Local splining

To avoid order-dependence, we should like to determine all the spans
or pieces of surface at the same time. One way of doing that is to
take into account a number of data points that are near—but not
on or adjoining—a particular span or piece of surface. The B-spline
we shall meet in the next chapter does exactly this, although in the
case of a B-spline surface, just within patches, so the overall scheme
is a hybrid between local and sequential spline interpolation. But
the sequential stage is easier because the B-spline patches, being
assembled from pieces of simpler surface, can be larger: well, that’s
the sales talk.

48

Parametric curves and surfaces

3(iv)—When constructing a large patched surface, it is not
possible to avoid patches that join others at one (a) and
two (b) edges. Patches that meet others at three (c) and
four (d) edges are encountered in editing a surface.

Types of continuity 49

It is easy to invent (conceptually) simpler local splines: a favourite
is the Overhauser curve (see our other effort A Programmer’s Geom-
etry). The idea is to fit some subset of the data available with a
simple curve segment. In effect we are generating tangent or higher-
derivative data from the position data supplied. Though dependent
upon these data, these tangents and so on are non-unique—we could
just as easily use others of differing magnitude, for example. Once
the tangents and higher derivatives are defined, each span can be
interpolated separately.

Global splining

This is the real McCoy. Now we try to determine a whole curve ° in a
single process. The tangents, or other criteria that must be matched
at the knots between the spans, are equated together in appropriate
pairs, and the large set of equations that results is solved, yielding
the end conditions from which the spans can be constructed. The
benefit of this approach is at least the opportunity to get a ‘better’
curve; whatever we are optimizing will be optimized over the whole
curve, not just some segments. The disadvantage is that changes
to the data defining a global spline proliferate—at least to some
extent—along the whole curve, so it is possible that an improve-
ment to a curve in one place will wreck it elsewhere. There is also
that large set of simultaneous equations to solve, for which matrix
methods are preferred; the matrices are strongly diagonalized and
relatively easy to deal with (see the book Numerical Recipes).

Types of continuity

At the knots of spline curves (where two pieces—or spans—are
joined) we do not usually attempt to match all the non-zero deriva-
tives that the spans possess. Cubic spans, for instance, have a
non-zero third derivative; but commonly only position and first
derivative—and possibly second too—are enforced across the knots.
These degrees of continuity are commonly written C° (position),

5Surfaces are not globally splined, but some techniques do exist for splining a
mesh of curves, where the knots in the two sets are coincident and share tangent
planes.

50 Parametric curves and surfaces

C!, C? etc.

We should bear in mind that splines were originally conceived as
explicit curves (reminder: y = f(z)) and the parameterization—
which we need to get geometric flexibility—is a liability. Thus,
continuity in parameter derivative is not the same as continuity in
a geometric sense; this is a variant of the parameterization prob-
lems we saw in the last section. First- and second-degree geometric
continuity are continuity of unit tangent vector, and continuity of
curvature. They would be the same as parametric continuity if we
had a true arc-length parameterization; since we never do, that’s
not such an insight (see Farouki and Sakkalis’ paper on the impres-
sively named Pythagorean hodographs, which have at least a rational
polynomial expression for arc length).

The unit tangent is easily written down:
aQ
dt

#
dt

The curvature of a parametric curve is given by the following for-
mula, which involves a vector product between the first and second

derivatives:
1Q ., #Q

dt dt? |
k="—"-33
dQ
dt

You can see why derivatives of parameter are more commonly used
for matching between curve segments, although the result is a more
constrained—and hence higher-degree—curve than would otherwise
be necessary. In three dimensions, the matching of position and
first derivative are not much different. Second derivatives must now
be matched in direction as well as magnitude. In fact, the first,
second and third derivatives of a curve in three dimensions form
a local coordinate axis called the Frenet frame, which changes its
orientation along the curve. As well as curvature, we now have
the concept of torsion: the rate at which the Frenet frame rotates
‘around’ the curve. Spline curves can be made to match any or all
of this stuff in a profusion of combinations.

A4

Bernstein-basis
curves and surfaces

Bernstein-basis functions generate Bézier and B-spline curves and
surfaces. There is more literature about these functions than about
any other topic in computing with geometry: very likely, more than
about every other topic put together. Much of it is highly mathe-
matical, with complicated—and variable—mnotation. There are also
a number of books that provide introductions to the research liter-
ature (see Rogers and Adams’ book, or Farin’s, for example).

What can we hope to accomplish in this present volume? Let’s
try to do just two things:

Firstly, we introduce the ideas of Bernstein functions, placing
the emphasis on comprehensibility, rather than generality; it is
much more difficult to obtain an intuitive appreciation of their
properties than to perform at least the simpler algebraic manip-
ulations of them.

Secondly, we give a checklist of the advantages and disadvan-
tages of Bernstein-basis curves and surfaces, compared to more
‘obvious’ methods; this is an area where popular technical—and
promotional—Iliterature is often hyperbolic !, to say the least.

Introducing Bernstein-Bézier curves

You may think of a parametric equation Q = Ao+ At + Ast> +. ..
as an ordinary polynomial; but it can also be seen as a weighted

!Hyperbole, not -a: not geometric, for once.

52 Bernstein-basis curves and surfaces

combination of a set of powers of the variable, ¢ in this case; these
powers are the basis of an ordinary polynomial, which is going to
get airs by calling itself a power basis polynomial in this chapter.

If we look at the way that these basis functions vary over an in-
terval, say [0,1] as in Illustration 4(i), they don’t look intuitively
symmetrical or anything nice. They don’t look much better over a
symmetrical interval [—0.5,0.5]. Further, as already mentioned, the
coefficients beyond A; really have no apparent geometrical signifi-
cance.

However the ‘straight-line bit’ is both symmetrical and compre-
hensible. It’s even better when we rewrite it as Q = (1—¢)Po+(P;.
In that case, we can see that P is the point we start from, P, is
the point we go to, and we make steady progress in between. But
how can we make curves this way? The de Casteljau construction
is a way of doing just that. Add a new point, Ps, and set up two
straight-line segments (see Figure 4(ii)):

Py = (1-6)Py+1tPy

P, = (1-t)P;+1tPs
Then create a new straight-line segment between the moving points
on the first two; as we see in Illustration 4(ii), this is actually a point

on the curve:

Q=P'y=(1-t)Py+tP
In the old power basis, we've actually created the polynomial
Q =Py +2(P; — Py)t + (Py — 2P, + Py)t?,

which is once again less than obvious; but then our new basis func-
tions are actually (1 —¢)?, 2¢(1 —t) and ¢?, which are symmetrical
in the interval [0-1], as shown in Tllustration 4(i).

We can generalize the de Casteljau construction, but it’s quicker
to jump in and say that the polynomials we are creating are:

i=m m!]]
t) = (1=t IP,,
where the term —2— reflects the fact that the points near the

(m—i)i!
middle of the curve are used more often in formulating the straight-

line segments, so have a greater influence in the quadratics and the

Introducing Bernstein-Bézier curves

4(i)—Power and Bernstein basis functions for a cubic poly-
nomial.

23

o4

Bernstein-basis curves and surfaces

4(ii))—A quadratic Bézier curve constructed out of two
fixed and one varying straight-line segment. The terms
t and 1 — ¢ in the equation correspond geometrically to
equal ratios being maintained between each single- and
double-ticked part of each straight-line segment.

B-splines Hh)

higher-degree curves, and the final curve. The degree of the last
curve is m, which is one fewer than the number of points which

control it (because we started with Py).
The weights (m’fi;),l,tl(l —)™= that we are using to multiply P
are the Bernstein basis. Together, they (merely?) comprise a very

fancy way of writing down the number 1:

i=m

L= - = 3

~

There are many interesting (well, quite interesting) relations that
we can derive from the Bernstein basis. Converting to a power basis
is relatively straightforward:

k m)

A= 2 S

The reverse operation is much less easy to formulate, and it has
only fairly recently become apparent that there is a closed form
for this; we remember using Gaussian elimination for the purpose
in the early Eighties (maybe that was just ignorance). The closed
form (see Farouki and Rajan’s 1987 paper) is:

kOl (m —)]
Pr=> — LA,
g]z:%)m!(k—j)! 7

B-splines

B-spline curves are just pieces of Bézier curve ingeniously knotted
together; whatever the hype, don’t forget this. They are normally
defined by a recursive de Casteljau-like formulation:

<.

=m

i=0
where P; are a set of points on what is called a control track, like
the Bézier ones, and the interpolation is achieved by the B terms:

t—1;

top —t
Bix(t) = mBi,k—l(t) + LBHLk,l(t).

tivk — tiv1

56 Bernstein-basis curves and surfaces

This recursive definition terminates in the way you would expect,
at k= 1:

Bia(t) = 1,(t; <t <tiq)
= 0, (t < tz>
= O, (t > ti+1>.

The constant values of ¢, which are t;... (i = 0, m+k), are the knots
where the curves join, and the whole list of them is called the knot
vector.

While the recursive definition is the simplest to understand, it is
apparent that each span has a closed form either as a Bézier curve
or in the power basis, and these may well lead to more efficient eval-
uation, because de Casteljau-type recursion formulae have an O(n?)
performance. Note that the control-track points corresponding to a
Bézier curve segment will not correspond to those for the B-spline
as a whole, except for certain knot vectors, such as 00001111, where
the whole B-spline is actually a (single cubic) Bézier curve.

Advantages of the Bernstein basis

There is no doubt that Bézier and B-spline techniques are an aca-
demic bandwagon of considerable horsepower; many people have
had papers published, obtained professorships, and sundry other
honours, from work on these topics. Nor can it be denied that they
are the basis of most recently written curve and surface design soft-
ware. But it would be surprising if that were not the case, given the
strength of the literature. There are some discussions of advantages
and disadvantages to be found in the literature (e.g. in the back of
Farin’s book); here is our own list.

Advantage 1: interacting using the control track

The original argument in favour of Bézier curves was a simple one.
“You cannot design polynomial curves from their coefficients. If you
try to interpolate through any but a very short series of points, in-
terpolation techniques produce wavy curves which are useless; fur-
thermore, you have to solve simultaneous equations to get them.

Advantages of the Bernstein basis 57

A Bézier curve can be designed by sketching its control track on
a graphics screen; as you move the control track about, it pulls
the curve in an intuitively acceptable way. Oh, and there are no
equations to solve.” It is on this basis that Bézier curves came to
popularity during the Seventies. The advantage is still valid, but
there are counter-arguments, which will follow.

Advantage 2: transforms

Bernstein-basis curves and surfaces have the useful property of be-
ing invariant under affine transforms®. This offers a considerable
simplicity of system organization; it is only necessary to have one
transform in the system: for points. And, although Bernstein-basis
curves and surfaces are not invariant under the transforms corre-
sponding to perspective projection, there is the possibility of a use-
ful cheat (sorry, approximation) here, which avoids the necessity of
working with the exact (necessarily rational) representations.

Against that, we note that there may be more work required
to transform the control-track points of a B-spline curve than the
coefficients of the same curve on a power basis. The Bézier form
of our favourite, the cubic, has four control-track points, and the
power basis four coefficients in each dimension:

Q=A)+Ait+ Aot? + Asts.

To rotate the cubic in either form requires two multiplications and
an addition for every control-track point coordinate or coefficient:
16 multiplications and 8 additions, either way. However, to trans-
late the cubic requires that every control-track point be translated:
8 additions; while only the coefficient A of the power basis (A,
is clearly the point on the curve at ¢t = 0) needs to be modified to
translate the curve to somewhere else.

Advantage 3: convex hull property

2 Affine transforms are rigid-body motions (translation and rotation), scaling
in one or more coordinates, and shearing. Invariant means that it doesn’t matter
whether you transform the points and then regenerate the curve or surface, or
transform the curve or surface directly—you get the same resulting curve either
way.

58 Bernstein-basis curves and surfaces

If a two-dimensional point (x,y) is defined as a weighted combina-
tion of a number of other points (z;,y;):

T = wWiT1 + Weko + Waxs ... W;T;,
Y = wiYp + WalY + W3Y3 ... WY,

where all the weights are positive, and they add up to one, then the
point (x,y) must lie in the convex hull of the other points. What is
the convex hull? Join all the points and take the outermost polygon;
that’s it. How do we know that (z,y) must lie within the convex
hull? Suppose it lies on one of the edges of the hull, formed by
the straight line joining (z1,y1) and (z2,¥2). Then w; and wy will
be the only non-zero weights. If we reduce w; or wsy, or both of
them, and increase another weight, (z,y) must be pulled towards
another point (z;,y;). But they are all on one side of the straight
line (x1,y1)—(x2,y2), and so the new (x,y) is inside the convex hull;
it can never get out of it, as shown in Illustration 4(iii).

This argument is slightly simplified; can you tell how? Answer:
another point, such as (x3,ys), might be collinear with (x,7;) and
(z2,92). That would allow more than two weights to be non-zero
when (z,y) is on the edge of the hull. Indeed, any number of the
points (z;,y;) might lie on one edge of the hull. That would mean
that more weights might be non-zero, but it doesn’t let (z,y) out-
side.

The coefficients of a Bernstein polynomial are all positive, and
they add up to one. Therefore, we know that the curve is constrained
to remain in the convexr hull of the control-track points. This is
extraordinarily useful, because in many applications we don’t want
to charge all over space looking for a tiny segment of curve or surface.
We can use the convex hull as a containing volume, or box, or we
can take the maximum and minimum coordinates of each control-
track point and form a coarser but rectangular box, aligned with the
coordinate axes. Even when our test fails, and the box is too large,
we can continue to play the same trick by dividing the curve into
two pieces, and forming a convex hull for each. Here is the formula
for the control-track points in a new curve spanning the parametric
interval [0, ¢4]:

P’ S t(1l—t,)'P
Tl

Advantages of the Bernstein basis

=

agonvex hull

all polnts (X3, ¥i) this side

4(iii)—The point (z,y) cannot escape from the convex hull
formed by the points (z;,y;), because of the way its coor-
dinates are defined as a sum of theirs. (An example convex
hull is inset top left.)

29

60 Bernstein-basis curves and surfaces

We can continue subdividing and such recursive subdivision algo-
rithms are common: especially when the numerical alternatives are
tough. Although the convex-hull property is well-known and attrac-
tive, it is not immune from criticism:

There are other convex combinations of points that can have
smaller convex hulls, for some curves, than the B-spline control
track. We mention this just to emphasize that this property is
not exclusive to B-spline curves and surfaces. In other respects
alternative convex combinations are not so attractive.

Other schemes for bounding curves and surfaces—both para-
metric and implicit—are available; we will mention them later.
They may or may not be either tighter or easier to compute
with than convex hulls of control-track points.

Advantage 4: numerical stability

A proper analysis of the numerical stability of the Bernstein basis
(see Farouki and Rajan’s 1987 and 1988 papers) is (miles) beyond
the present scope. In general, it suffices to say that the Bernstein
basis is less prone to magnify errors in its coefficients, both in eval-
uating points on a curve or surface, and in finding roots of the
polynomial, which is required when we come to try to calculate in-
tersections etc. However, this advantage is rather obviously lost if
a conversion from the power basis is necessary. To preserve it, all
algorithms must be performed in the Bernstein basis; this is not yet
a perfected art.

Let’s try to give an inkling why the Bernstein form is more sta-
ble. A simple measure of numerical stability is to see what happens
when the coefficients of two representations of the same polyno-
mial are perturbed; this will certainly happen in practice, either
due to the inaccuracies inherent in the floating-point representation
itself, or a series of floating-point operations performed on them,
such as a transform. Suppose the Bernstein coefficients (of a single
polynomial—forget vector values for a moment) are p; and those
of the power form are a;,. Given a perturbation of size € to each
coefficient, then the changes in the polynomials are simply:

i=m

m! i m—i
|0q| = ; mt (1—1)"pi| e

Advantages of the Bernstein basis 61

in the Bernstein form, and:

51 = S ta,
q| = a;le
=0

in the power form. Our ability to show the superiority of the Bern-
stein form essentially derives from the formula for converting from
Bernstein to power coefficients, given at the beginning of this sec-
tion. The Bernstein coefficients can all be obtained by summing
positive factors multiplied by the power form coefficients, but not
vice versa. So, if we substitute into the Bernstein form above, we
are able to show:

i=m

[6¢] = 1C">_ ail
i=1
while _
[6g = C > lail,
i=0

(where the big Cs hide a lot of detail.)

It should be intuitively obvious that the sum of the moduli of
a lot of quantities is always as big or bigger than the modulus of
the sum of the quantities. This is called the triangle inequality 3.
Using it here, we can show that |dg| < |d¢'|. The practical effect
of this observation clearly depends on how large the coefficients of
opposite sign are in a power from equation. That can vary (i.e. get
worse and worse) as we move away from the origin. In practice, the
accuracy of all geometry diminishes away from the origin, as any
error becomes bigger and bigger along with the coordinate values.
A power-basis polynomial exacerbates this problem by taking the
difference between functions of these numbers.

Advantage 5: built-in approximations

Degree elevation is adding extra terms to a polynomial which have
a higher degree than the original. In the power basis, the idea of
degree elevation does not really exist; there is neither a reason for,
nor a problem in, adding a term 0t"*! to a polynomial of degree

3S0 called because of the observation that any two sides of a triangle are
together longer than the third.

62 Bernstein-basis curves and surfaces

n. In the Bernstein basis, degree elevation is of interest, because all
the coefficients change. In the case of a curve, the new control track
corresponding to the elevated polynomial is a closer approximation
to the curve—which itself remains unchanged. The degree elevation
formula is:

| o

n+1 1+< n—l—l)

This has a nice geometric significance, as each new P’; lies on one
of the edges of the original control track. Such artificially elevated
polynomials can of course have their degrees reduced without chang-
ing their value (although not without loss of accuracy). More gener-
ally, of course, degree reduction cannot be performed exactly. In the
power basis, there is no obvious way to do this. We can endeavour to
invert the degree elevation process (see Farin’s book—yet again—for
more detail: page 55), but the results are unpredictable. The geom-
etric interpretation of the Bernstein coefficients seems little help;
other, more sophisticated techniques involve conversion to another
base (see Watkins and Worsey’s 1988 paper). This is therefore a
minor advantage.

Advantage 6: a de facto standard

One of the problems with standards is that their existence can blight
the development of alternative techniques. With the tropical riot of
new parametric techniques that keep springing up in the literature,
this does not seem to be happening.

Whether it’s desirable or not, Bernstein polynomial techniques—
and particularly the rational B-spline *—are now the standard build-
ing blocks for representing ‘sculptured’ geometry in computer-aided
design systems.

4A rational B-spline is one B-spline divided by another—see Chapter 8 for
the formula. A NURBS is a non-uniform rational B-spline; non-uniform means
that the knots are not spread at integral parametric intervals. Like any acronym
ending in ‘S’, NURBS sounds like a plural, but works both as a singular and plural
noun, and as an adjective—you get “this is a NURBS”, “these are NURBS”, and
“this is a NURBS curve”. As with most jargon, this has the regrettable effect of
excluding the non-cognoscenti.

Disadvantages of the Bernstein basis 63

Disadvantages of the Bernstein basis

Disadvantage 1. expensive to compute

The de Casteljau construction for evaluating Bernstein polynomi-
als is elegant, and has excellent numerical properties. Unfortu-
nately it shows O(n?) growth in running time with degree of polyno-
mial. Even using Horner’s method (as mentioned in Farin’s book:
page 47), evaluating Bernstein polynomials directly is still not as
fast as can be achieved with the power basis. And the B-spline
formulae are themselves overly complicated for simple curves and
surfaces such as circles or spheres. We’ll say no more here; there are
some concrete examples in Chapter 13.

Disadvantage 2: difficult to understand

You should be able to make up your own mind about this by now!
In general, maybe it is the major problem with the Bernstein ap-
proach, especially among non-mathematicians (join the club). Most
people start learning about Cartesian geometry with explicit for-
mulae, come across implicit equations, and finally meet parametric
geometry when it becomes necessary to describe curves in three
dimensions. The Bernstein basis itself is an over-elaborate way to
describe a straight line (see Chapter 13), but if you wanted to change
the world, you could make sure that the first equation for a straight
line that anybody learned was P = (1 — t)Pg + tPy, rather than
y=mx+c,ar+by+c=0,oreven z=2x9+ ft,y =y + gt.

Disadvantage 3: unacceptable control technique

The control of Bézier and B-spline curves and surfaces using control-
track and control-mesh points—however influential in the initial de-
velopment of the method—is not now the primary reason for their
continuing use. Why should the Bézier control track be a particu-
larly intuitive ‘handle’ on a curve? It just drops out of the math-
ematics, rather than being designed with any ‘ergonomic’ insight
or experiment. It is efficient in computation, but 25 years on from
Bézier’s original paper, that argument is as strong as the one that
says we should always program in assembly code “for efficiency”.
So, today, shouldn’t we expect to sketch a curve, or mould a surface

64 Bernstein-basis curves and surfaces

with a data glove, and get the computer to make the actual curve
or surface that we’ve described? The answer must be yes.

Of course, you can say that the Bézier control track is now a tra-
ditional tool, which many people have grown to understand. But
computers have a way of eating up traditional tools, and their own
progeny are no exception. If the development of user-interface tech-
niques is arrested by an outdated linkage to a particular algebraic
representation, then that is one of its disadvantages.

This chapter is concluded with a C procedure to compute a point
on a B-spline at a parameter value t. The control track is held in
the array track[m], and the knot vector in the array knots[]. The
set_weights procedure is called once to fill the array weights [m],
then b_spline is called for each coordinate direction. These proce-
dures do not check if there are enough knot values stored in knots[].
There should be m~+k+1 of them where there are m+1 control-track
points (first is 0), and the degree of the curves is to be k.

Disadvantages of the Bernstein basis

float b_spline(track,weights,m)

float track[],weights[];
int m;
{

float p;

int i;

p = 0.0;

for (1 = 0; 1 <= m; i++)
p = p + track[il*weights[i];

return(p) ;

} /* b_spline */

/%
Procedure to set up a list of weights, one for
each track point.
*/
void set_weights(t,k,m,knots,weights)
float t;
int k,m;
float knots[],weights[];
{
float wt();
int i;

for (i = 0; i <= m; i++)
weights[i] = wt(t,i,k,knots);

} /* set_weights */
Recursive procedure to compute a weight value for

one control-track point.

*/

65

66 Bernstein-basis curves and surfaces

float wt(t,i,k,knots)
float t;
int i,k;
float knots[];
{
float a,b,c,d;

if(k == 1)
{
if ((t >= knots[i]) && (t < knots[i+1]))
return(1.0);
else return(0.0);

} else
{
a = (t - knots[i])*wt(t,i,k-1,knots);
b = knots[i+k-1] - knots[i];
¢ = (knots[i+k] - t)*wt(t,i+1,k-1,knots);
d = knots[i+k] - knots[i+1];

/* Avoid division by zero */

if (b ==0.0) a =1.0; else a = a/b;
if (d == 0.0) ¢ = 1.0; else ¢c = c/d;
return(a+c) ;

Y /xowt */

5

General implicit

curves and surfaces

The great advantage of parametric curves and surfaces is that we
can bound them simply by putting limits on parameter values; their
great disadvantage is that we cannot easily find out on which side of
a parametric curve or surface a point lies. The situation for implicits
is reversed. It is not easy to bound them; we must in general provide
additional geometric elements. On the other hand they are naturally
half-spaces, and finding out on which side of implicits an arbitrary
point lies falls out of their equations.

So far, the only implicit equations we have seen are those of the
straight line and the conics in two dimensions, and of the plane
and quadrics in three dimensions. The value of these curves and
surfaces hardly needs elaborating; and anyway they all have para-
metric forms (albeit rational ones in some cases). So where do more
complicated implicit curves and surfaces come from?

Some shape representations are based exclusively on high-degree
implicit equations.

We may wish to have pieces of complicated surface in a shape
model in which inside/outside calculations are very important
(e.g. a solid model). If all the simple surfaces are manipulated as
implicits, it makes sense to use implicit forms for the other bits,
if we can. (Note that the ‘engineering’ surfaces are quadrics, and
so with implicits we do not need to get involved with rational
equations. This is a considerable simplification: and just as well,
since it is more difficult to guarantee a non-zero denominator
when the function is not localized to a parametric interval.)

68 General implicit curves and surfaces

high-degree polynomials

bicubic hlends=s
patches
cte, ;
guadrica

\ /

cvlirder cons aphere

plane

5(1)—This is an informal illustration of the way in which
parametric and implicit geometric elements cease to be in-
terchangeable as complexity increases.

Blends 69

Implicits are useful in the context of wolume data (from com-
puter tomography (CT) scans and so on) where an object is
defined as a density function at a number of points; this is a de
facto implicit form, and thus it makes sense to fit implicit equa-
tions to this sort of input, or conversely to derive point data of
this sort from an implicit equation.

Implicit curves and surfaces may fall out of calculations; for
instance, the curve of intersection between a parametric patch
and an implicit surface is naturally an implicit curve in patch-
parameter space. Further, the degree of this particular curve is
the product of the degrees of the original surfaces, which can be
high enough to make it complicated, even if the original surfaces
were simple.

The one place from which—in practice—we rarely get high-
degree implicits is from implicitization of parametric surfaces '.
Attempted implicitization (sounds indictable) leads to very large
equations indeed, and curves and surface may intersect them-
selves: as you see in Illustration 5(ii). That’s very difficult to
deal with when the bounding provided by a parametric interval
is taken away.

Blends

Many high-degree implicits may be viewed as blends: that is, a com-
bination between a number of simpler elements—see, for example,
Mlustration 5(iii). The first of these blending ideas was introduced
by Ricci (in his 1973 paper). He took a number of implicit equations
fi(z,y, z), where each of these might be a sphere, cone, or whatever,
and combined them using the formula

=0+ 0+)

This equation generates an approximation to the set-theoretic union
of the original shapes: in fact a new surface that is a ‘bag’ containing
all the original shapes. As the value of w is increased, the bag shrinks

!Though it’s always possible to do this; the reverse operation, parameteri-
zation (going from implicit to parametric), is not always possible.

70 General implicit curves and surfaces

5(ii)—A parametric curve segment (the thick line) which
itself is perfectly well-behaved may nevertheless contain a
self-intersection in the corresponding implicit curve.

on to the objects. (Ricci also gave a similar formula to compute
an approximation to the region shared by all the shapes—their set-
theoretic intersection—but this is beyond our present scope.) In this
formula, the effect of each f; is felt over all space, albeit diminishing
quickly.

Later (in 1982) Blinn came out with a variation on this technique
for molecular modelling, where each f; is a sphere equation. Blinn
used exponentials, and he pragmatically neglected very small values
as the exponentials decayed away from each spherical ‘atom’.

A more structured way of dealing with the same problem is the
version of Ricci’s blend due to Rockwood and Owen; in essence,
their blend is:

fr=1 max((1-f1),0)"
+ max((1— f3),0)"
+

+ max((1— f,),0)"]

g~

The Wyvills’ ‘soft object” system (see Wyvill, McPheeters and
Wyvill’s 1986 paper, for instance, which is only one of a number of
their publications on the subject) avoids variable exponents. The

Blends 71

functions which they blend together are points (i.e. spheres of zero
radius f; = (z —2;)* + (y — 4:)* + (2 — z;)?) and they combine them
with the equation:

= znj (—0.44f7 + 1.89f7 — 2.44f; +1).

This polynomial is an approximation to a cubic in distance (rather
than squared distance), and becomes zero at f; = 1.

There is a good analogy with splines in these developments: the
search for localized effect of each data value (each implicit polyno-
mial being blended together, in this case), together with economy in
computation. Another interesting observation is that these formula-
tions actually behave quite well, despite being potentially very high
degree (indeed, only the Wyvills’ formula is actually a polynomial).
Nor is there a high storage requirement; there is no necessity to
store all the terms that would be associated with a general implicit
of the same degree.

Instead of controlling the blend surface by range, we can use yet
more implicits as bounding geometry. In the Liming formulation,

f=0=w(fifor - fm)+ulgigs - ga),

the resulting surface f’ runs between all the curves where the sur-
faces f; meet the surfaces g;. What’s more, because the terms g;
are squared, the surface generated is tangent to the surfaces f; at
those curves. As you see in Illustration 5(iii), the set-theoretic in-
tersection of half-spaces corresponding to the surfaces f; and g; can
be used to bound the blend:

(i<0)N(f2<0)N...N (g, <0).

By swapping any or all of the ‘<’s for ‘>’s, the sets that the
inequalities define are complemented, and the region in which the
blend is confined is changed. This line of thought leads (yet again)
to solid modelling topics beyond our scope.

There are quite a few more blends which will produce high-degree
implicit equations. Furthermore, you will notice that not very much
has been said about the terms f; which we have been gaily blend-
ing together. In fact we can blend blends, and indeed produce as
complicated equations as anyone might fancy.

72

General implicit curves and surfaces

5(iii)—A two-dimensional Liming blend (the thick curve)
is formulated as (1 —u)AB +uC?, so that it blends curves
A and B, and is controlled by C. The constant u has a
value between 0 and 1 and is used to control the shape of
the blend. As wu approaches 0 the blend gets closer to A
and B; as u approaches 1 the blend gets closer to C'. The
extent of the blend can conveniently be bounded by the
set-theoretic intersection of half-spaces formed from A, B
and C:

(A>0)N(B<0)N(C<0).

Some properties of implicit equations 73

Some properties of implicit equations

It is in theory easy to detect when a point lies on an implicit curve
or surface; if the point coordinates are substituted into the equa-
tion, the result is zero. In practice, of course, some fudge factor is
unfortunately inevitable, and choosing its value is not necessarily
easy.

We can also find the normal to the curve or surface by partial
differentiation. If f = 0 is a implicit surface, the normal (not a unit
vector) is the grad of the surface:

_(Of of of
vi= (a—a—ya—)

As will be hammered home in Chapter 11, only the straight line
and plane yield distance if a point is substituted into their equa-
tions. The circle and sphere give squared distance; we can think
of them as nothing more than particular contours of distance from
a point. Although the result of substituting the coordinates of a
point into an implicit equation is not the distance to that point,
it 4s a value that in general increases as we get further from the
curve. We call this a penalty function. The relationship between
penalty function and distance is a slippery one. Just by thinking of
the penalty function inside an ellipse, you can see that you can stay
on a curve of constant penalty function, and yet get nearer to and
further from the actual surface. If we evaluate the partial derivative
of the equation for a point off the surface, we get a normal to the
penalty function contour. Following that normal produces a curve
of ‘steepest descent’. However the normal to the penalty function is
a local property, and so the curve of steepest descent is not quickest
route to the curve or surface: which is hardly surprising, since it’s
a curve.

Using hill-climbing methods? with penalty functions is often an
effective way to deal with implicit curves and surfaces, but it can
be difficult to show that methods will always work. For instance,

20One might imagine that ‘methods of steepest descent’ were techniques of
a diametrically opposite sort; in fact they are the same; the choice between
‘ascent’ and ‘descent’ is notional, just involving one change of sign.

74 General implicit curves and surfaces

Hlustration 5(iv) shows a situation in which moving uphill can lead
to a local maximum of the penalty function.

In some cases, we want the penalty function to behave like true
distance in a particular locality (e.g. the region in which the curve
of surface is actually forming part of the model of an object). Ob-
viously, we can multiply the whole equation through by a constant,
so that the evaluation of the product at the point of interest really
does match true distance (if we know what that should be). We
can further improve the resemblance of the penalty function at that
point to a genuine distance function by making more Draconian
modifications to the original function. The crude measure of taking
the nth root of a degree n polynomial, for instance, can reduce the
magnitude of the derivative nearer to unity.

We can also multiply through by an auxiliary polynomial (e.g.
a plane) and in this way get both magnitude and direction of the
slope to match a true distance function [locally.

But be very careful about this sort of thing; it tends to cause other
problems, especially in regions away from the magic point. Taking
a root, for instance, means considerably more calculation, negative
values need special handling, and in some regions the penalty func-
tion may become less like distance. For instance, if the polynomial
is 2 — y, and we take its cube root, obviously values near the y
axis will become more like distance, but values near the x axis will
become less like true distance. And if we multiply by another poly-
nomial, we are actually introducing another piece of surface; the
function is zero on the auxiliary polynomial as well as on the origi-
nal curve or surface. Usually, we will need to be very sure that the
auxiliary polynomial does not enter any region of space in which we
are actually interested.

Bernstein-basis implicit curves and surfaces

When we are only working within a particular region, one option
that we have is to use the Bernstein form of the curve or surface.
It’s often not appreciated that implicit polynomials have a Bernstein
form. They do (see Patrikalakis and Kreizis’ 1989 paper); it is
defined within a rectangular or cuboidal region, orthogonal to the
axes, and is formulated in terms of the corner vertices and a set of

Some properties of implicit equations

5(iv)—A local maximum in the penalty function near an

implicit curve; the contours correspond to values of f(x,y).

I6)

76 General implicit curves and surfaces

weights. Here is the two-dimensional version, for the region xy <
r<21,Y% <y <y

f= i i Wij By (%) Bjn(y),

i=0 j=0

m! r—x0)\’ xl_x)mi
B =
iml®) = o <x1 - xo) (931 — %o

and similarly for y.

where

We can even manipulate the curve (or surface) using the weights
w;;; but it’s not really the same interactive tool as the Bézier con-
trol track; further, it doesn’t have the same advantage in terms of
transforming the curve or surface. For, if we rotate it, the cuboid
comes out of alignment with the axes, and we have to choose a new
region of interest.

6

Tessellations

Suppose you had 100,000 different numbers stored in a computer,
and you wished to find the one closest to 5.736. To be sure of getting
the right answer you would have to compare all 100,000 of them with
5.736, which would be tedious. If you had a million numbers like
5.736, and had to find the closest numbers to all of them, that would
be a million times as tedious. What you would do then is to sort the
100,000 numbers into order (using a fast algorithm like Shellsort or
Quicksort—see Knuth’s The Art of Computer Programming), and
use binary searches (Knuth again) to find the million numbers. This
would only be log(100,000) tedious.

The vast bulk of the geometry that we want to do is in two or
three dimensions. If we are dealing with complicated geometrical
constructions involving many simpler elements, we often want to
search amongst those elements to find, say, the nearest ones to a
given collection of points. As with the numbers, we obviously want
to avoid examining all the elements for every one of our points. Is
there any way that we can ‘sort’ geometry to allow us quickly to
find an element of it near to a given position?

At first sight, it seems that the answer to this question must be
no. The reason for this is that there is a natural ordering of numbers
along a one-dimensional axis which makes the idea of sorting sen-
sible, but that there is no natural ordering of, for example, points
dotted about in a two-dimensional plane. We could, of course, at-
tempt to sort our points in z, which is, in effect, to project the
problem down from two dimensions to one; but if there are a lot
of coincidental x values (as there will be if our data points are on

78 Tessellations

some sort of grid, or come from an engineering drawing) this won’t
help much. We could then do a subsequent y sort (and, in three di-
mensions, a z sort) and, for some applications, such as data-driven
divide-and-conquer algorithms (see Preparata and Shamos’ Compu-
tational Geometry), this is the approach adopted.

However, it is also possible to use one of a variety of tessellations,
and it is these that this chapter is about.

The word tessellation comes directly from the Latin tessellare
which means ‘to form from many tesserae’. A tessera is a small tile,
such as might be used in a mosaic. A tessellation, therefore, is a
pattern of polygons that all fit together without gaps and fill an area
of the plane. The idea extends up into any number of dimensions
easily; in three dimensions, for example, a tessellation becomes a
pattern of packed polyhedra filling a region of space.

In fact, the tiles do not even need to be polygons or polyhedra;
we can have shapes with curved sides, as long as they all fit and
leave no gaps.

Regular tessellations

Rectangular grids

The simplest tessellation is a regular grid of boxes like a sheet of
graph paper. This is easy to keep in a computer; all you need to store
are the coordinates of any arbitrary wvertez (that is, box corner) of
the grid, and its pitches (that is the length of the sides of the boxes
in the z, y and, if needed, z directions). This presumes that the
axes of the grid are to be aligned with these coordinate directions
which, for the vast majority of applications, they will be. If they
aren’t, for some reason, the angle that the grid’s ‘ x’ direction makes
with the real z direction must also be recorded.

In the case of a grid, our tiles are all congruent rectangles, and the
structure, once defined, extends to infinity in all directions. Usually,
of course, we are only concerned with a bit of it.

We now have a method of attacking the problem posed in the
Introduction: how to find the geometrical element nearest to a given

Regular tessellations 79

point if we have a big collection of elements and don’t want to look at
each one to get the answer. This method of attack has been used by
cartographers for centuries, and is best exemplified by a street map
such as the London A-Z. The map-maker divides the map up using a
grid and, for each rectangle in the grid, constructs a list of the streets
that intersect it. The map-maker then prepares an alphabetical
index of streets and, against each, lists the grid rectangles in which
it appears. This is why you can find Oxford Street without starting
in Hampstead and working slowly and methodically south and east
looking at every street on the map.

The map in the example uses not one tessellation, but two. The
pages form a coarse grid, and each page is divided into a finer one.
If, instead of a street name, you had the z,y coordinates of a point,
you could do a simple arithmetical calculation to find which grid
rectangle in the A-Z it lay in, look on the right page at the right
rectangle, and find what was nearest to your point by examining
just that rectangle and, possibly, its immediate neighbours (if your
point happened to fall near the edge of the rectangle). This was
exactly the problem that we wished to solve. In fact, you may have
to search the neighbours of neighbours, and so on. The terminating
condition for the search is that it can ignore any tile the nearest
corner of which is further from the search point than the nearest
geometric entity already found. This still means that, in general,
the vast majority of the tiles and entities will never be examined.

In a computer program the grid (or grids) would be defined as
outlined above, and a big bounding rectangle-of-interest would also
be defined (a big box round London, in our example). All the rect-
angular grid tiles in the big box would have a unique index in the
xr and y directions. Each tile would have a list associated with it
(probably kept on a heap—see Knuth’s book again), and in that
list would be a set of pointers to all the geometrical elements that
intersected that particular tile. Not forgetting the need occasionally
to examine tiles that border on one we are interested in, we could
then find the nearest geometrical element to a given point without
examining all the elements. The way that the lists would be con-
structed would depend upon how the elements were generated. In
general, the best idea would be, whenever a new element was added,
to calculate the grid tiles which it cut, and then to amend their list

80 Tessellations

appropriately. Depending on the application, it may be a good idea
to keep lists for each geometrical element of the tiles they intersect.
This makes things easy if, for example, an element is to be removed
from the structure.

What has been achieved by the grid tessellation is not analogous
to a true sort in one dimension, but is like a bucket-sort of the
type needed to construct a histogram. The rectangular tiles are the
buckets.

Non-rectangular regular tessellations

There are many regular tessellations other than those composed
of congruent rectangles. Their use for the problem of data-ordering
and data-searching is less common but, when the data are of a highly
ordered but non-rectangular form, they are sometimes useful. The
simplest non-rectangular regular tessellation is a tiling of identical
equilateral triangles. Here only one side length and vertex position
needs to be stored (along with an angle if the pattern is to be inclined
to the axes). Embedded within this tessellation is one of congruent
regular hexagons. It is not possible to tile the plane with regular
polygons of more than six sides, as their internal angles are greater
than 120°. This means that it is not possible to cram three (let
alone more) such angled corners together, as the (non-)tessellation
would contain gaps or overlaps.

It is also possible to tile the plane with any scalene triangle, as
long as you allow yourself to turn it upside down half the time. This
is a consequence of the more obvious fact that you can rule parallel
straight lines across the plane in two directions, thus constructing a
tessellation of any size and shape of congruent parallelograms. Cut
all the parallelograms in half along a diagonal (a third set of parallel
lines) and you've got your triangles.

If you allow yourself non-convex shapes, or two (or more) con-
gruent shapes acting in tandem, or both, you can make yourself
all sorts of regular Escher wallpaper tessellations. The way to ex-
periment with these is to start with an easy tessellation and then
to divide up all its elements in an identical way to make a more
complicated one. This is also the way to store it in the computer.

Adaptive tessellations: quad-trees and oct-trees 81

Adaptive tessellations: quad-trees and oct-trees

The London A-Z works efficiently because in London the streets are
about the same distance from one another. Suppose you extended
the idea to cover the whole of the British Isles. The grid squares
(which, in London, each contain perhaps forty or fifty streets) would
now mostly be in open countryside. Indeed lots of them would con-
tain little more than the odd rock—covered at high tide—because
significant fractions of the area covered are sea. This might not mat-
ter; we could compile a list of the tiles that contained useful data
and the list would be much smaller than all the tiles in a rectangle
surrounding the country. But suppose we wanted to go down to a
finer level than the streets in cities, and record lamp-posts, litter
bins, and phone boxes? The city grid would have to be smaller,
and even more grid is wasted in sea and moor and lake. Things are
beginning to get out of hand.

In fact, the first sentence of that paragraph is a fib. Streets in
Central London are much denser than in the suburbs. To accom-
modate this the A-Z has two scales of grid, one for the West End,
and one for the rest of Greater London. The central one is much
finer, and the maps there are plotted to a bigger scale.

There are many situations in which we would like to use our grid
idea to bucket-sort geometrical elements in two or three dimensions,
but are put off by the uneven distribution of the elements in space.
Consider the straight lines, arcs, and so on that are the geometrical
elements of an engineering drawing in a draughting system. Most
real engineering products have small volumes of intricate complexity
surrounded by comparatively large regions where not much is going
on at all. What is needed is a grid which, like the two-tier A-Z,
adapts itself to the local density of the geometrical elements that
are to be put into the buckets. The usual tessellation employed for
this is a tree of recursively-divided rectangles.

Suppose, to make things explicit, that we are concerned with
phone boxes all over the British Isles, and that there are a million of
them. What we might do is to start with a single square surrounding
the whole of Britain and Ireland a thousand miles along its side. We
would then write a recursive procedure that would take a square of
side length [containing n phone boxes and do one of two things.

89 Tessellations

If n were less than some predetermined small value (say 10), the
procedure would do nothing but return. Otherwise, it would divide
the square into four smaller squares of side length %, and bucket the
phone boxes into those four smaller squares; it would then call itself

recursively for each of those four squares and their contents.

If the phone boxes were roughly evenly distributed, then each %

square would get about ’ phone boxes. But if one square contained2
a city with many phone boxes, and the other three squares were in
countryside and contained less than our minimum ten phone boxes
each, only the city square would get further divided. In this way
the division would adapt itself to the local density of the geometr-
ical elements (point coordinates of phone boxes in this case) that
we wished to bucket. Cities would be finely divided, and the coun-
tryside and sea would have a few big squares covering them. Each
parent square that is further divided has four child squares that
compose it; the natural data structure to represent this is a tree.
The undivided squares containing ten or fewer phone boxes would
be its leaves; the big square round the British Isles would be the
root. The whole structure is known as a quad-tree; Illustration 6(i)
shows one.

If we label the four child squares of each parent in a consistent
order (top left, top right, bottom right, bottom left, say), then all
we need to specify the size and position of any given square is the
path down the tree to it from the root, and the size and position of
the root square. As we walk down the tree we keep a representation
of the square we are currently in, and update it each time we move
down into a smaller square; two of the smaller square’s sides will be
new, two will derive from the parent.

This is also the way in which we search for the square containing
a given arbitrary point. The tree is walked as described, the child
square containing the point of interest being chosen at each four-way
branch. Note that if we are, for example, searching for the phone
box nearest to the arbitrary point, then things are a bit more tricky
than they were with the regular grid. Searching the square in which
the arbitrary point lies is trivial, of course. But the nearest phone
box may lie in an adjacent square. To find these we have to go back
up the tree and walk down at least five more branches to find all the
immediately adjacent squares. There is no guarantee that we won’t

Adaptive tessellations: quad-trees and oct-trees

6(i)—A quad-tree divided down until each square contains
at most one data point.

83

84 Tessellations

have to search further afield yet, as with the regular grid, and the
same rules apply about finding a phone box nearer than the nearest
corner of a square.

The quad-tree idea can be employed in three dimensions, where
the squares become cubes, and are divided into eight. This is an
oct-tree (see Samet’s blockbuster books for full coverage of these
tessellations).

One virtue of a quad-tree is that all its elements are similar. If we
are prepared to abandon this we can do a binary (rather than a four-
way) division. Here we start with an arbitrary rectangle and cut it in
half at each stage of the division. The cut can be either length-wise
or, more commonly as it prevents very long thin rectangles being
built, width-wise. Indeed, there is no reason to cut the rectangle
into two equal halves. In the case of the phone box example, if we
knew that the majority of the phone boxes in a rectangle were at
its right-hand end, it might be sensible to cut it three-quarters (or
whatever) of the way along. This results in a pattern of rectangles
that are all different; but it can be highly efficient as the freedom
obtained by relaxing symmetry has allowed a tighter adaptation to
the data. Of course, the coordinates of all the division planes have
to be recorded, and whether the division is in the x or y direction,
but this does not result in an inordinate amount of tree information
to store.

A division scheme that is half-way between the quad-tree and the
free-for-all just described is that used for the European standard ‘A’
paper sizes: the sides of standard sheets are in the ratio 1 : v/2, and
smaller sizes are formed by dividing them recursively divided in half
along their longer (1/2) edges. The result is a sequence of similar
rectangles divided alternately horizontally and then vertically. It
allows the regularity of the quad-tree together with the simplicity
of a binary tree (with only two children per parent).

All these schemes work just as well in three (or indeed any number
of) dimensions as they do in two. They tend to take a time that
is proportional to nlog(n) (where n is the number of geometric
elements that need to be bucketed) to do the division. Subsequent
searching is proportional to log(n), as is the depth of the tree.

Dirichlet tessellations and Delaunay triangulations 85

- | !
A
.-" %
"I.|‘_-_~'~'
" r’ s
s

6(ii))—The Dirichlet tessellation and Delaunay triangula-
tion of 12 data sites.

Dirichlet tessellations and Delaunay triangulations

The regular rectangular grid tessellation is imposed upon our data,
the quad-tree and its derivatives adapt themselves to it, but the
Dirichlet tessellation is entirely derived from the data.

Suppose the data consist of a map of some robins’ nests. Suppose
further that the robins (highly territorial birds) are all equally fierce
in defending their nest sites. What shape would we expect their
territories to have?

The answer is the Dirichlet tessellation (sometimes called the
Voronoi diagram) of their nest locations. This gives each data site

86 Tessellations

(nest) a territory that is the region of the plane nearer to it than
to any other site. Tlustration 6(ii)! shows the pattern (bold lines)
for twelve data sites. The fine lines in the figure are the Delaunay
triangulation. This triangulation results from joining each pair of
data sites that share a common tile boundary (that is, are territorial
neighbours).

The territorial tiles are convex polygons. Their edges are the per-
pendicular bisectors of the Delaunay triangle edges joining neigh-
bouring sites. The vertices of the tiles (where three meet) are the
circumcentres of the Delaunay triangles. The Delaunay triangles
completely cover the convex hull of the data sites; the Dirichlet
tessellation extends to infinity—sites within that convex hull have
finite territories, those on it infinite ones.

These two geometrical constructions have a wide variety of ap-
plications. It is not difficult to compute them, and many programs
have been written to do so (see Green and Sibson’s 1978 paper, and
Bowyer’s 1981 paper for efficient algorithms and data structures
for calculating and storing them). The two constructions form a
mathematical dual; if you know one, you can completely deduce the
other—no extra information is needed.

Let us consider some properties of these two intimately related
tilings (for proofs of some of the properties listed below, you are
recommended to see Preparata and Shamos’ book).

Nearest neighbours: the nearest-neighbour of each data site is
always one of its Delaunay neighbours. This means that the
tessellation makes it trivial to construct a nearest-neighbour list.

Circumcircles: the circumcircle round a Delaunay triangle con-
tains no data sites other than the three at the triangle’s corners.

Minimum spanning trees: the minimum spanning tree (MST) of
the data sites is embedded in the Delaunay triangulation. It is
the tree with the data sites at its nodes in which the sum of the
lengths of the branches is as small as possible. It is the basis for
some heuristic solutions to the well-known travelling salesman
problem.

Optimum triangulation: The Delaunay triangulation is locally
equiangular, by which is meant that, given the data sites, it is

! After Green and Sibson’s 1978 paper.

Dirichlet tessellations and Delaunay triangulations 87

the nearest that one can get to a pattern of equilateral triangles
using the sites as vertices. This is important for many applica-
tions, as calculations done on triangles (such as those in finite-
element analysis) that are close to equilateral tend to be more
numerically stable than those done on long thin triangles. In
fact, triangles don’t make good finite elements—numerical an-
alysts prefer quadrilaterals—but they are often used for things
like interpolation, so the property is still important.

Like the other tessellations that we have considered, the Dirichlet
tessellation imposes an ordering of a kind on the data. It makes it
easy to search for the nearest data site to an arbitrary point (the
data site in whose territory the point lies is the one we want; we get
there by walking along the Delaunay links from any data site, always
choosing a link that takes us nearer to the point we’re interested in).
It localizes the data in a way that is entirely controlled by the data
themselves.

Just as quad-trees lead to oct-trees, all the things that have been
said about Dirichlet tessellations and Delaunay triangulations gen-
eralize into any number of dimensions. In three dimensions the ter-
ritorial tiles become convex polyhedra and the triangles tetrahedra,
and so on.

It is also possible properly to define territorial tessellations of
geometrical entities other than sets of points. A pattern of infinite
straight lines, for example, will have territories that are collections
of triangles formed by the bisectors of the angles at the points where
the straight lines meet. If we have straight-line segments, things get
more complicated (in the limit, a line segment is a point so, if we can
solve that problem, we get the Dirichlet tessellation of points more
or less free). Things are more complicated because the territorial
boundary that is equidistant from a point and a straight line is
a hyperbola—our Dirichlet tessellation must now have territories
with curved boundaries. The calculations needed to find these are
difficult; essentially they are the same as those needed to compute
offset curves (and, in three dimensions, surfaces); they are covered
in Chapter 11.

7

Approximations

Approximations are necessary just about all over. To start with,
many geometric problems have solutions that are algebraically in-
feasible. Even if we do have a notional exact solution:

It may be unacceptably slow.

It may require too much intermediate storage to implement (the
‘intermediate expression swell’ problem in algebra systems).

The results may be geometric entities in forms that cause prob-
lems in subsequent processes; i.e. we end up approximating later
anyhow (a simple example is an algebraic solution which gives
an exact result which is a high-degree polynomial that later we
have to evaluate using floating-point arithmetic).

A floating-point implementation of the ‘solution’ is actually so
inexact that an explicit approximation would be more accurate
(we will deal with that sort of approximation in Chapter 12).

So, rather than continue fighting with the algebra, we often decide
to approximate the geometry to elements which we can operate on
exactly (or at least very accurately). Here are some questions to ask
yourself when you are choosing an approximation:

What is the accuracy requirement of the application? In some
robotics applications, calculations start from highly inaccurate
sensor data; you will see exact algebraic solutions to what pur-
port to be robotics problems discussed in the literature (like
the piano-mover’s problem—how to shift an irregular object
through an obstacle course), but they are often wildly inappro-
priate for real applications.

Approximations 89

If the approximation involves an increased number of simple ele-
ments, will the simpler calculations more than offset the growth
in number of things to be processed? (This is a common prob-
lem with polylines and facets—see below.)

At what stage in the calculation shall we approximate? The
macho approach is to delay approximations as long as possi-
ble; more often than not (e.g. in intersection calculations) early
geometric approximation is more fruitful than late approxima-
tion of B-I-G algebra.

Will there be special cases for which the approximation is, or
is not, required? Examples are natural quadrics in the sorts of
special positions in which they frequently occur in mechanical
parts etc., and for which simple solutions exist (e.g. a cone in-
tersecting with an orthogonal plane to give an exactly circular
intersection curve).

Shall we try to reconstitute a more complicated geometric struc-
ture from the approximation after processing? (For instance,
putting a spline curve through a set of points.)

Shall we retain the exact structure within the approximate one?

This is a terrific list of questions; some of the answers are in the
following sections, where we will look at a few of the tricks of the
approximator’s trade. Of course, some (many? most?) approxi-
mations are so widely used that they have become representations
in their own right. Approximation is a blanket with many threads
that need to be followed—a long way.

There are really two sorts of approximation. One is the obvious
sort, in which we replace something by something simpler which
more-or-less has the same geometric form. We may be able to con-
trol, or at least to understand, how great the inaccuracy is, or we
may trust to luck and test-cases. In the other sort of approximation,
we construct a bounding region, or enclosure, in which the original
piece of geometry is known to lie, do some operations on it, and gen-
erate a region in which the result is known to lie. These approaches
have their own characteristics:

Enclosures get more brownie-points from the mathematicians,
who hate committing to approximations of unprovable validity.

90

Approximations

It is easier to carry around the original geometry if we are us-
ing enclosures. If we simply approximate, say, a surface, we
may find that something we have done to the approximation
(e.g. offsetting it) cannot be reflected back on to the original
geometry.

Enclosures are often slower than pure approximations, because
we have to deal with regions rather than curves, surfaces etc.

The vagaries of floating-point arithmetic can chip away at the
validity of the enclosure approach, but we may be able to remedy
this by inflating the sizes of the enclosures; see the section on
accuracy.

About the worst thing that happens with enclosures is that they
grow so large as to be practically useless. If the enclosures con-
tain other geometry, and if the code is correct, programs won’t
fail; they just run grindingly slow. This can be a difficult be-
haviour to predict and control.

The best enclosures are the tightest, and often something clever can
be arranged for particular pieces of geometry. There is one general
technique that we will now discuss.

Intervals

Rectangular boxes, or cuboids, are a popular sort of enclosure, and
tests using enclosures are often called boxing tests, even when the
boxes are not in fact cuboids. The box aligned with the coordinate
axes is particularly popular:

It’s easy to use, because it’s bounded by planes of the form
T = Tumin, Y = Ymin €tc. The plane has a parametric and an
implicit equation which are both simple enough to substitute
easily into many other more complicated equations, giving a
head start on intersection calculations.

One such box is easily unioned with another, even though the
result (i.e. a box which encloses them both) may be rather large.

Axially-aligned boxes may be considered as intervals in the three
coordinates.

Intervals 91

The only disadvantage of rectangular boxes is that they do not con-
form well to certain sorts of geometry, and so:

They can easily grow rather large.

An interval is simply a range of values of something; so [3.0,4.0]
means all the infinitely many real numbers between 3.0 and 4.0.
(There is a fussy distinction in real mathematics about whether
an interval contains its end-points or not, but since we are usually
over a floating-point barrel, this is not normally significant.) So an
interval in both x and y, i.e.

r = [xminaxmax]

= [ymin? ymaw] 5

defines the sort of axially-aligned box we’ve been talking about, in
two dimensions. We’ll keep everything in two dimensions, to make
an example drawable—but one of the great flexibilities of intervals
is that they’re applicable to any number of dimensions, as well as
all sorts of different types of equation.

So how do we use it? Well, if we have an interval of two variables,
and the variables are combined algebraically in some way, we can
work out the interval on the result. (In draft, the operations below
were written out using mathematical notation. Showing how the
operators might be implemented in PROLOG is a little more inter-
esting, and actually doesn’t look too different. The layout follows
Moore’s book, in case you don’t care for PROLOG.)

/* Interval addition: int_add(A,B,A+B) */
int_add((Alo,Ahi), (Blo,Bhi), (Alo+Blo,Ahi+Bhi)).
/* Interval subtraction: int_sub(A,B,A-B) */
int_sub((Alo,Ahi), (Blo,Bhi), (Alo-Bhi,Ahi-Blo)).
/* Interval multiplication: int_mul(A,B,A*B) */

int_mul ((Alo,Ahi), (Blo,Bhi), (Alo*Blo,Ahi*Bhi))
:- 0 <= Alo, 0 <= Blo.

92 Approximations

int_mul ((Alo,Ahi), (Blo,Bhi), (Alo*Bhi,Ahi*Bhi))
:- Alo < 0, 0 < Ahi, 0 <= Blo.

int_mul ((Alo,Ahi), (Blo,Bhi), (Alo*Bhi,Ahi*Blo))
:- Ahi <= 0, 0 <= Ylo.

int_mul ((Alo,Ahi), (Blo,Bhi), (Ahi*Blo,Ahi*Bhi))
:- 0 <= Alo, Blo < 0, 0 < Bhi.

int_mul ((Alo,Ahi), (Blo,Bhi), (Alo*Bhi,Alo*Blo))
:- Ahi <= 0, Blo < 0, O < Bhi.

int_mul ((Alo,Ahi), (Blo,Bhi), (Ahi*Blo,Alo*Bhi))
:- 0 <= Alo, Bhi <= 0.

int_mul ((Alo,Ahi), (Blo,Bhi), (Ahi*Blo,Alo*Blo))
- Alo < 0, 0 < Ahi, Y <= 0.

int_mul ((Alo,Ahi), (Blo,Bhi), (Ahi*Bhi,Alo*Blo))
:- Ahi <= 0, Bhi <= 0.

int_mul ((Alo,Ahi), (Blo,Bhi), (Clo,Chi)
:- Alo < 0, 0 < Ahi, Blo < 0, 0 < Bhi,

min(Alo*Bhi,Ahi*Blo,Clo),
max (Alo*Blo,Ahi,Bhi,Chi).
/* Purely a precaution:- */
int_mul(_,_,_) :- write(’int_mul: unknown error’),
I, fail.

/* Exponentiate: positive integer N only */

int_exp(A,N,C)
:- N < 0, write (’int_exp: negative exponent’),
I, fail.
int_exp(A,N,C)
:- N mod 1 < 0, write (’int_exp: real exponent’),
!, fail.
int_exp((Alo,Ahi),N, (Clo,Chi))
:- N mod 2 = 1, exp(Alo,N,Clo), exp(Ahi,N,Chi).
int_exp((Alo,Ahi),N, (Clo,Chi))
:- Alo > 0, exp(Alo,N,Clo), exp(Ahi,N,Chi).
int_exp((Alo,Ahi),N, (Clo,Chi))
:- Ahi < 0, N mod 2 = 0, exp(Alo,N,Chi),
exp(Ahi,N,Chi).
int_exp((Alo,Ahi),N, (0,Chi))
:— Alo <= 0, Ahi >= 0, Nmod 2 =0

Intervals 93

Aloabs = -Alo, max(Aloabs,Ahi,Chi).
/* Purely a precaution */
int_exp(_,_,_) :- write(’int_exp: unknown error’),
1, fail.

The utilities used follow, in case you haven’t got them; everything
else is according to the gospel of Clocksin and Mellish (see the Ref-
erences), except that we use a rather tidier := for arithmetic opera-
tions which, of course, we assume to support floating-point numbers.

/* Min and max: min(A,B,min(A,B)), max(A,B,max(A,B)) */

min(A,B,A) :- A<=B.
min(A,B,B).
max(A,B,A) :- B<=A.
max(A,B,B).

/* Exponentiation (by recursion): exp(A,N,Ax*N) */

exp(A,N,B) :- Ndec
B :

N - 1, exp(A,Ndec,Bdec),
A * Bdec.

exp(A,1,4).

We could survive without explicit exponentiation, by using mul-
tiplication, but we can immediately see that this broadens intervals
unnecessarily: [—1,1]2, for instance, would be calculated as [—1,1]
rather than the tighter [0,1].That’s all we need for dealing with
polynomials!, so let’s rush ahead and look at a geometric problem.
Supposing we want to find the intersection between the parametric
quadratic segment

r = 1+t
y = 142t -+

'In fact, all we've left out is the inverse of an interval, from which division
immediately follows, and roots, which would allow fractional powers. Inversion
involves oo (think of an interval which contains zero), but is perfectly well-
behaved—see Milne’s thesis in the References. Fractional powers smear us all
over the complex plane, of course. Oh, and there’s raising things to the power
of an interval....

94 Approximations

ul N]

Lo

[T
|

[

(0,0) 1 2 ¥

7(1)—The parametric quadratic z =1+ t,y = 1 + 2t — %,
and the circle (z —1)? + (y — 2)? —4=0.

where 0 <t < 1; and a circle, centre (1,2), radius 2:
(z -1+ (y—2>—-4=0.

They’re both sketched in Illustration 7(i).

Well, we could substitute the quadratic into the circle, in the
usual way, and try to solve the resulting quartic. (We could even
use interval arithmetic to try to see if that had any roots between
t =0 and t = 1.) Instead, we'll employ a more geometric use of
intervals that illustrates how they define boxes. Take the quadratic;
it is defined over an interval [0,1] in t. So, let’s substitute that
interval into the equations for = and y, and thus get intervals in x

Intervals 95

and y out:

1] = [1,2]
2] —1[0,1] = |[o0,3].

How do we compare the box with the circle? We substitute the
intervals [1,2] and [0, 3] for z and y into the polynomial part of the
circle equation:

(r— 1)+ (y—2)? — 4

We know that any points on the circle will give 0 if substituted
into that equation; any points inside will give a negative result;
any points outside, a positive result. So if the interval we get out
is negative (i.e. [a,b], a < 0 and b < 0), then the box that the
interval represents is all within the circle; if it’s positive then the
box is completely outside the circle. If the interval contains 0 (i.e.
a < 0and b > 0) then we have learned nothing, and must either
give up, or try some more precise approach. So here goes with the
substitution into the polynomial above:

([1,2] = 1)* + ([0,3] — 2)* — 4

[
= [07 1]2 + [_27 1]2 —4
—4.1].

So, the interval contains zero, which is hardly surprising if we look
at the figure; we can see that the circle intersects the interval on x
and y we obtained from the curve. In fact, that interval is rather
gross. Let’s try another version of the equation of the quadratic—
the Horner form. Obviously this only affects the equation for y:

y=1+t2-1).
Again substituting [0, 1] for ¢, we get:

You can see from the figure that the new interval misses the circle,
and indeed if we substitute it into the circle polynomial we get the
result [—4, —2]; correctly confirming that the parametric quadratic
lies inside the implicit circle.

96 Approximations

The fact that a rearrangement of the quadratic equation produced
a better result is actually rather worrying; in fact, any equation in
which the interval variable appears more than once will in general
give an over-pessimistic result: i.e. a larger interval than necessary
to contain the geometry. Note that the circle equation and the para-
metric equation for x, as written above contain only one reference
to x and y, and ¢, respectively. In such cases, the result is therefore
as tight as possible.

However, even the rearranged quadratic for y did not produce a
very satisfactory result; the peak value of y is actually 3, which oc-
curs at t = 1, the end of the span. So the tightest interval obtainable
is [1,2].

So let’s try a couple more tricks on that quadratic for y. The
first thing to note is that the growth in the interval caused by the
t —t2 term is sure to get worse the further we get from zero; we are
subtracting two larger and larger numbers to get a small one, and
the pessimistic nature of interval arithmetic makes this bad news.
So we would do better to work with an interval centred around
zero. In this case, we need to re-parameterize the curve with a new

parameter © = t — +; so that u will run between —1 and % Now,

2 2
the new equation is:

yzl%—f—u—uQ

and, substituting in the intervals, we get:

13+ (b4 3 4P = L2
That’s better than both the original and Horner versions over the
interval [0, 1].

The two ideas we’ve tried so far—rearranging the equation and
centering the interval—can only be done once; supposing we want
to try to make the interval tighter still? The last technique we shall
see here—taking sub-intervals—can be applied as many times as
necessary.

Let us yet again go back to the original form of the quadratic

above, and divide the interval in ¢ into two parts: [0, 3] and [3, 1].

Substituting the first half-interval into the quadratic, we get:

I
T
i)

1+2[0,4] = 0,412 = 1+ [0,1] — [0, }]

Other enclosures 97

and substituting in the second:

1+2(3,1] - 5,12 =1+[1,2] - [},1] = [1,23].
That’s better than the Horner form, but not as good as the centred
interval, but that’s not really important; we can combine all three
techniques, and repeat the last. This splitting of intervals features in
the textbooks on the subject, and there is an obvious relationship
with quad-tree and oct-tree structures that we can exploit.

As an exercise, try applying all the interval reduction techniques
described at once to our pet quadratic; the result should be [1, 2%].

Other enclosures

A lot was said about intervals, because they’re not well-covered
elsewhere. In this short sub-section we will run through some of
the other enclosures available. In every case, the enclosure can be a
permanent replacement for what it contains, but it is more often a
dynamic structure that is refined in regions of interest.

Non-orthogonal boxes

A very significant improvement in the bounding of intervals can
be achieved by having boxes which are not aligned with the axes.
In two dimensions, a curve may be contained within a series of
rectangular boxes (the strip tree). In three dimensions, enclosures
may be associated with a primitive (e.g. a box around a cone) or
generated from local properties of the surface (e.g. aligned with a
coordinate system based on the surface normal).

Convex hulls

Bounding volumes need not be rectangular boxes; convex hulls are
most commonly associated with Bernstein-basis curves and surfaces.
However, in three dimensions, the precise convex hull of a Bézier
control track is complicated to create and use; a box based on the
extreme control-track points (optionally aligned with the surface
normal) is often more practical (see Illustration 7(ii)). This is a
typical example of a structure that is usually used dynamically,

98 Approximations

—

n

—

7(ii)—A quartic Bézier curve, its control track, the convex
hull of the control track (thick dotted), and an interval
in x and y containing the hull (thin dotted). In this par-
ticular case, it is interesting to note that, while there are
five points on the control track, only four contribute to the
hull, and only three to the two-dimensional interval (the
surrounding rectangle).

shrinking down upon regions of interest during a recursive division
process.

Bounding volumes don’t even have to have straight edges or flat
surfaces. In two dimensions, circular regions can be used to enclose
curves (see Sederberg and colleagues’ paper on fat arcs). In three di-
mensions, spheres and ellipsoids are sometimes used, although they
can be very cumbersome.

Approximate geometry 99

Approximate geometry

There are many well-known genuine approximations, rather than
enclosures. They almost all involve replacement of an element by
several elements of lower degree. The analogies with splines and
with degree reduction of Bernstein-basis curves and surfaces are ap-
parent. It is possible to have approximate geometry that is refined in
regions of interest, or even replaced by the original exact geometry;
but that approach doesn’t work as well as it does with enclosures.
The initial approximation can mean that a ‘region of interest’ (e.g.
an intersection) is missed completely; in that case, the program
never finds out that it should refine the representation, or restore a
more accurate one.

Pixels

The picture on a raster-scan display is just a square array of dots,
or pizels. A lot has been written about getting curves into pixels
(i.e. rendering them), and recovering geometry from pixels. This is
a specialized subject, usually only of use in low-level graphics and
image processing.

Polylines

Polylines are a sequence of straight-line segments, common both as
an approximation and as the data obtained from an input device
such as a tablet or mouse. It’s moderately easy to convert a para-
metric curve to a polyline (but watch the parameterization); less
easy to convert an implicit curve. Conversion back is splining. A
big problem with polylines is that the slopes of the straight-line seg-
ments essentially never match and so there is always some degree of
magnification that makes them look tacky.

Facets

Facets are the three-dimensional equivalent of polylines. They make
many three-dimensional operations much simpler, because all inter-
sections are straight lines and they create no horizons away from
their edges etc. etc. The well-known smooth-shading techniques of
Gouraud and Phong have given facets an enormous following in the

100 Approximations

graphics world. Beware of refining faceted representations too far;
you are trading algebraic for combinatorial complexity and (in the
case of doubly-curved surfaces such as spheres) the bargain may be
very bad.

Biarcs

Biarcs and biquadratics are really a sort of splining technique, but
may be used to replace higher-degree curves, rather than to approx-
imate data. The reason for the prefix ‘bi’ is that arcs and quadratics
are unable to meet Hermite end-conditions on their own, but can if
two are used across a span. After approximation the lower-degree
equations make many calculations faster, but there is real tangent
continuity, unlike polylines and facets. Biarcs are commonly used
for numerical control applications, to take advantage of functions
available in machine-tool controllers. Biquadratics are related to
the patches of the same name, which offer simpler-than-usual inter-
section calculations.

Arc length, surface area, and volume

Although integral formulae for calculating the length of curves, ar-
eas of surfaces and volumes of solids may sometimes be written
down easily (well, fairly easily), solving them is another matter:
approximate techniques are usually used.

The length of an arc of a curve can be found by summing an
equivalent polyline, but this is always an underestimate. Simpson’s
rule—and similar but better quadrature formulae (see Guenter and
Parent’s paper)—give a much more accurate result for fewer steps.
Surface areas can be calculated in the same way, as the approxima-
tion of a double integral, and volumes (of simple solids) by a triple
integral.

Estimating the length of curve segments is not difficult, because
the ends of the curve provide natural integration limits. Computing
the areas of pieces of surfaces, and the volume of solids bounded by
many faces, is much more difficult. We often end up creating a two
or three-dimensional grid and—in effect—counting squares. This
can be erratic, because of accidental alignments between the grid

Arc length, surface area, and volume 101

and the object, and is therefore combined with a random sampling
technique within the grid boxes.

Sampling points for volume is quite easy, but sampling area is
more difficult. It is necessary to generate a pattern of random lines,
and then count the intersections between the lines and the surface
to be measured. Here are two questions for further thought:

What is a computationally tractable way to generate a genuinely
unbiased set of random straight lines?

How is the number of ‘hits’ converted to a measure of surface
area?

38

Storing geometry

There is much, much more in the literature about the different types
of geometric element than there is about where to put them when
you’'ve got, them. However, storing geometry is not a trivial problem.
The first consideration is the operations in which the element will
be involved, which will determine a choice, where possible, between
the implicit and parametric forms. With simple elements, we may
even indulge in the luxury of storing both forms; in that case they
must of course be kept consistent.

Then there are different forms of the same polynomial; such as the
power, Horner and Bernstein forms. The algebraic or algorithmic
reasons for a choice are often overriding; here we will just consider
some characteristics of a ‘geometry bin’. Compactness is probably
the most obvious consideration. To take a simple example, we have
already seen that the equation of a plane is

ar+by+cz+d=20
in the implicit form, while the parametric form is:

r = .T0+f18+f2t
= Yo+ 915+ got
z = Zo+h18+h2t.

So, in this case, we can save five coefficients by using the implicit
equation. It follows that there must be some redundancy in the
parametric version. Of course, there is a redundant degree of free-
dom in the implicit equation too; we can normalize it to eliminate
that freedom, by dividing through by /a2 + b2 + 2.

Storing geometry 103

We could eliminate redundancy altogether; suppose we just stored
a, b and d, and recomputed ¢ from the formula ¢ = v/1 — a? — b2,
when we needed it. This makes a 25% saving, but is not usually
done because:

A square root operation is required to reconstitute c.
The sign of ¢ has to be stored anyway.

The reconstitution will be ill-conditioned when ¢ is small.

(Although we could be really obsessive and get around this last
difficulty by storing the two smaller of a, b, and ¢, but you’d need a
flag somewhere to indicate which one was omitted. Good luck.)

So, in storing planes, we put up with the redundancy, but the
normalization is very important, because:

It makes the magnitudes of the numbers more predictable, and
so reduces the likelihood of numerical problems.

It makes it easier to determine when two planes are the same,
or nearly the same, and can share storage.

It avoids a normalization step in algorithms which get the plane
equation from this source.

The parametric form of a plane equation can be normalized in
a similar way, this time by dividing f;, ¢1, and h; through by
[+ g3+ h?, and similarly for fo, g» and hy,. The extra de-
grees of freedom in the parameterized equation arise because the
point (g, Yo, 20)) can lie anywhere on its surface (i.e. anywhere in
its parameter space), and that is two-dimensional. We can anchor
(20, Yo, 20) by putting it into a defined position (the point nearest
the origin is usual); there is no natural choice for the orientation of
the ¢, u coordinate system, but consistent choices are possible (see
A Programmer’s Geometry).

So we see that, even for a simple surface like the plane, there are a
number of possible approaches to normalization. More complicated
equations are more difficult again to normalize satisfactorily. For
general implicit equations, we can adopt some more or less arbitrary
but consistent scaling of the coefficients. Dividing through by the
sum of the squares of all the coefficients, except the constant term,
is the usual device, and is sometimes called supernormalization; it

104 Storing geometry

gives consistency with the system just adopted for the plane, in case
the polynomial degenerates to that form.

With general parametrics, we are usually interested in a partic-
ular curve segment or surface patch, and it is most convenient to
have a parameterization that runs from 0 to 1 along the curve, or
(0,0) to (1, 1) across the patch. So the coefficients in the parametric
equations will vary depending on where the piece of curve or surface
we are interested in starts and finishes. Add to that the possibility
of reparameterization, with degree elevation (see Chapter 4), and it
is not possible to identify two segments as being part of the same
parametric curve or bi-parametric surface without a considerable
amount of arithmetic. This is not usually a problem; coincidental
free-form curves and sculptured surfaces are much less likely to oc-
cur than, for instance, coincidental quadrics in a solid model of a
machined component.

Equations

As we start to move down from the rarefied heights of algebra to-
wards mundane questions of programming, we need to consider what
coefficients we're actually going to store to represent a given piece
of geometry, and (later) where we're going to put them. If we are,
say, going to ‘support’ quadric surfaces, what should we do about
planes? And cones, cylinders and spheres for that matter? The
possibilities would appear to be:

Store everything as a general quadric, and treat it as such. So
a plane equation is:

022 4 0y + 02% + Ozy + Oyz + 0z + ax + by +cz +d = 0.

Not too efficient: and do we really want to try to find the equa-
tion of the intersection of two planes by tracing intersection
curves of two degenerate quadrics?

Store everything as a full-length general quadric equation, but
tag planes, cylinders etc. so that appropriate pieces of code can
be used: simple, but crude.

Economize on those shapes—planes, spheres, ellipsoids—that
always have a number of coefficients set to zero, by allocating

Equations 105

them their own bits of storage: more economical, but we might
run out of storage for planes while there were unused spaces for
spheres. This is not a problem for languages that allow dynamic
storage allocation, although storage allocation may still be a
practical problem.

Do not store the quadric representing the actual size and posi-
tion of natural quadrics at all. Store a minimalist representation
of each element and the transforms needed to move it into final
position. This could be as little as a code for the quadric’s name
(e.g. a ‘sphere’ is taken to be a unit radius sphere located at the
origin). This just transfers the storage burden from the quadrics
to the transform matrices. Further, some calculation is required
before shapes are even ready to be used in operations at their
correct sizes, positions and orientations.

Object-oriented languages, such as C++, provide an environment
that strongly encourages the partitioning of geometric data such as
natural quadrics into as many useful different types as possible.
Types, or classes, of data can be arranged in a hierarchical fashion,
with a lower-level class inheriting characteristics from a more general
class above it. Thus the class of “cylinders” might have a sub-class
“axially-aligned cylinders”. Data, or attributes, applicable to all
cylinders—such as a value for radius—would be defined for cylinders
and inherited by axially-aligned cylinders.

Additionally, code—or ‘methods’ in object-orientspeak—that are
appropriate to each class may usually be associated with it in con-
venient ways. For instance, some object-oriented languages provide
constructs for checking that classes are properly maintained by rou-
tines; these entry and exit conditions can be explicitly programmed,
and appropriate action to avoid corrupting data is taken if they are
not met. Thus, a procedure to offset a sphere might subsequently
check that the sign of the coefficient corresponding to 72 in the
sphere equation (z — 2¢)* + (y — v0)® + (2 — 20)*> — r? never be-
comes positive (or zero): which would indicate that the sphere was
degenerate. Of course you could do this in any language, but object-
oriented languages provide built-in ways to include these conditions,
and to deal with the fall-out when they are not met.

An example: storing NURBS

106 Storing geometry

So far we have focused on implicit equations. Many of the same
considerations apply to parametric curves and surfaces, but there
are also differences in storage strategy. For instance, we would not
normally consider storing separate transforms for parametric equa-
tions. They already have so many degrees of freedom that separating
out a transform is notional.

A more pressing question is how to deal with variable degree. Do
we want to represent everything in the system as a degree-five Bézier
surface, or whatever? You may have seen brochures for computer-
aided design systems which say something like “all the surfaces in
this system are universally represented as NURBS”. Is this good or
bad? What do they mean by it anyway? Well, it may mean simply
that all the geometries supported are representable as NURBS; or it
may mean what it says, that all the equations are stored internally
as NURBS. What would this do to a plane?

Now, the rational B-spline patch equation is:

where the terms B, ;, and C;; are each defined in terms of their own
knot vector t;(1 = 0,m + k) and t;(j = 0,n +). (The recursive
de Boor definition of the knot vector appears in Chapter 4.) To
define a plane in this elephantine way, we require the following pieces
of data:

The degree k, which is 2.

Four control-mesh points P; ;. In this particular case, with the
values we are supplying, the B-spline equation actually combines
the control-track points as follows:

Q(t, U) = tUP0,0 +t(1 —U)Po’l + (1 —t)UPLO + (1 —t)(l —U)Pl’l.

Thus the control-mesh points P; ; must themselves be coplanar,
or we will generate an arbitrary doubly-ruled surface instead of
a plane. Given three (non-collinear) points in the plane, we can
generate a fourth as a combination of them.

Equations 107

Four weights wp o, wo 1, wy and w; 1. Assuming the points P, ;
are coplanar, then the values of these weight will not make any
difference to the plane defined, but it will affect the shape of the
t,u parametric coordinate system that lies in it. The weights
should be positive, however: not for any geometrical reason, but
to avoid division by zero. Obviously sensible values (e.g. 1.0)
will reduce the possibility of other numerical problems.

Two knot vectors ¢;(: = 0,m+ k) and ¢;(7 = 0,n+1): to define
the plane over the parametric interval (0,0) to (1,1). These can
conveniently both be set to 0011. Since we are talking about
non-uniform rational B-splines, the knots need not be integers,
and thus require to be stored as floating-point numbers.

In all then, we require 25 numbers to define the plane, and that
assumes that there is no overhead because (see below) storage is
automatically reserved for some higher degree of surface; in that
case the requirement climbs giddily as nm, because of the number
of storage locations we will need to reserve for vertices.

As well as the storage requirement, there is further bad news:

We have actually created a parametrically rectangular piece of
plane; the points corresponding to values of ¢ and u outside the
range specified by the knot vectors are undefined.

Even a simple computation—for instance generating points on
the plane—is likely to be very slow. Looking at that operation
as an example, we see that evaluating each B; 5 and C 5 costs be-
tween 9 and 11 floating-point operations (one addition, four sub-
tractions, two divisions, and two to four comparisons): say 10
on average. Assuming that the computations are not wastefully
repeated for numerator and denominator, there are four sets of
subscripts for each. Thus the cost of evaluating w; ;B; 1 (t)C;(u)
four times is: 80 floating-point operations, plus 8 more to com-
bine the results; and 11 additions to sum the denominator, 12
multiplications with P; ;, and 12 divisions by the denominator.
In all (we make it) a princely 123 operations! (Compare just 12
operations for the boring old x = zy + fit + fou etc. parametric
equation.)

But that’s just generating points on the plane; finding (say)
intersections with all those other NURBS is going to be spectac-

108 Storing geometry

ularly inefficient if we continue to regard our plane as one of
them, and ignore the advantages of the implicit form.

So watch out for that “all NURBS” system; either it’s not real or it’s
not efficient. Regrettably, geometry is not like currency conversion;
changing all our dollars into pounds, or vice versa, often makes our
life at our destination harder rather than easier.

Coefficients

So, having decided which equations to go for, where are we actually
going to put the coefficients? Probably the worst answer is a matrix.
The array form of a parametric equation shown here (or, worse, the
tensor representation of an implicit equation) looks mathematically
respectable:

x Coo Co1l ' Con 1
Y 10 C11 "' Cip t
Z - . -

Cno Cn1l " Cpn t"

It is difficult to find anything good to say about this last nasty
equation; anything that has a subscript for dimension (i.e. = = 1,
y = 2, z = 3) is inefficient, unless we really want to vary the number
of dimensions we’re working in. And what happens if we require
a lot of matrices? Do we add a third subscript? And a fourth for
patches, to allow for the two parameters? This is likely to be both
ugly and slow. Indeed many languages will not support arrays this
wide; three cheers for the language designers.

Having a separate array for each of x, y and z reduces these re-
quirements by one index. Arrays of coefficients of increasing powers
of t can be a good way to feed a single parametric equation into
a subroutine, because we can alter the degree of the equation by
incrementing the index. But, to identify the data elements, we need
an extra index. Further, the storage wasted becomes significant
over many equations, all using the same amount of space as the
highest-degree equations in the system.

A somewhat better scheme is obviously to create records in those
languages that permit it. This has the advantage of keeping coordi-

Bounded geometry 109

nate values together, and thus usually making access faster. It also
allows the whole geometric element to be passed around by a single
data pointer. We can keep these records themselves in an array,
or try to solve the problem of wasted storage through any of the
usual list or heap datastructures that are widely used throughout
programming,.

Usually, the relationship between the coefficients of the equation
of a geometric entity, and position, orientation etc., is not easily de-
duced. So there is not much point in trying to structure data so that
it can be retrieved using its algebraic coefficients as keys. Firstly,
these coefficients often refer to the whole geometric entity, not just
the bit in which we’re actually interested; secondly, they may be
difficult to relate to geometrically useful data. These problems are
addressed in the next two sections of this chapter. Even where the
information stored about an entity does refer to simple geometry,
such as the control track of a Bézier curve, and we are using all
of that curve, the values—point coordinates in this case—cannot
usually be accessed by direct match, and the specifically geometric
structures we are going to look at must be used. They are usually
auxiliary to the primary copy of the geometric data, and thus do
not affect how this is stored.

Bounded geometry

As we have already observed, bounded geometry is required in most
applications, rather than infinite planes etc. (although these are very
cheap per acre). To bound geometry, we need to partition the space
in which it lies (which may be real or parameter space) in one of
two ways:

We can introduce half-spaces (i.e. like implicit curves and sur-
faces) which allow points on the space to be classified directly.
The actual boundary that is produced is—as usual—the barrier
between the two classifications of space.

This sounds simple, but we do need to find and store a piece of
set-theory that relates the half-spaces in a way that describes
the region of interest.

110 Storing geometry

Alternatively, we can use geometry of lower dimensionality !

which directly models the boundary itself (i.e. like paramet-
ric curves and surfaces), and rely on something like a ray-test
(as we have already mentioned) to decide on which side of this
boundary we are.

Where the boundary between inside and outside is made up of
many small geometric elements, they can all be stored separately
(as in the classic graphics face model). However, it is much
better to store some connectivity information, ensuring that the
pieces really do make up a contiguous loop, or a closed surface,
and there are no missing or separated curve segments or faces.

This second alternative sounds less promising, but parametric ele-
ments have very tractable shapes, and finding the correct set-theory
to combine elements which are half-spaces has often proved very dif-
ficult, so the boundary model approach is very commonly used. We
will briefly discuss the storage implications of each.

Set-theoretic bounds

Set-theoretic bounding information includes simple things like in-
tervals which are rather trivially incorporated into data structures.
We could write the interval [0,1] as (t > 0) N (¢t < 1) and store it
as a piece of set-theoretic algebra—which it is. However, in general
we know that a single one-dimensional interval is intended and al-
locate storage to suit. Indeed, more often than not, when curves
are defined between 0 and 1 this information is never represented
explicitly at all!

On the other hand, a large constructive solid geometry model
may require many primitive solids related by a very complicated
set-theoretic expression, such as a tree. This is stored in the same
way as other types of algebra (i.e. a tree, or some traversal, such
as reverse Polish notation). Because set-theoretic relationships are
algebraic statements, their complexity does not increase with the
dimensionality of the sets being combined.

1Only one fewer dimensions: bounding elements that fail to partition the
space do not work; thus, wire-frames have been shown to be highly ambiguous
representations of polyhedral solids. See Markowsky and Wesley’s milestone
paper of 1980: something of a tombstone for the wire-frame (although it has
recently been receiving the attention of grave-robbers).

Exploiting locality 111

Connectivity

As far as stitching up elements of lower dimensionality is concerned,
a variety of complicated structures is commonly used to represent
the topological relationship—or connectivity—between them. In
the case of a polygon, this may only be a list of the edges. In three
dimensions, the faces of a boundary model have to be linked by
pointers, because they can’t be arranged as a list (the usual problem
of no natural ordering). Also, each face must itself be bounded. This
could be done by half-spaces in the face’s parameter space, but it
is much more usual to bound each face by another set of yet-lower-
dimensional entities i.e. curves. Each face can be a free-standing
polygon, but this leads to duplication and possible error. So, in the
better class of model, faces, edges and vertices (vertices = bounds on
edges!) are bound together into a single spaghetti Bolognese—sorry,
data structure—such as the well-known winged-edge data structure.

These ‘topological’ structures guarantee that a polygon will be a
loop, and a polyhedron will be isomorphic to a sphere, or whatever
‘sphere-with-handles’ shape that the genus? dictates; faces and edges
cannot be missing. However, this does not stop a polygon being a
figure-of-eight, or a polyhedron being self-intersecting. Some other
agency must assure that. For instance, a boundary model that is
created from a set-theoretic model will bring a guarantee of solidity
with it. But, in many systems, the user (who is, after all, responsible
for the utility of the shape) is also given responsibility to ensure that
an area or a volume has actually been created.

Connectivity representations require a hierarchy of bounds which
have different dimensionalities (e.g. zero-dimensional vertices, one-
dimensional edges and three-dimensional faces bounding a three-
dimensional object), and so the complexity of the pointering goes
up dramatically as dimensionality increases (cf. a polygon and a
boundary model). Double-ended pointers increase speed at the cost
of storage.

Exploiting locality

2Genus is the topological measure of the number of holes through an object.

112 Storing geometry

Neither of the two sorts of bounding structure outlined above re-
sponds at all well to being asked the question “Is this point inside the
structure?”. In both cases, a naive algorithm has to access the entire
structure (although the algorithms for doing inside-outside tests on
topologically linked and set-theoretic structures are of course quite
different).

The same applies to other essential geometric queries addressed
to stored geometric data. The solution, as has already been seen,
is to superimpose a simpler auxiliary structure, which increases [lo-
cality by providing easily accessible regions into which the the more
complicated shape data may be sorted. Localizing structures are
therefore commonly stored with shape models of all sorts, and pro-
vide efficient access to them.

The suitability of a localizing structure for this purpose may easily
be assessed against a small number of criteria:

How well does the localizing structure fit the exact geometry?
Are we going to have to break up quite simple exact elements
into penny packets; are we going to find that some complicated
regions are not localized at all?

How easy is it to access the localizing structure? Obviously, it
should be a lot easier than accessing the exact geometry, and
the performance against complexity should be attractive.

How easy is the localizing structure to implement and to main-
tain?

The enclosures mentioned in the last chapter are the ‘classical’
solution to this problem; in graphics, for instance, ‘spheres round
everything’ was once the motto. The problem with enclosures is that
it is not, of course, possible to get enclosures that will fit different
sorts of data very well. When enclosures don’t fit, trouble starts.
Suppose we are trying to cover faces of polyhedra with spheres. If
we have a long thin face that is a poor fit to a sphere, the obvious
thing is to try and fit a lot of smaller spheres. But small spheres
don’t fit exactly inside a big one, so there is always complication
in ensuring that a new set of spheres is chosen which doesn’t leave
some of the model out; and with so much overlapping a few levels of

smaller and smaller spheres may be a very loose bit of localization
indeed!

Exploiting locality 113

Adaptive tessellations are, of course, a better and more ‘modern’
answer to this problem; if a tile is a poor fit to part of the underlying
data, it can be subdivided into pieces which it is known will fill the
space ezactly; that’s what tessellations are about. So subdivision
can continue cleanly until adequate localization is achieved.

Although covering the data efficiently is not a problem with tes-
sellations, their shapes and access methods differ substantially. Here
is a short review of some of the tessellations more commonly used
for localization:

Grids

Grids are not of course adaptive; the only tailoring you can do is to
choose a suitable pitch. But they are lightning-fast to access; you
can get straight to the box that is holding a piece of geometry us-
ing the same simple access mechanism as a multi-dimensional array.
Grids are easily implemented and widely used in ‘simple’ applica-
tions where different scales of data are not expected.

Quad- and oct-trees

Tree structures allow much better adaptation to regions of detail,
but they are geometrically inflexible, as they are axially-aligned and
with tiles of a single shape. The O(logn) time required to descend
the tree can be a problem for large sets of data.

Excell

Tamminen’s Excell structure (his 1980 report is worth the trouble of
getting) is a grid of trees: a pragmatic hybrid that avoids time spent
traversing the upper links of a quad- or oct-tree, on the assumption
that, with real data of many sorts, no very large quads or octs
will be present. Even if they are, the unnecessary work required to
access them is usually of little concern; because they don’t contain
the interesting bits, it probably won’t be necessary to access them
very often.

Binary space partition

A tree-structured tessellation that was not mentioned in Chapter 6
is the binary space partition (BSP) (see Thibault’s 1987 paper). It’s

114 Storing geometry

not theoretically highbrow but is widely used in graphics. It is
constructed by segmenting the data using arbitrary cutting planes,
chosen by some data-dependent heuristic. Because the planes are
not axially aligned, they can be rotated to any position, or pro-
jected into perspective, at low cost and without any degradation
of functionality (unlike grids, quad- and oct-trees). This attribute
is highly prized for graphics applications, when scenes are to be
rendered from a series of different viewpoints. The binary space
partition is, however, virtually impossible to edit; it is a once-only
localization process.

Dirichlet tessellations revisited

Localization based on the Dirichlet tessellation has attracted inter-
est in recent years; Dirichlet tessellations have theoretical rigour,
but are somewhat complicated and still the subject of research. As
mentioned in Chapter 6, an exact Dirichlet tessellation of complex
data (i.e. anything other than point sets) is algebraically very hard.
Practical solutions can be obtained by incorporating heuristics to
seed a complex shape model with points (e.g. take the vertices of a
solid model) and tessellate them, rather than the underlying struc-
ture. If the density of these points corresponds reasonably well to
the underlying data (the regions of detail, in the case of a model)
then the resulting tessellation should localize the data reasonably
efficiently.

Although a Dirichlet tessellation may fit the data well, access re-
quires traversing the structure from one tile to another. However,
unexpectedly, access to Dirichlet tessellations becomes more com-
petitive as dimensionality increases.

An interesting alternative is to use the logic of a Dirichlet tessel-
lation, but actually to compute another tessellation to approximate
it, usually a quad-tree, or oct-tree. That keeps the geometry sim-
ple, makes access quicker, and is particularly useful for problems
like those in robotics, where we need to know all the time how far
we are from any piece of data—and thus from a collision with it.

Exploiting locality 115

L]]
- ¥ ¥
w -
L =
S N -
] i [}
¥ L L]
- L
[] E] L] }
- L]
- ¥ o -
[] ¥ |
| | i

8(i)—A point pattern localized by a grid, a quad-tree, a bi-
nary space partition and a Dirichlet tessellation. Observe
that, using the grid, some of the boxes are empty, some
hold more than one point; the quad-tree has some empty
boxes, but none multiply-occupied. The binary space par-
tition tree and Dirichlet tessellation have one point per
region. The grid and quad-tree exhibit arbitrariness in
choice of orientation and origin; the binary space partition
is arbitrary in order of partition. The Dirichlet tessella-
tion is unique, but it is also the most complicated of the
structures.

9

Transforms

Transforms are really distortions of space; they allow us to generate
geometric elements in convenient sizes, places and orientations, and
then to move them to where we really want them. They are par-
ticularly significant in applications such as robotics and graphics,
where the position of objects is often changing. Any mapping of the
coordinate axes

= fl (ZEJ Y, Z)
"= f2 (‘1'7 Y, Z)
Z, = fS (f, Y, Z)
is an acceptable transform. We are usually more interested in the

rigid-body transforms which move geometry without changing its
shape:

Translation (or shifting).
Rotation.

To these may be added the shape-preserving transforms, which allow
change of size and handedness:

Scaling, which changes size only.
Mirroring, which produces right-hand and left-hand copies.

These are all affine (parallelism preserving) transforms and can be
represented by the equations:

T = anT+ apy+ a3z +d;

21T + A2y + g3z + da

2 = a3xr+ asay + assz + d3.

Transforms 117

The coefficients a are obviously the elements of a matrix, and so we
arrive at the relationship between transforms and matrix algebra
that is in every book on graphics. We reiterate it briefly here, using
two-dimensional coordinates to save a bit of space.

A simple matrix multiplication:

|| an an x
Yy’ Q21 QA22 Y

can represent movements in two dimensions such as a rotation 6
about the origin
[cosf sinéd]

—sinf cos®

or a mirroring (in this case about the x-axis)

o)

Note that both the matrices which perform these rigid-body trans-
forms have a determinant of 1. Scaling matrices do not have unit
determinants; scaling by a factor s is achieved by the matrix

o2

But a matrix multiplication is unable to affect the origin (0,0),
which is always mapped to itself. To obtain a shift, we need some
way of adding values. This can be done as a separate operation, or
we can increase the size of the matrices that we are using, and em-

ploy what are called homogeneous coordinates. Our new transforms
look like:

ZL‘/ ai; Q12 d1 xXr
/ _

Yy = | ag1 axn d Yy
/

s P p2 S 1

After a homogeneous transform, the element at the bottom of the
column matrix representing the result is restored to 1 by dividing
the whole matrix through by s’. So, the mapping from z and y to
a2’ and ¢/ is:
,anxtapy+d
DT+ p2y + 8
/ an T + azy + do
T +py+s

118 Transforms

The terms of the 2 x 2 sub-matrix, ai1—ass, produce rotation, and
shearing if we want it. It is convenient to keep the determinant of
that sub-matrix at 1 (thus yielding a constant-area transform, in this
two-dimensional case) as s does the scaling. The elements d; and
ds give translation, while p; and p, produce perspective transform,
which is used in graphics.

That completes a whistle-stop tour of the elementary ideas, which
we pointed out can be (indeed are always) found elsewhere. In the
remainder of this chapter we will look at some aspects of transforms,
which are less commonly discussed, but inevitably emerge if you
actually want to use them.

Implementing transforms

While matrices provide a great formalism for describing transforms,
the fit is not as good as it is widely proclaimed to be:

Matrices do not per se place an intuitively obvious constraint
on the operations that they describe (as would be the case if—
say—all matrix operations corresponded to rigid-body trans-
forms); on the other hand they are not a fully general paradigm
(suppose we want z’ to have a term in z?).

Simple operations such as shifting and mirroring are unneces-
sarily complicated to explain, and to execute, using matrices.
Even using homogeneous matrices, transforms do not map di-

rectly into matrix algebra; extra operations (subsequent nor-
malizations) must be tacked on.

Against this:
Matrices provide the best way to formalize the concatenation
of transforms.

Determinants provide an appropriate formalism to analyse
certain (i.e. area- or volume-preserving) properties of matrices.

Matrices are de facto compatible with graphics packages and
matrix hardware (although the latter is still rather rare).
In practice, it is the concatenation property that is important. If

we wish to shift some points once and once only, then some special
code:

Implementing transforms 119

x = x + dx;
y =y +dy;
z = z + dz;

is both trivial and easy to understand. The alternative full homo-
geneous matrix operation involving 16 multiplications, 12 additions
and three divisions is not to be thought of. On the other hand,
the total amount of work required for a small number of simple
transforms done sequentially soon becomes more than for the con-
catenated equivalent. The cost of the concatenation arithmetic can
be quickly amortized over a few points, let alone a few thousand.

So, in general:

Few points Lots of points
Few transforms Bespoke code Bespoke code
Many transforms | Bespoke code | Homogeneous matrices

Sometimes, we may expect some of the transforms reaching a par-
ticular piece of code to be complicated, but others (most?) to be
simple. What then? If we know that a transform matrix only
represents—say—a translation, then we can pick out the data we
need from a general matrix. There is some code that does concate-
nation in this way (see Cychosz’ contribution to Glassner’s Graphics
Gems: pages 476-481) although it is rather spoiled by using double-
subscript arrays. While these provide the best way to write matrix
elements down, accessing two-dimensional elements requires a gra-
tuitous multiplication that we can avoid, because we only need one
size of matrix. For this reason, general matrix (worse, tensor ma-
nipulation packages) are best avoided.

So, as a trivial example, suppose we wish to transform a point
(XOLD, YOLD) to a new point (XNEW, YNEW), using two-dimensional
homogeneous matrices that we know will often be shifts, rotations,
or scalings. Presuming for now that the matrices came from some-
where else in our own program, it is easy to tag them with their type:
1—general, 2—shift, 3—rotation, 4—scaling. Here’s what the code
might look like. Note that, because of the good old EQUIVALENCE
statement, at run-time we avoid having to deal with array subscripts
completely in this piece of FORTRAN:

120 Transforms

REAL A(3,3)

EQUIVALENCE (A(1,1),A11), (A(1,2),A12), (A(1,3),A13),
+ (A(2,1),A21), (A(2,2),A22), (A(2,3),A23),
+ (A(3,1),A31), (A(3,2),A32), (A(8,3),A33)

DATA ACCY /1.0E-6/

GOTO (ITYPE), 10, 20, 30, 40
... Unrecognized type code

C --- General case.

10 DENOM = XOLD * A31 + YOLD * A32 + A33
IF (ABS(DENOM) .LT. ACCY)THEN

... New coordinate out of range

ELSE
DENINV
XNEW =
YNEW =

ENDIF

GOTO 50

= 1.0 / DENOM
(XOLD * A11 + YOLD * A12 + A13) * DENINV
(XOLD * A21 + YOLD * A22 + A23) * DENINV

C --- Matrix is a shift.

20 XNEW
YOLD
GOTO 50

X0LD + A13
YOLD + A23

C --- Matrix is a rotation.

30 IF(ABS(A33) .LT. ACCY) THEN
... New coordinate out of range.

ELSE
DENINV = 1.0 / DENOM
XNEW = XOLD * DENINV
YNEW = YOLD * DENINV

Implementing transforms 121

GOTO 50
C --- Matrix is a scaling.
40 XNEW = XOLD * A11 + YOLD * A12

YNEW = YOLD * A21 + YOLD * A22

50 CONTINUE

Crude but effective: the accuracy constant obviously needs to be
set according to the application. Note that the matrix type codes
may also be used to make concatenations more efficient, by going
to special code when, for instance, a shift is to be added to an
existing matrix. The type codes can be made to survive certain
concatenations (e.g. a series of shifts) and thus increase efficiency
all along the line. Obviously, concatenations should be done by
updating a running transform matrix, rather than creating a new
one, to avoid copying. This is tricky in languages (e.g. PROLOG) that
stop you writing back into a data structure, but otherwise simple.
For instance, to apply a rotation to a matrix that is itself marked
as a rotation matrix, looks like this when written out:

cosf sinf 0 ai; a2 O
—sinf cosf 0 a1y a9 0
0 0 1 0O 0 1

(Plus a vestigial normalization step, if the code is really dumb.) But
it comes down to the code

REAL A(3,3)
EQUIVALENCE (A(1,1),A11),(A(1,2),A12),(A(1,3),A13),

+ (A(2,1),A21),(A(2,2) ,A22), (A(2,3),A23),
+ (A(3,1),A31),(A(3,2),A32), (A(3,3),A33)
GOTO (ITYPE), ... ,10,

10 ST = SIN(THETA)
CT = SQRT(1.0 - CT)

122 Transforms

TEMP = ST * Al11 - CT * A21
A11 = CT * Al11 + ST * A21
A21 = TEMP

TEMP = ST * A12 - CT * A22
A12 = CT x A12 + ST x A22
A22 = TEMP

In fact this piece of code works for any matrix for which:

a11 Q12 —1

Q21 Qa22

Interpreting matrices

So far we have assumed (e.g. in the discussion of these notional type
codes) that we know where matrices have come from. Sometimes,
we don’t. Maybe they come from another piece of software, or
from some external input. We can see from the partitioning of
the homogeneous two-dimensional transform matrix that we have
already looked at—

ap aip dy

a1 A do

b1 p2 S

—that some bits are easy. If p; or ps are non-zero, then we’ve got
a non-affine component in the transform; otherwise the shifts in d;
and d,, and the scaling factor in s, are easily extracted. But what
about a;; to as? Supposing, as we well may, that we want to find
out whether it’s a rotation; we know that a rotation should be

—sinf cosf

lcos@ sin@}

so we can extract # from one of the elements of the matrix (e.g.
0 = cos™'ay;) and then check whether the other three agree. In
three dimensions, that calculation is a little less trivial, and worth
looking at.

Interpreting matrices 123

In space, a rotation can be about one of the primary axes, but it
is more generally about an arbitrary axis. The matrix for arbitrary
three-dimensional rotation is one of the more useful, but it is incon-
veniently omitted from most of the books (although it is in Rogers
and Adams’ book Mathematical Elements for Computer Graphics).

If the rotation axis is a unit vector (c,, ¢y, c;), then the matrix is:

2+ (1—c2)cosb cpy(l —cosf) +c,sinf cye, (1 —cos) — ¢, sind
czCy(1 — cos) + ¢, sinf e+ (1—c})cost cyCz(1 —cosf + ¢, sind
czC:(1—cosf) + ¢, sinf cyc,(1 —cosb) — ¢, sind 2+ (1—c?)cosb

z

which looks complicated; as an aside, we see that it codes up nicely:

SINT = SIN(THETA)
COST = SQRT(1.0 - SINT * SINT)
D=1.0 - COST

CXsQ
CYSQ
CZ3Q

TEMP

CXCYD
CYCZD
CZCXD

CXS =
CYS =
CZs =

A1l =
Al12 =
A13 =
A21 =
A22 =
A23 =
A31 =
A32 =
A33 =

CX *x CX
CY * CY
CZ *x CZ

CX x D

CY x TEMP
CY » CZ D
CZ * TEMP

CX * SINT
CY * SINT
CZ * SINT

CXsQ + (CYSQ + CZsQ) * COST
CXCYD + CZS
CXCZD + CYS
CXCYD + CZS
CYsQ + (CXsSQ + CZsQ) * COST
CYCZD + CXS
CXCZD + CYS
CYCZD - CXS
CZsQ + (CXsQ + CYsSQ) * COST

But supposing we do want to go the other way, and

124 Transforms

Find out whether a given matrix is a rotation.

Discover the axis and angle?

Equating all the terms in the matrix produces a non-linear, and very
over-constrained, mess; we can easily spot a method of extracting
¢z sinf, ¢,sinf and ¢, sin . Since we know ¢} 4 ¢, + ¢2 = 1, we can
find sin 0: and hence ¢, ¢, and c,. We can then check all the other
terms to whatever accuracy seems necessary.

Transformation of equations

Most texts restrict themselves to applying transforms to points.
This is adequate, provided that the geometry to be transformed is
constructed from a number of points, and can be reconstructed after
transformation. This applies to wire-frames, polygons, Bernstein-
basis curves and surfaces, and also curves and surfaces that we are
prepared to reconstruct from point data by Lagrange interpolation.

Equations in the power basis are a different story. Parametric
equations are relatively easy. If the polynomial is:

r = xpt+cnt+ Cl2t2 + 013t3 .
= Yo + C21t + C22t2 + ngtg e
z = Zpt+ceat+ 032t2 + 033t3 ceey

and the transform is the affine:

/

= an + appy + ajzz + d1

/

= (1% + Ay + a3z + dy

!/
2 = a3+ asy + aszz + ds,

then the polynomial can readily be substituted into the transform,
to give:

T = anTo+ ayo + axnzo + d

+ (allcll + @19C21 + @13C31 + - . .)t
+ <a11621 + a11Co2 + G13C32 + . . .>t2
+

3
(a11¢31 + a12¢32 + arzcss + ..)t

Transformation of equations 125

It’s easy to see from this that the set of non-rational polynomial
equations is not closed under perspective transforms (i.e. all poly-
nomials don’t transform to other polynomials); if the transforms are
rational (either of the terms p; or py are non-zero) then we must get
a rational polynomial out.

Implicit equations are much harder. We have to invert the trans-
forms, so that we can substitute them into the implicit equation,
rather than vice versa. This gets complicated, so let’s look at a
simple two-dimensional example, the quadratic:

cx? + 02y2 4+ c3xy +cuxr +c5y+c =0

and the affine transform:

/

ar + a2y + d1

/

= an® + any + da.
Inverting the transforms gives:

/ /
a9ox’ — a9y + ayods — aged;

a11Q22 — A12G21
/ /
any — anx’ + and; — ajidsy

y =
11022 — Q12021

And substituting into the quadratic gives a new set of coefficients:

_ 2
2

—C3Q22021

2
2
+coa7y

—C3Q12011

C3 = —2c1a92a21
—2cpa11a2;

+cs(ariags + arpan

126 Transforms

¢y = 2c1(ajpageds — a%le)

2¢o(ay1ag1dy — as,dy)

+c3(2az1a22d1 — (11022 + a12021)ds)
+caaa(ariazs + ana)

+c5a21(agyage + a12a21)

i = 2ci(arpamnd; — alyds)

+2¢5(ar1andy — a3y ds)
+e3(2ar1a12dy — (11020 + ajoas;)dy)
—|—C4a12(a11a22 - a12a21)

+esarn(ar1a22 — a12a21)

Cg = Cl(a12d2 - a22d1)2
+ea(andy — arrds)?
+C3(a12d2 - a22d1)(a21d1 - a12d2)
+C4(a11a22 - a12a21)(a11a22 - a12a21)
+es(and — a11d2)(a11a22 — a1201)

(

+cglar1aga — a12a21).

This is a lot of algebra, just for a quadratic: it shows how quickly
things can get complicated. But there is no way around working
this sort of thing out, and coding it up, if you want to transform
implicit polynomials in the power form efficiently.

Again, a perspective transform will generate a rational equation,
except for the plane, which is not distorted.

The advantages of geometric elements which can readily be gen-
erated from sets of points is obvious. We don’t need special trans-
form code for every different sort of geometry, and as an added
bonus, if we require a non-linear transform, an effective cheat—
transforming the control points and reconstructing willy-nilly to
make an approximation—is readily available.

10

Intersections

The constructions that we have seen so far have allowed the poor
curves and surfaces we’ve been generating some latitude to move,
bulge, flatten, or loop-the-loop in order to meet our requirements.
Let’s recollect:

Point, straight-line and circle constructions: so simple there
are closed-form solutions for them (although some take a day
or two to work out by hand—try the ‘circle tangent to three
circles” formula, for instance! Tt’s worth using an algebra sys-
tem for such things these days).

Interpolating parametric curves through points and with given
tangents; choosing the parameterization in advance makes
things easier, but sometimes also bumpier.

Interpolating parametric patches across sets of curves: again
parametric positions are known; points on the surface can
be derived from four boundary points only, using the Coons
patch.

Implicit blends: cannot be constructed on a point-wise basis,
and degrees of blend equations soon become very large.

However, in all these cases, the way we formulated the construction
was in some way favourable to the elements being constructed. It
may be less easy to interpolate a Bézier curve through points on the
curve than to generate it from points on the control track, but the
algebra is relatively straightforward. In this chapter and the one
that follows, we are going to look at a couple of constructions where
the new geometry is constrained in its entirety; not being allowed

128 Intersections

the fun of bulges and so on, the equations rebel and get very nasty;
we will have to talk about approximations....

Intersections are places where two pieces of geometry meet; at
points on an intersection, the equations of both pieces of geometry
are satisfied. In general, an intersection poses the dual problems:

Finding it.
Representing it.

The algebraic difficulties are well known, and hinge on the types of
equation we have available.

If we have two sets of parametric equations, then we can eas-
ily start towards a solution by eliminating the coordinates.
For instance, in three dimensions, a parametric surface P; =
Q;(t,u) and a parametric curve Py = Qy(v) yield three equa-
tions of the form Qi(t,u) = Qa(v). However, simultaneous
non-linear equations like these are not promising.

If we have two sets of implicit equations, there is no trivial
progress we can make.

If we have a parametric and an implicit equation, then we can
substitute for z, y and z in the implicit equation, and we have
only one equation to solve, in either one or two parametric
variables.

For non-trivial cases, the simultaneous equations that pop out of
the parametric-parametric and implicit-implicit cases will yield only
to numerical methods, or to advanced algebraic methods such as
Sylvester resultants (see Davenport, Siret and Tournier’s book, and
the section at the end of this chapter). This yielding is often re-
luctant, and a direct attack on these sets of equations is not to be
undertaken lightly.

The easy(ish) pickings left are therefore:

Elements which have both parametric and implicit represen-
tations (sensible ones, not the result of implicitization tech-
niques, which generate huge equations); these run out at the
quadratics and (in three dimensions) the quadrics. The ratio-
nal parameterizations of the latter aren’t much fun either.

Intersections 129

Unbalanced situations where one of the geometric elements
has both representations, and so we can choose whichever one
makes the computation easier.

The asymmetry of the latter approach may not be intellectually sat-
isfying, but there are some rather significant practical applications.

For instance, a parametric surface P = Q(¢,u) and a plane (obvi-
ously in implicit form) ax + by + ¢z + d = 0, yield a single equation
in t and u, which is the implicit equation of the intersection curve in
parametric space. This approach is popular in constructing scan-line
rendering algorithms for parametric surfaces, where the projection
of a raster line on the screen is the plane.

Another commonly exploited example is the intersection of a
parametric straight line with an implicit surface. This is the ba-
sis of many ray-tracing methods. A parametric straight line P =
Py +P;.(t) can be substituted into an implicit surface f(z,y,2) =0
and the result is a polynomial in ¢ in the maximum degree of the
surface. Even when polynomials in one variable are of high degree,
they are susceptible to a good collection of pretty reliable numerical
techniques for root isolation and finding. Furthermore, quadratic
and cubic equations have formula solutions. Let’s look at the inter-
section of a straight line and a general quadric using the quadratic
formula. The straight line looks like:

r = xg+ ft
Yy = yptgt
z = zy+ ht.

The quadric looks like:
a1z + a2y2 + a322 +aqyz + aszx + agry + arr + agy + agz + ayp = 0.

Note that we use a symmetrical form of the equation, rather than ex-
act lezicographic order (which would have the fourth to sixth terms
asxy + asrz + ag); that is what we would get out of an algebra
system, but symmetry makes the code much easier to check.

130 Intersections

So, the resulting quadratic in ¢ looks like:
(a1 f? + asg® + azh?® + asgh + ashf + agfg)t>

+(2a1 fro + 2a29Y0 + 2a3hzy
+as(hyo + gz0) + as(fzo + hxo)
+ag(gro + fyo) + arf + asg + agh)t

+a123 + asys + aszz]
+a4y020 “+ aszpag + agToYo + arxg + aslo + agzp + aqg.

Considering it as at?+bt+c = 0, we solve it with the usual formula:

b= Vb2 — 4dac

t
2a

And here’s the code for the internals of a procedure to do it:
#include <math.h>
#define ACCY (1.0e-6) /* The usual near-zero epsilon */
/* Absolute value macro follows */
#define abs(x) (((x) <0) 7 (-(x)) : (x))

/%

* Input variables

*/
float x0,y0,z0,f,g,h;
float al,a2,a3,a4,ab,a6,a7,a8,a9,all;
/%
* The answers
*/
float *tl,*t2;
int *root_count;
/%
* Intermediate results
*/

float a,b,c;
float al_f,a2_g,a3_h,denom,den_inv,sub_fac,
a4_y0,ab_z0,a6_x0,ac2,root;

Intersections

/%

* Asymptotically meets the quadric (e.g. a
not much use.

al_f = alxf;
a2_g = al2xg;,
a3_h = a3%*h;
a = fx(al_f

+ g*(aQ_g

+ h*x(a3_h
denom = a +

if (abs(denom) < ACCY)

{

* hyperboloid)

*/

sub

+ ab*g)
+ adxh)
+ abxf);
a;

at infinity;

*root_count = O;

return;

ad_y0 = adx*y0;

ab_z0 = abxz0;
a6_x0 = abx*x0;
b = sub_fac + sub_fac

(@]
Il

ac2

f*x(ab_z0 + ab*y0
g*(ab_x0 + a4*z0
h*(a4_y0 + abx*x0

x0*(al*x0 + ab_z0

+ + + +

+

_fac = x0O*xal_f + yO*xa2_g + zO0*a3_h;

a7) +
ag8) +
ag);

a7) +

yOx(a2*xy0 + a6_x0 + a8) +
z0*(a3%z0 + a4_y0 + a9) +

alo;

= denom*c;

131

132 Intersections

root = bxb - ac2 -ac2;
if (root < ACCY)
{

*

It would seem that we have missed the quadric;
but we may be hitting it at a tangent, and the

*

* result has been depressed through zero by numerical
* problems, so it’s fudge-factor time.
*/
if (root < -ACCY)
{
/* All right, all right,
we really have missed. */
*root_count = O;
return;
} else
{
*root_count = 1;
*tl = -b/denom;
return;
}

*root_count = 2;

root = (float)sqrt((double)root);
den_inv = 1.0/denom;

xt1 = den_inv*(root - b);

t2 = den_inv(-root - b);
return;

We have tried not to calculate anything before we need it, so as not
to waste effort in the event that there are no (useful) intersections.
By a factorization scheme, we have saved nearly half the multiplica-
tions (now 27, was 52) over the ‘natural’ factorization of the original
quadratic.

The results appear as up to two values of the parameter of the
straight-line equation, with *root_count giving the number. We
expressly avoid the nonsense of putting them in a two-element ar-

Intersections 133

ray. In fact this is the start of the next problem to think about:
representing the results of intersection calculations when we’ve done
them.

Two-dimensional intersections, and intersections of curves with
surfaces in three dimensions, have the enormous advantage that the
results can be represented as points. Further, they are points on
a one-dimensional curve, and so can be sorted. Thus, even if the
product of the degrees of the surface and the straight line is large,
and there can be many roots of the intersection equation and many
intersection points, we can usually deal effectively with these by
finding the first, last, the one lying between two particular param-
eter values, or whatever. In fact, in a naive (i.e. slow) ray-tracing
process, we might calculate the intersections with all the surfaces in
the scene, even when these are different pieces of geometry. All the
intersection points, of whatever their origin—one from this plane,
that quadric etc.—can be sorted en masse and the nearest to the
end of the straight line is the first surface that the ray strikes. So,
in this case, we have:

A representation: a list of parameter values (usually an array
if more than two).

A way of selecting the result we want (e.g. taking the first, the
first after a particular parameter value, or whatever).

When it comes to surface-surface intersections, the problem is
much more difficult; it’s still a research topic. We offer a highly infor-
mal summary here; there is no particularly good single source of fur-
ther information, although the paper by Patrakalakis and Prakash
of 1989 is reasonably accessible. Let us look in turn at the problems
of finding and representing the intersection.

Finding intersection curves

The algebraic problems we have already mentioned are severe, but
we offer some insight in the final section of this chapter. How-
ever, rather than use approximations to the algebra or numerical
methods, or both, most published algorithms attack the problem
geometrically. We can identify four approaches:

Find (somehow) a point on the intersection, and step along it
by optimization methods, remaining within (an approximation

134 Intersections

to) a certain distance of each surface (the distance approxima-
tion is more easily available for implicit surfaces, as we can use
them as potential functions).

Compute (iso-parametric) curves on one surface and find their
intersection with the other one (obviously one surface must be
parametric).

Recursively divide each surface (if they are both parametric)
into smaller and smaller parametric intervals (sub-patches).
Compare these using convex-hull properties, or ultimately as
facets.

Recursively divide space into (e.g.) an oct-tree and use (e.g.)
interval arithmetic to discard sub-spaces through which the
surfaces don’t pass. This works best with parametric surfaces,
and in the leaf sub-spaces a planar approximation can be made
to the surface, and a piece of polyline approximation to part
of the intersection curve formed as a plane-plane intersection
between these facets.

Intersection curves can be very complicated; for instance, even a
simple cylinder-cylinder intersection can have six cases, as shown in
Mlustration 10(i). If the starting points are poorly selected, then the
first method runs the risk of failing to find great chunks of curve.
The second method also has this problem. The third and fourth
methods will find everything (down to their resolving accuracy) but
can be slow. A favourite (but not guaranteed) compromise is to
start by a search and then trace the pieces of intersection curve
found to get more detail.

Representing intersection curves

Representing the curves is another problem. As we saw above, when
an implicit curve intersects with a parametric surface, the intersec-
tion comes out as an implicit two-dimensional curve in the param-
eter space of the parametric curve. Where the equation does not
appear in such a nice way, we can still choose to represent the result
as a numerical process in this form: as a polyline or spline in the
parametric coordinate space of one surface (or both, but in this case
they won’t even be the same approximation to the real curve!). Rep-
resentation in parametric coordinates is advantageous if we want to

Intersections 135

‘—I—
®

() (d]

(e) (£

10(i)—Six cases of a cylinder-cylinder intersection (the two
cylinders are orthogonal, and drawn in parallel projection):
(a) no intersection curve; (b) one-point contact; (c) one
loop of intersection curve; (d) two loops; (e) two loops
meeting at a point; (£) four segments meeting at two
points.

136 Intersections

represent pieces of surface (i.e. trimmed patches). If we are happy
to have the intersection as a space curve, or if both the surfaces were
implicit anyway, then we can represent the intersections as such. At
least then we don’t have to allow for distortion in a surface’s para-
metric space which makes it difficult to decide what resolution (e.g.
segment length in a polyline) is acceptable.

Resultants and discriminants

Resultants

Though we may not be able to find the intersection of, say, two
multivariate implicit polynomials exactly, most algebra systems (see
Davenport, Siret and Tournier’s book) have routines to find the re-
sultants of such polynomials. A resultant is a projection of an inter-
section. For example (see Illustration 10(ii)), suppose we have two
polynomials P(z,y) = 0 and Q(z,y) = 0. We can eliminate z from
them both (essentially by treating them as non-linear simultaneous
equations). The answer is a polynomial which only contains terms
in y, and the roots of this are the projections on to the y axis of
where the original two polynomials intersected. Obviously we can
do the same trick, but eliminating y instead, to get the projection
on to the x axis.

This works in any number of dimensions; if we have P(z,y,z) =0
and Q(x,y, z) = 0 we can eliminate z, say, from the pair and obtain
a resultant, R(z,y) = 0 which will be the projection in the x —y
plane of the actual intersection curve(s) in space between P and Q.
We are not restricted to projecting in a coordinate direction: the
whole system can be rotated, and a projected resultant taken in any
direction.

What follows is a transcript of an interactive session with a pro-
gram called GAS (Geometric Algebra System) (see Milne’s thesis)
finding the x resultant of two polynomials in x,y and z:

[1] p := 2%x*y + 3*x*z - b*z"2 - 2%x + 7;
(2%Y+3%Z-2) *X-5%Z~2+7

Resultants and discriminants 137

¥ B(x,v)
¥y = — —
Qix, v
o * -
\ S

0ol |

10(ii)—The resultant is a projection of an intersection; yq
and y; are the resultant of P and Q obtained by eliminat-
ing x.

[2] q := -d*zxy + 7%x72 - 2;
T*X~2-4%Z*Y-2

[3] resultant(p,q,’x);
-16%Z*Y~3+(-48*%Z~2+32*Z-8) *Y~2
+(-36*Z"3+48*Z~2-40*Z+16) *Y
+175%Z~4-508*7Z"2+24%7+335

Note that, though the number of variables has been reduced, the
degree of the resultant is higher than that of the parent polynomials.

The method of resultants is in essence the technique used for
implicitization: the algebraic conversion of parametric polynomials
to implicit polynomials. If we have a parametric patch

r = x(u,v)
= y(“v U)
z = z(u,v),

we can treat it as three equations in five unknowns (z, y, z, u, and

138 Intersections

v), eliminate v from the pairs (1,2) and (2,3), then eliminate w from
the resulting two equations. The answer will be a polynomial in =z,
y and z which will correspond with the original parametric patch.
Unfortunately, it will also extend beyond the parametric boundaries
of the original patch, and so may self-intersect and do all sorts of
other horrid things.

Discriminants

The discriminants of a polynomial are the projections of its horizon
curves in some direction. They are found by taking the resultant
of the polynomial with its own derivative. The discriminant of a
cylinder would be two straight lines (or a circle, if the projection was
along the axis); that of a sphere would be a circle in any direction,
and so on.

11

Distances and offsets

Distance

The idea of distance is of course a powerful one in geometry, but
trebly so in computing with geometry:

A distance may be the answer to a problem; for instance, we
need to know the distance between two conductors we are
designing to see whether a spark will jump between them.

A problem that does not seem particularly connected with
distance is actually most easily formulated in that way. An
example is the offset to a surface (covered below); we may
visualize it as the path of a ball rolling in contact with the
surface, but the problem is most satisfactorily formulated in
terms of distance, not tangency.

The most frequent use of distance in computing with geometry
is in culling out geometric comparisons without actually doing
them. For instance, if we know that two surfaces are too
far apart to intersect, we need never attempt the (difficult)
intersection calculations (see the previous chapter).

We will generally be interested in Fuclidean distance, that is,
the usual ‘as the crow flies’ sort. Some problems require different
metrics. For instance, if we wish to calculate which points will
contact first on the jaws of a press which are coming together, we
are interested in distance along the direction of travel. That is a
simple example; distance in a given direction is easier to calculate

140 Distances and offsets

than Euclidean distance. At the other end of the spectrum are
things like non-uniform offsets to surfaces, where the distance metric
varies with direction.

The last of the above uses of distance—as a test—is so common
that it biases the way we think about distance; often we cannot
obtain exact values from distance computations, but guaranteed
underestimates are often nearly as good. That is to say, if we know
that something is definitely not nearer than a certain distance, then
we can often build a test or algorithm around that, even if the
underestimation is severe. (We would of course like it to be as good
as possible, but what does that cost?) Estimates of distance that
may be too great or too small are rarely of interest.

Like everything else, distance calculations start by being easy(ish)
and get tougher quickly. Let’s start with points.

Point-to-point distance

The simplest distance formula is that from a straight line or plane to
a point. From the point (¢, yo, 20) to the plane az+by+cz+d =10
the distance is |azg + byo + cz¢ + d|, provided that the plane is
normalized (i.e. a?+b*+c® = 1); that’s all, and that’s why problems
involving distance in a given direction can be relatively easy. In
effect it is the same as finding distance in a single coordinate; the
plane effectively rotates the axes.

The Pythagorean formula \/x% + 23 + 23 + - - - s, of course, used
to calculate distance between two points; it works in any number of
dimensions, as the terms x; are meant to indicate. Maybe this is the
all-time most well-known formula, in geometry at least. However,
the necessity for a square root is a continuing annoyance (no doubt
the Greeks thought it was annoying too). Surprisingly, there are
actually a few things we can do about it:

Don’t do it; if we are comparing distances, then comparing
squared distances is just as good (although you’ll have to
square any that come out linear formula, such as point-to-
plane).

Approximate it; the approximation max|zy —)|, |[to—] . ..
is quite good for everyday numbers of dimensions. (But awful
for spaces of science-fiction dimensions. Compare the maxi-

Distance 141

mum error in two, three and a hundred dimensions; curious,
isn’t it?) In two dimensions, the recipe |z — /| + |y — ¢/| —
min(|z —2'|, |y —v'|)/2 is effective (see Paeth’s contribution to
Glassner’s Graphics Gems: pages 427-431). There are a num-
ber of other approximation formulae: some are over-estimates
and some are approximations which may be over or under;
these are less useful.

Note that the square root function on a computer is per-
formed by means of an expansion. We can expand the function
V2 + y? directly, as a Taylor series or use Halley’s method
(see Dubrulle’s paper, or that of Moler and Morrison, both
published in the IBM Journal of Research and Development in
1983). There are additional advantages in this approach; the
loss of accuracy when x is much larger than y (or vice versa)
can be reduced, and likewise the possibility of the squares pro-
ducing arithmetic overflow or underflow. But unless you are
writing very low-level code (e.g. for a graphics device), it is
doubtful whether this sort of thing can be made to pay in
terms of speed alone.

Distances to general curves and surfaces

Only the straight line and circle, and plane and sphere in three di-
mensions, have obvious exact distance equations. The circle and
sphere are merely contours of distance from a point: not particu-
larly significant. The implicit equations of other quadratic curves
and quadric surfaces—even the humble ellipse—do not have linear
relationship with distance that we would like. Their equations do
define a mock-distance, called variously a potential function or al-
gebraic distance, which was mentioned in Chapter 5.

There is a little more to be said, however. Parametric curves are
not too horrible. If we have a curve

z = f(t)
= g(t)

and a point (xo,%p), then we can express the (squared) distance
between them as

(wo — f(8))? + (o — g(t))*.

142 Distances and offsets

At the point on the curve closest to (g, o), the distance (squared
or not) will be a minimum. Thus

Ll F0) + (o — 9(0)7] = 0.

For quadratic f and g, we would obtain a cubic equation to solve,
which does have a formula. Of course, the roots may be maxima
or minima; to distinguish these the second derivative has to be ex-
amined. For higher-order curves, numerical methods are required.
Replacing the curve by a surface produces not only two parameters,
but two equations to be solved, as the partial derivatives in both
parameters must be equated to zero; that is not so easy to solve.

Offsets

A powerful idea in geometry is to let one thing slide or roll along
another and see what shape it traces out. The cycloidal curves of
gear teeth are one well-known embodiment of the idea; the curves
need to be how they are so that they do roll, and don’t slide. An-
other application is in machining; in most machining processes, the
cutter is not a point tool. The trajectory that the centre of the
cutter takes to produce a particular curve or surface is a new curve
or surface somewhat away from, or offset from, the first, so that the
distance between the centre and periphery is accounted for, and the
correct shape is manufactured.

This may be an elegant idea, but it produces nasty geometry:

The algebra is horrid; we are usually forced straight away into
one approximation or another.

We can get pieces of curve or surface that we don’t want, and
we may not get some pieces that we do want.

The simplest form of offset is a curve a constant distance from an-
other. Think of it as the curve traced out by the centre of a circle
rolling along a curve: in three dimensions, a sphere rolling over a
surface. Very few curves and surface types are closed under offset-
ting; that means, the offset is not a curve or surface of the same type.
In fact, only straight lines and circles in two dimensions, and the

Offsets 143

natural quadrics and torus (actually cyclides!) in three dimensions,
are closed under offsetting.

We can get further with general parametric curves and surfaces.
For a curve, we can make some progress by realizing that the centre
of the circle which traces out the offset is always along the normal
from the point where the circle touches the curve. If the curve is:

r = f(t)
= g(t),

then we know the tangent vector is (f’(t),¢'(t)); we can obtain nor-
mal vectors by a quick trip into three dimensions. Taking the vec-
tor product of (f(t),4'(t),0) with each of the unit vectors pointing
out of the plane (0,0,1) and (0,0, —1), we get (¢'(t), —f'(t)) and
(—=g'(t), f'(t)). These results must be normalized (note the two uses
of the word ‘normal’), to give the unit normals:

i(AN (O)
VIO + g2 P02+ 907

Try it yourself for the quadratic

a; + blt + C1t2
= ag+ bgt + Cgtz.

Oh dear, the result is not even a rational polynomial, because of
that wretched square root. Actually, there are some special polyno-
mials to which the offsets are at least rational polynomials, if not
simple ones. They are exotically called Pythagorean hodographs
(see Farouki and Sakkalis’ paper) but are not (yet) in wide practical
use.

So what to do? The easiest thing is to offset the curve on a point-
by-point basis, and there’s plenty of numerically controlled machine
tool software that does just that. You need to watch the spacing

LA cyclide is a distorted torus of which the diameter of the minor circle varies
in such a way that the cyclide would fit between two angled planes (i.e. planes
forming a wedge): as opposed to the two parallel planes between which a torus
would fit.

144 Distances and offsets

of the points, though; even spacing on the original curve doesn’t
produce even spacing on the offset when the curvature is sharp.

In effect, this is approximating the offset curve by a polyline, and
it’s likely that acceptable smoothness and accuracy can be achieved
with rather less data using approximate curve segments which are at
least slope-continuous. There are a number of approximate offset-
ting schemes in the literature, which mostly produce approximate
offset curves of the same type as the original curve. They all have
a similar concept:

Offset some features of the original curve.
Put a new curve through them.
Attempt to measure how accurate an offset that is.

If it is not adequate, subdivide the original curve and try
again.

One quite well-known technique (see Klass’ 1983 paper) for con-
structing approximate offsets to cubics is to interpolate a new cubic
which matches the correct tangent directions and curvatures at the
end points; but there’s some numerical work needed to get the cur-
vatures. An alternative is to offset each straight line segment in the
control track of a Bézier curve, find their intersections and use that
as the control track of a new curve.

Measuring and refining offsets

Measuring how good the approximation is can be done by a numer-
ical integration process (see Farouki’s 1986 paper on the subject)
but in practice it is often adequate to try a few test points; even
that isn’t so easy. Working out where the normals from the original
curve cut its offsets is not advised; you'll get equations with a L-O-T
of roots. But we can’t simply look at the distance between points at
the same parametric position on original and offset curve; the result
may appear accurate, but be rubbish because the parameterization
is displaced from one curve to another, and the normal distance is
actually too small. What you have to do is to compare the offset
from the first curve with the corresponding parametric point on the
offset curve. That may indicate an error when the offset is actually
acceptable, again because of a change in parameterization, but at
least it won’t appear to be correct when it isn’t.

Offsets 145

11(i)—Approximate offsetting of a quadratic: three offsets
are constructed; a new curve is interpolated through them;
two further points on the new curve are compared with the
corresponding offsets, to give a rough check on accuracy.

146 Distances and offsets

Just to see the sort of code that might be involved, let’s make
the Mickey Mouse version shown in Illustration 11(i). About the
simplest thing you could do would be to take the end points and
n — 1 others on a curve of degree n, offset them all and put a new
curve through them by Lagrange interpolation: too trivial to appear
in ‘the literature’ but not too trivial to appear here.

First here’s a macro to evaluate one of the parametric equations
of a quadratic polynomial with coefficients a, b and ¢; the Horner
form is employed as usual:

#define eval(a,b,c,t) ((a) + (£)*((b) + (t)*(c)))

Now we will put together another procedure to perform Lagrange
interpolation of a quadratic through three points (z1,¥1), (z2,92)
and (z3,ys3), rashly assuming ¢ = £ at the middle one. After solving
the simple simultaneous equations, we can put together the code,
again just for a single coordinate:

void interp(x1,x2,x3,a,b,c)
float x1,x2,x3;
float *a,*b,*c;

{
*¥a = x1;
b = -3.0%x1 + 4.0%x3 + 4.0%x2;
C = 2.0%x1 - 4.0%x2 + 2.0%x3;
}

Next comes a procedure to work out an offset from a point:

#define ACCY (1.0e-6) /* Or whatever you want
near-zero to be */

int offset(al,bl,cl,a2,b2,c2,t,r,x_off,y_off)
float al,bl,cl,a2,b2,c2,t,r;

float *x_off,xy_off;

{

float t2,tcl,tc2,x_dash,y_dash,denom,den_inv,xn,yn;

t2 =t + t;

Offsets 147

tcl
tc2

t2%cl;
t2%c2;

/*
* First, calculate the normal vector, of length r.
*/

x_dash = bl + tci;

y_dash = b2 + tc2;

denom = x_dash*x_dash + y_dashx*y_dash;

if (denom < ACCY) return(1);
den_inv = r/denom;

y_dash*den_inv;
-x_dash*den_inv;

Xn
yn

*

/
We assume a clockwise rotation between the
directions of tangent and normal; otherwise
the minus goes before y_dash.

* ¥ X X *

Now add the normal vector to the point on the curve.

*/

*x_off eval(al,bl,cl,t) + xn;
*xy_off eval(a2,b2,c2,t) + yn;
return(0) ;

+

Note that we’re carting the coefficients of the quadratic about all

over the place; rather inefficient, but keeps the code readable. So,

we now have a piece of code that takes a quadratic curve, takes

three normals from it, fits a new quadratic through them, and then
1

compares offsets from the original curve at ¢ = ; and t = % to the

parametrically corresponding points on the new curve.

#include <math.h>
/* Maximum value macro */

#define f_max(a,b) (((a) > (b)) ? (a) : (b))

148

float
float

float
float
float
float
float

Distances and offsets

al,bl,cl,a2,b2,c2,r;
worst_err;

al_new,bl_new,cl_new,a2_new,b2_new,c2_new;
dx,dy;
x_off_1,y_off_1,x_off_2,y_off_2,x_off_3,y_off_3;
x_off,y_off;

errl_sq,err2_sq;

int offset();
void interp();

/*
* Offset at three points.
*/
if (offset(al,bl,cl,a2,b2,¢2,0.0,r,&x_off_1,&y_off_1))
return(l) ;
if (offset(al,bl,cl,a2,b2,¢2,0.5,r,&x_off_2,&y_off_2))
return(2) ;
if (offset(al,bl,cl,a2,b2,c2,1.0,r,&x_off_3,&y_off_3))
return(3) ;

/%

* Interpolate in x and y to make a new curve.

*/

interp(x_off_1,x_off_2,x_off_3,

&al_new,&bl_new,&cl_new);

interp(y_off_1,y_off_2,y_off_3,

/*

&a2_new,&b2_new,&c2_new) ;

* Check the new curve against an offset at t=0.25.

*/

if (offset(al,bl,cl,a2,b2,c2,0.25,r,&x_off,&y_off))
return(4) ;

Offsets 149

dx = x_off - eval(al_new,bl_new,cl_new,0.25);
dy = y_off - eval(a2_new,b2_new,c2_new,0.25);
errl_sq = dx*dx + dy*dy;
/%
* Check the new curve against an offset at t=0.75.
*/
if (offset(al,bl,cl,a2,b2,¢2,0.75,r,&x_off,&y_off))
return(5) ;
dx = x_off - eval(al_new,bl_new,cl_new,0.75);
dy = y_off - eval(a2_new,b2_new,c2_new,0.75);
err2_sq = dxxdx + dyx*dy;

/%
* Take the worst error
* (C maths library is in doubles - *sighx).
*/
worst_err
= (float)sqrt((double) (f_max(errl_sq,err2_sq)));

Again, that is rather dire code; but it gives some idea what is
required, which isn’t very much. The non-zero returns assume that
this is to be built into a procedure which will flag duff input points
(i.e. coincident ones). If worst_err was not acceptable, we could
divide the original curve into two parts at ¢ = % and try again.

Even if we have an acceptable approximation to the algebra, the
offset is often not what we want; Illustration 11(ii) shows a curve,
its algebraic offset, and what we really wanted. These problems can
be sidestepped if we avoid

Sharp corners.
Curvatures less than the offset distance.

‘Global’ problems where the curve approaches itself.

150 Distances and offsets

/ \ /

11(ii)—Where radius of curvature is smaller than the offset
distance, the offset curve will cross itself. In practice, we
need to detect such events and not attempt to offset from
the offending piece of curve.

Many real systems survive on interactive aids (e.g. colouring curves
or surfaces by curvature).

As regards surfaces, the offset at a point can be obtained from
the vector product of two different tangents in the surface; typically
we use those in the ¢ and w directions. Patched approximations to
offset surfaces have been discussed (see Farouki 1986 again), but are
not widely used. As you might appreciate, the potential topological
problems of the offset surface are severe. Interactive solutions are
preferred.

Algebraic offsetting

It is possible, using the technique of resultants which we met in
Chapter 10, to work out the implicit polynomial which is a constant
distance from another. In principle, the algebra is quite easy, and
also easy to understand; but, in practice, it can often get very com-
plicated and has a tendency to make algebra systems get lost in a
fugue of their own thoughts.

Consider offsetting a surface P(zp,yp,zp) = 0.

Let R(xg,yr,2r) = 0 be the offset surface a distance d away

Offsets 151

from P that we’re trying to find. What do we know? Well, we have
the following system of equations:

152

Distances and offsets

P($P7yP,ZP) =
(xp—l’R)Q—i-(yP_yR>2+(ZP—ZR)2—d2 = 0
oP
ZEP—ZL'R—F]{?i = O
ox
oPr
yP_yR‘l‘kai = O
Y
oP
ip—zn+h— = 0.
0z

The second equation is just Pythagoras on the distance between
the point on one surface and the point on the other. The last three
equations are the vector equation (g, yr, 2r) = (xp,yp,2p) + kv
P(zp,yp, zp), which says that the point on R must be somewhere
along the normal to P. We can find the k resultant of

and of

+/€aP
PR ox
oP
yP—yR+ka—
Y

_ _|_ka_P
Yp — YR y
+k8P

Zp — % —

0

giving two equations without k£. We can then carry on eliminating
variables from pairs of equations, until we end up with an equation
in g, Yr, 2r, and d, which will be the offset surface R = 0 that we

were looking for.

If you do all this and then plot out the results, the first thing
you see is that you've got two offset surfaces, not one. They are, of
course, the one on the inside and the one on the outside—the equa-
tion (zp — xr)*+ (yp — yr)*+ (2p — 2g)*>—d*> = 0didn’t say
anything about which direction the distance was measured in. The

Offsets 153

other thing you’ll find is that you’ve probably got a few other curves
as well. These are additional factors that the resultant calculations
incorporated in R. This confusion can be avoided by using a variable
elimination technique such as Groébner bases, but be warned—when
you want to offset anything much more complicated than an ellip-
soid, the algebra system will go off in a huff and never talk to you
again.

There is a similar system of equations to the one above that allows
you to find the surface that is equidistant between two others—the
median surface. The derivation of this is left as an exercise for the
more energetic reader.

Non-uniform offsets

We have assumed that the constant-distance offset curve or surface
that we have been describing so far will be adequate. But there
are many significant applications in which it is not: for example
machining processes such as punching with non-circular punches,
and milling with non-spherical cutters (there are good technological
reasons for these requirements). Formulating continuous solutions
to problems of this sort is not feasible; but they can be approached
on a point-by-point basis, by taking the normal as before, and per-
forming a transformation, based on its direction, which yields the
nominal centre of the cutter that would be tangent to that point; see
Mlustration 11(iii). In effect, this is a lookup operation and, where
the shape of the cutter is complicated, this can be a good way to
program offsetting. The problems of avoiding gouging—eliminating
parts of the offset surface that are not valid because of the prox-
imity of another part of the surface—is more now complicated. We
should check for intersections between any part of the cutter and
the surface being machined. Even if we settle a simple test based on
curvature being adequately large, a single value of curvature obvi-
ously cannot be used; it will be necessary to look up the curvature
of the cutter at each contact point.

154 Distances and offsets

11(iii)—An irregular shape of cutter needs a different offset
vector for each angle of contact. On the right of this fig-
ure is a lookup table from angle of contact to offset vector
(both direction and length). Note that the corner on the
cutter generates a sequence of angles over which the offset
direction does not change. The flat portion, on the other
hand, yields a particular angle at which the offset vec-
tor is not defined. These problems—and others, such as
non-convex cutters—need solutions for technologies such
as numerically controlled punching of sheet metal.

12

Geometric algorithms

In this chapter, we shall try to say something about geometric al-
gorithms, as opposed to either algorithms or geometry in general.
Algorithms are particularly important in geometry because:

The impossibility of ordering data in more than one dimension
leads us to use all sorts of more complicated structures, and
it is not easy to ensure that these are used efficiently.

Geometric applications such as graphics tend to involve data in
much greater quantities than other forms of output (e.g. text);
that unreasonable person the user may perceive a program to
be ‘slow’ even though it produces a million pixels in the same
time as an ‘acceptable’ program generates a ten-word sentence.

The study of geometric algorithms is often considered to be synony-
mous with computational geomelry, which is centrally concerned
with the theoretical analysis of the performance of algorithms. Al-
gorithms can be judged:

By their best-case, expected or worst-case run-time, and how
these grows with the amount of data.

By their best-case, expected or worst-case use of storage, and
how this grows with the amount of data. This is less interest-
ing, either because the extra (i.e. in addition to the required
input and output data) storage required by the algorithm is
trivial, or because more than enough storage is already avail-
able (i.e. is necessary anyhow for other algorithms in the same
program or system).

By their understandability, and hence ease of implementation,
and maintainability.

156 Geometric algorithms

By their flexibility—extending algorithms over a range of re-
lated problems, or even re-using code for different types of
data.

Let us guess that 90% of results in computational geometry are
concerned with the theoretical worst-case time performance of al-
gorithms against problem size. The discipline is correspondingly
best-developed in the world of problems concerning sets of points,
usually in two dimensions; Preparata and Shamos’ book led the way
here. Tt is now common to see concepts of order of algorithm being
applied to more complicated geometric situations, but this can be
less successful because:

It is not always obvious what the size of the problem is; if we
are working out the probability of intersections between, say,
spheres, their radii (compared to their average separation) as
well as the number of them is relevant.

The worst-case complexity may be laughably far from the ac-
tual complexity. For instance, an algorithm that exploits par-
allel faces in models of engineering components might do quite
well in practice. But, in the worst case, no planes are parallel;
is this a good reason to judge the algorithm worthless?

A further caveat, which Preparata and Shamos are most careful to
make, is that performance against problem size is only of interest in
a world of perpetually growing problems. Although there are geom-
etric applications where sets of data grow as fast as workstations
can deal with them, in other areas that is not the case; for instance
ship hulls do not become perpetually more complicated. Then other
considerations, such as ease of implementation, may become dom-
inant. Further, even if we are concerned with growing data sets,
we can often use an algorithm with a poor performance on large
data sets as a part of a program. For instance, we might want to
generate the intersections between a large set of elements by gener-
ating the unbounded intersections, and then bounding them. This
sort of approach is not efficient (it is O(n?)) as a global strategy,
but can be and is used within a limited region of space, where data
set size is in effect constant. Poor-order algorithms may be much
quicker than theoretically better ones on a limited amount of data.
You can nest one algorithm inside another in this way, and tune

Point-set algorithms 157

the resulting program by controlling the size of problem which one
algorithm passes to the other. Don’t leave yourself more than a
few constants to tune, however; remember you are setting yourself
a multi-dimensional optimization problem!

Point-set algorithms

Point sets give theorist of algorithms a field day!. Firstly, algo-
rithmic properties can be studied without the overhead of too much
algebraic geometry. Secondly, the results predicted for random point
sets more nearly correspond with real problems; random curves and
surface are scarcely credible testbeds for anything. There are two
sorts of computational problems that involve point sets. The first
is the computation of a property of the set, such as:

The shortest distance between any two points.
The longest ditto.

The tightest polygon or polyhedron around the points: the
convex hull.

The second sort of computation requires a comparison between the
set and some other entity, for instance:

The point nearest to a given point.

All the points in a given polygon or polyhedron.

When only points are involved in the formulation of a problem
(e.g. closest pair), then algorithms are typically extensible without
difficulty from two to three dimensions. Where other structures,
such as polygons and polyhedra, are involved, three-dimensional al-
gorithms are typically a lot more complicated. As usual, these diffi-
culties are actually caused by a change from one to two dimensions,
but in structures embedded in the space (e.g. from an orderable
polygon to a polyhedron which cannot be sorted).

However, perhaps the most important factor in point-set algo-
rithms is that of data structure; whether we have to start with:

Just a list of points.

1Or at least a job.

158 Geometric algorithms

Points organized in a useful way but one not tailored for the
problem in hand.

Points organized in a structure of our choosing.

Suppose, for example, that we want to find the point nearest to a
given point, in two dimensions.

If we have no structure, we need to search through all the
points in the data set; that will clearly be an O(n) algorithm.

If we have a partially suitable structure, such as an ordering in
one coordinate, then we can do a binary search in that coordi-
nate, O(logn), but we’d expect to have to search through /n,
because in effect we're looking at a slice through the space.
This gets worse in three dimensions, where we’d expect to
look through n?/3 points.

If we were allowed to choose a structure, we could use a tes-
sellation (see Chapter 6) grid. That allows us to access a cell
in constant time. Or we might go for a quad-tree, and ex-
pect O(log n) performance, or for a Dirichlet tessellation, and

expect Oy/n.

To decide what to do in a particular case we have to consider

How often we will be making a particular query.
Whether an existing structure is suitable—enough.
How quick another structure will be to build.
How quick it will be to update.
What it will cost in storage.
And how easy the whole system will be to hack up.
Given the difficulties of making these choices with point sets, no

wonder the writing of algorithms for more complicated geometry is
an art requiring cultivation.

13

Geometric programming

Once we have got some algebra and an algorithm, we can think
about code. At this level, solving geometric problems is not that
different from other programming tasks. This chapter concentrates
specifically on two aspects:

Accuracy—the lack of which can have a devastating effect on
geometry.

The use of storage—speeding up processing through code ex-
pansion and the use of lookup tables.

The tools of the trade—languages, packages and machines—remain
much as in other areas, but a few remarks are in order.

The choice of a language is often Hobsonian; compatibility with
existing code, availability of a compiler, and skills of programmers
can all be overriding. Which language is fastest, especially if in-
teraction is required? FORTRAN is the Ancient, and C the Modern
answer to this question; C allows you to get closer to the machine,
but RIsC! architectures make this an increasingly questionable aim;
there are some blindingly well-optimized FORTRAN compilers, and
this language is still the standard in many varieties of scientific pro-
gramming. FORTRAN retains its hallowed but curious syntax in
places, and the low level of C can make it difficult to debug; and
they boast inflexible and zero typing respectively. C++ may be
the obvious solution to this problem. The ability to define data
types and operations—corresponding to geometric entities like vec-
tors, and operations like vector products—is an obvious advantage.

'Reduced Instruction-Set Computer

160 Geometric programming

But it is not clear that code re-use, which is after all stated to be
a major goal of object-orientation, is in general feasible with geom-
etric data. Other readily extensible languages, such as PROLOG
(which we use for some of the examples) are excellent for prototyp-
ing; PROLOG itself also shines at interfacing with databases (e.g. of
molecular structures) and, to some extent, for handling algebraic
expressions. But PROLOG, like the less structured AI language LISP,
is quirky. Trying to achieve a goal in many different ways is fine,
until an arithmetic error prompts your code to ‘retry’ the previous
and perfectly adequate arithmetic statements rather than issue an
(admittedly boring) error message!

The choice of a language may also be affected by the availabil-
ity of packages which are callable from it. Packages are ways of
avoiding writing some code, and we can try to avoid writing at a
number of different levels, conveniently the four we identified in the
Introduction: symbolic, analytic, numerical and approximate.

At the symbolic level we will normally need to use an alge-
bra system; this functionality is not commonly available as a
package?.

At the analytic level, we can obtain packages which will deal
with analytic geometry for us; there are, for instance, para-
metric geometry packages, which handle intersections and so
on, available to computer-aided design system developers.

The numerical level is rich with packages, but they are not
necessarily readily applicable to geometric problems.

Approximations are also catered for by numerical algorithm
packages, but in a specifically geometric domain we might al-
ternatively look for a package to deal, say, with quad- and
oct-trees. A few of these do exist, but even if we have to
write our own it can be shared between a group and provides
a useful conceptual simplification.

However, the most common sort of package called from geometric
code must be the graphics package; but arguably it’s either noth-
ing to do with geometry per se (yes, just a debugging tool) or it’s
another sort of approximation. The nature of a graphics package

2 As mentioned in Chapter 1, NAG offer one.

Geometric programming 161

can be ignored if it is just being used for output and it provides
all the output needed. As soon we need to supplement the package
(e.g. add hidden-surface capability to a wire-frame package) or we
need to use it for input, then it often becomes a liability. The guts
of a graphics package—the transforms, the data structures and so
on—are often wholly or partially concealed (allegedly for the benefit
of the more nervous sort of user, but in practice to avoid internal
details becoming unalterable parts of the interface. But it is ex-
actly this sort of partially transformed geometry, and screen-space
coordinates etc., that the package developer doesn’t want you to
get at—but you have to, if you want to supplement the package’s
function. Conceptually at least, it may be easier to abandon the
package and resort to steam methods of driving a device, but then
compatibility and portability become casualties.

Similar constraints to those of a graphics package can also be
applied by the requirement to conform with standards for the ex-
change of geometrical data. At the moment, these are only prevalent
in some areas of computer-aided design and manufacture areas, but
we may look to see them spreading into topics such as scientific data
visualization. While they are an essential part of a maturing disci-
pline, like a standard voltage on the mains, they take choices—and
thus also opportunities for innovation and improvement—away from
the software developer, and can also involve a considerable amount
of complexity (cf. X-windows).

As far as machines themselves are concerned, there would be a
lot to say if we were to consider all the special geometric hardware
that has been produced—mostly in prototype form—over the last
ten years or so; fascinating though these developments are, these
chips are only in wide use within graphics displays, and if you are
programming them you probably know how to do it already. They
often involve integer versions of algorithms, exploiting the discrete
nature of a raster screen (e.g. Bresenham’s algorithm). Integer algo-
rithms appear often enough in the literature, but are increasingly of
specialist use, because floating-point operations are now as fast as
integers on many processors (and both are now dominated by stor-
age access times). Further, the rise of the RISC machine is a move
away from attempting to exploit the peculiarities of the hardware
at all. The speed of these machines can only practically be accessed

162 Geometric programming

through a compiler; there is little you can do to exploit the ma-
chine architecture yourself. There are small exceptions, for instance
recent, machines of superscalar design do allow a small number of
instructions to be executed in parallel; commonly an integer with a
floating-point, or (as in the 1BM RISC workstations, a floating-point
multiplication with an addition). If you place two together in your
C code, you can probably rely on the compiler to make sure they are
performed together. For instance, a scalar product x,x,+vyp+ 2a2s
will go nicely as follows:

sum = xaxxb + yaxyb + zaxzb;

We could expect it to be done in the same time as three multiplica-
tions alone; and anyway, why should anyone code it as follows?

sum_1 = xax*xb;
sum_2 = yaxyb;
sum_3 zaxzb;
sum = sum_1 + sum_2 + sum_3;

But things like Horner forms ag + t(a; + t(az + ... are tiresome,
because the multiplications and additions must be done sequentially.
Of course, all this fast hardware is increasingly dependent on having
data close to hand: in registers, or a cache at the least. If we have to
fetch data from main memory (let alone a disk then the advantage
of such architectures quite disappears.

Today’s workstations with limited parallelism seem forever to
keep ahead of large-scale parallel computers, such as the Inmos
Transputer arrays, as practical general-purpose machines. Where
problems with intrinsic parallelism, such as some signal-processing
applications, can be found, a very fast special-purpose parallel code
can certainly be written. There have, of course, been many efforts
to write parallel geometric algorithms, but it is not today a main-
stream subject. It is interesting to speculate whether, in the future,
parallel machines will:

Remain a special-purpose tool.

Become a general-purpose tool, but require the use of lan-
guages which support parallel constructs explicitly.

Accuracy 163

Become a general-purpose tool, supported by systems to ex-
tract parallelism from algorithms.

The last prospect is distant.

Accuracy

The accuracy of geometric computations determines not merely the
accuracy of the answer, in a numerical sense, but often its whole
quality. In a graphics application, for instance, accuracy problems
could make a thin object vanish: and ruin, or at least drastically
change, the whole of a picture. You are probably familiar with
this sort of problem. Remarkably few graphics programs are free of
‘buggy pixels’ even with run-of-the-mill input, let alone data delib-
erately designed to break the program.

Here are five different approaches to the accuracy question, with
their advantages and disadvantages.

Do what you can algebraically

There’s no point in fiddling with the code if the problem is not as
well-conditioned as possible. We have already covered a lot of this
ground. For instance:

Are equations normalized?
Are you using Horner or Bernstein bases where appropriate?

Are you doing the computations as near the origin as possible?

Maximize the raw accuracy available

The use of double precision is the obvious example. Quadruple
precision has been tried in some sculptured-surface problems (e.g.
intersections); the perpetrators of these outrages are in hiding. The
advantage of increased precision is:

It can often be done at the flick of a compiler option.
The disadvantages are:

It makes everything slower.

164 Geometric programming

It is usually a counsel of desperation; double precision solves
very few problems completely, but may reduce the incidence
of trouble.

Do the computations exactly

Some graphics algorithms that work in screen space show how this
can be done; a less restricted technique is use of arbitrary-precision
rational arithmetic, common in algebra systems but not often seen
in practice in geometric programs. The advantages of this approach
are:

Results are as exact as the input.

In the correct context, integer arithmetic is fast.
Its disadvantages are:

The range of computations that can be handled is extremely
limited. Even square roots, and thus distance calculations,
cannot be supported by integer or rational arithmetic (some
clever people are starting to do exact arithmetic with roots;
but then what about trig functions?).

Arbitrary-precision rational arithmetic is slow.

Do the computations repeatably

Accuracy problems can sometimes be avoided if great care is taken
always to do the same things to the same data and in the same
order. Thus, two points that are transformed using an identical
sequence of floating-point operations will end up in the same place.
The points’ positions may be ‘wrong’, but at least there isn’t, for
instance, a gap between the two polygons of which each point is a
vertex. Advantage:

Small run-time overhead.
Disadvantage:

Can’t be used in too many situations.

Tricky to program (and to port—watch for compiler optimiza-
tions).

Accuracy 165

Allow for the inaccuracy in the computations

This is where we all get to in the end. Sophisticated schemes try to
track inaccuracies using interval arithmetic and so on. Much more
common is the use of ‘fudge factors’ i.e. accuracy constants that are
compared against results. Advantages:

Widely usable (and widely used).

Programs can be improved by tuning fudge factors after im-
plementation.

Disadvantages:

The values of factors are not determined solely by allowing
a generous bound on the floating-point accuracy. They must
be chosen to match the well-conditioned, or ill-conditioned,
nature of the calculations. Worse, factors must often have
dimensionality, and are susceptible to scale effect.

Difficult to get working.

Rarely fully effective in practice: impossible to guarantee.

Fudge factors: a cautionary example

It is not difficult to see that we may need more than one fudge factor
in a program. For instance, we might want to know when points are
on planes and when vectors are perpendicular to them. In the first
case, the linear scale of the data with which we are working is clearly
important: rescale all our dimensions from metres to millimetres
and some programs stop working. In the second case, we can fix
a accuracy constant for scalar products that defines a small angle,
and will not need to be changed for bigger or smaller objects (but
maybe will if the application changes).

Another way in which fudge factors may proliferate is that we
sometimes need coarser factors to determine what elements take
part in a subsequent calculation, to which a finer factor applies. For
instance, supposing we are generating the vertices of some polyhe-
dra from the plane equations of their faces, and these polyhedra are
known to share faces. If more than three planes meet at a vertex,
their mutual intersection points are most unlikely to coincide ex-
actly. However, only a nitwit wants to complicate the edges of the

166 Geometric programming

polyhedra with a lot of tiny bogus edges around the intended ver-
tices. Therefore the vertex ‘estimates’ resulting from the three-plane
intersection calculations must be coalesced. If the plane equations
have floating-point coefficients (i.e. nothing exotic) the only way to
control that coalescing is by a fudge factor, specifying a distance. If
a group of points is closer together than that distance, it is replaced
by the centroid of the group.

To deal with a large number of points efficiently, we will need
a spatial structure. Suppose we go for an oct-tree; what happens
then? Suppose that the plan is to create the oct-tree as the points
are generated, and then to coalesce the groups found in each ‘oct’.
But what happens if a cloud of points spans the wall of an oct?
We will get two very close vertices and a bijou edge; just what we
didn’t want. Now, when we visit each oct, we could also look at
the points in adjoining octs. But neighbour-finding in an oct-tree
is rather complicated, especially if it is stored in a space-efficient
manner. Further, we will be examining a great deal of the data nine
times over.

So, what about making the octs just a little bit bigger when we
sort the points between them? That will make sure that we’ve got
all the points we need in each oct, which can then be considered only
once. Now, we might imagine that we could expand each oct by the
same factor that we’re going to use to coalesce the points. But it’s
too risky; we might just fail to include a point in a box that would
still be acceptable for the coalescing process: much more sensible to
define a much wider fudge factor to add to the box, and be sure we
catch everything of interest.

Of course, you’ll be saying that this method won’t work anyway,
because coalesced points near the boundary of an oct will appear
in both octs; in fact, near a corner, coalesced points could appear
eight times. And to hunt them down, you say we’d need to find the
neighbours, which we swore we wouldn’t do.

What about this solution? Assume each point is numbered (this
may just be an array index). Using this numbering, ensure that the
calculation of the centre of gravity of a group of points is done in a
uniform fashion. The comparison of that centroid with each (exact,
no fudge factor) wall of an oct is easy to do consistently, because the
octs are axially aligned, and only a subtraction is required. Using

Using storage effectively 167

this method, the coalesced vertices can be uniquely assigned to an
oct.

Problems with this method only occur when two real vertices
are within fudge-factor range of each other. We cannot guarantee
success here. However, the wide second fudge factor around the
octs will help to ensure that near vertices are treated consistently
in adjacent boxes. If the bound around the octs is ten times the
coalescing factor, it will need a chain of ten pessimally close vertices
to upset the process, provided that vertex coalescing is consistent.
Coalescing using a greedy algorithm, starting from the closest points,
will improve consistency of the coalescing between octs.

Using storage effectively

While operating systems miraculously expand to fill any and all
disks available, scientific algorithms seem to remain just the same
size. That is to say, books about programming and algorithms aren’t
ten times thicker than they were in 1980, and certainly not 100 times
thicker than they were in 1970, although there may be more books
out there.

Put it another way. Performance and memory capacity of ‘av-
erage’ computers has increased in remarkable synchronization over
the last twenty years. If you use the same code as you did twenty
years ago it will run faster, and you can have more data, but your
algorithms may not be as efficient as they could be were they more
compact. This is not a plea for sloppy code (0S writers please note),
but it is a suggestion that more efficient and even simpler code can
result from an imaginative use of space. We suggest two areas which
strongly relate to geometric code.

Expanding loops and recursive calls

Geometric code is notorious for having tight loops in which the same
code is executed many times. Just putting more code into loops is
not of course a good idea, but there are cases where loops can be
expanded to good effect. A simple example is some code to evaluate
a parametric polynomial in the Horner scheme. We could have two
loops here: one for the coefficients (a) and one for the coordinates

168 Geometric programming

of the result (q). Here is an execrable example:

for(dim = 0; dim < n_dim; dim++)

{
qldim] = aln_coeff,dim];
for (coeff = n_coeff-2; coeff >= 0; coeff--)
qldim] = t*q[dim] + al[coeff,dim];
}

Well that’s quite nasty. But note:

The algorithm is basically an efficient one.
The code is typographically compact.
It is academically impressive, to the extent that it permits a

general degree of polynomial and a general number of dimen-
sions, useless as both of these will often be.

Similar things happen with recursion. Again, this makes elegant
code, but there may be an overhead imposed by the recursion it-
self, and the recursion may fail to permit us to take obvious short
cuts. As an example, we offer three algorithms to calculate B-spline
curves:

The recursive de Casteljau construction: an O(n?) algorithm,
but wonderfully elegant.

The Horner scheme, roughly as given by Farin in his book.
Our version of Horner with the loop expanded (for cubics in
this case).

Here’s the procedure corresponding to the de Casteljau construction
in PROLOG. This version works for a single coordinate only, and the
coordinate values start off in data predicates. The notation follows
the algebra in Chapter 4.

decast(1,0,*,X1).
decast(1,1,*,X2).

... And so on. Now some action.

Using storage effectively 169

decast(R,I,T,B)

<- RN =R -1

IP1 =1 + 1
decast(RN,I,T,B1)

decast (RN,IP1,T,B2)

B :=B1 *x (1.0 -T) + B2 x T.

F e

Yessir/ma’am, that’s it; pretty it is, efficient it is not (in PROLOG
or otherwise).

Secondly, in C this time, here is a nearly straightforward Horner
scheme, except that the Bernstein coefficients are obtained from a
lookup table rather than calculating them on the fly. We use an
array for this, because the table is actually quite short (only 36
elements, if we go up to degree 10), and we don’t want to incur the
overhead of a function call every iteration. Note that:

The array p contains one of the sets of coordinates; we would
need to call the routine twice in two dimensions, three times
in three.

The routine does work—rather inefficiently—in the linear case
(n = 1) as we can rely on the compiler to ignore the loop. In
that case the value 1_off[0] is ignored, as look_up is never
used.

/*
* Bernstein coefficients.
*/
static float look_up[] = {

3, 3,
4, 6, 4,
5, 10, 10, 5,
6, 15, 20, 15, 6,
7, 21, 35, 35, 21, 7,
8, 28, 56, 70, 56, 28, 8,
9, 36, 84, 126, 126, 84, 36, 9,
10, 45, 120, 210, 252, 210, 120, 45, 10
};
/%

170 Geometric programming

* Offset into look_up for each degree (goes up to

* degree 10). * The entry 1_off[0] is a dummy (see

* the text below).

*/

static int 1_off[] = {0, 0, 1, 3, 6, 10, 15, 21, 28, 36};

/%

* Function to return coordinate at t.

*/

float bern(n,t,p)

int n; /* Number of control track points minus 1 */
float t; /* Parameter value */

float pl[]; /* Control-track coordinates
(for 1 dimension) */

{
int 1;
float s,b,t_power;
1 = 1_off[n];
s =1.0 - t;
b = p[0]*s;
t_power = t;
for (1 = 1; i < n; i++)
{
b = sx(b + t_powerxlook_up[l++]*p[i]);
t_power = txt_power,
}
b = b + t_power*xp[n];
return(b) ;
}

The array look_up contains the Bernstein coefficients of the inner
terms (only), while 1_off provides the offset for the particular de-
gree of equation we'’re evaluating. The first line (2) is for quadratics,
the second line (3, 3) is for cubics, and so on.

The first value in 1_off (0) is a dummy, corresponding to the

Using storage effectively 171

case n = 1. It is there to avoid having to subtract 1 from n when
1_off is accessed. Each subsequent entry is a value of n(n —1)/2;
they are used to index the lines of data in look_up.

Finally, here is a ‘written-out’ routine for the Horner form. This
applies to cubics only, but on the other hand it does deal with all
the coordinates at once to save re-calculating powers of t and it
incorporates the Bernstein coefficients in-line:

s =1.0 - t;

t_x_3 = tx3.0;

t_sq_x_3 = t_times_3x*t;
t_cu = t*xt*t;

bx = ((s*x0 + t_x_3*x1)*s + t_sq_x_3*x2)*s + t_cu*x3
by = ((sxy0 + t_x_3*yl)*s + t_sq_x_3*y2)*s + t_cuxy3
bz = ((s*z0 + t_x_3*zl)*s + t_sq_x_3%z2)*s + t_cu*xz3

This has not been made a function, because in practice it would
probably make sense to couple it closely with plotting routines etc.
It would be no problem to box the code up to suit. Generating a few
more of these to handle other orders of curve is not a big problem;
we could even generate them automatically. The programming time
required is probably about the same either way, but automatically
generated code may contain fewer errors (i.e. typos).

More lookup tables

Having seen lookup tables used to store Bernstein coefficients (a
relaxingly trivial example), we will go on to see some more geometric
uses of that splendid programming device. They can be divided into
two types. In the first type, we approximate a continuum with a
set of discrete values, and interpolate between them. In the second
type, a situation has a genuine integer number of outcomes.

When lookup tables are used to approximate a continuous func-
tion, getting adequate resolution from a reasonable size of table
is often a problem. Beware of situations where multi-dimensional
lookup tables are required: for instance, looking up the distance be-
tween two points in space is not normally considered feasible; this
is a six-dimensional problem, and so storage requirement varies as

172 Geometric programming

the sixth power of resolution! That distance problem has another
aspect; even if we could afford the storage, we would need to know
the order of magnitude of the distances involved in order to build
the table with appropriate values. But a real system might be deal-
ing with a spectrum of distance of 1 : 10° and more. We can only
get around this problem by some normalization step, which neatly
uses up the time the table is meant to be saving.

However, in graphics, limited screen resolution ameliorates this
problem. One interesting use of continuous lookup tables is to pro-
vide a repeatable set of related pseudo-random numbers for solid
texture. This is much faster than recursive-division type pseudo-
fractal algorithms. In general, however, we will do better to stick to
using lookup tables for dimensionless quantities, like angle; a compli-
cated trig function that was in frequent use would be a candidate,
for example. Even so, it often impossible to make a continuous
lookup table—that you think is ingenious—pay in practice.

The case for lookup tables where there are distinct outcomes is
much stronger. This opportunity may arise from geometric consider-
ations. The classic examples are clipping of the Cohen-Sutherland
kind (see Foley and van Dam’s book), in which straight-line seg-
ments are classified against the area of a screen by a lookup table
based on the regions in which the lines’ end-points lie. This can be
extended to mutual intersections of straight-line and arc segments
(see A Programmer’s Geometry). The distance between two axially-
aligned boxes is a further extension, and this is obviously useful in
pre-processing for more detailed distance calculations.

Rather than look for cases based on the position of two elements,
we can look up how points or elements are classified. For instance,
we can classify coloured quads in a quad-tree in this way. If two or
three adjacent quads share the same colour—or other data value—
we need only write it out once (for an extreme example, see Wood-
wark’s paper “Compressed quad trees”). A more recent example
along the same lines is the classification of cubic regions based on
whether their corners are inside or outside a surface of interest.
This is a very quick way to decide how to approximate the surface
within that region, and is used in volume visualization (Lorensen
and Cline’s marching cubes paper of 1987 is widely cited).

References and Bibliography

The references from the text are here intermingled with a bibliogra-
phy, and the whole informally annotated. It’s not a very standard
list, but we hope it provides some insights, if only into the diseased
brains of the compilers. We make no apology for referring to a good
selection of our own efforts; if we don’t advertise them, who will?

Useful proceedings

Proceedings of the ACM SIGGRAPH Conferences, ACM, annually.

The first choice of publication medium for many authors of papers on
graphics. It has recently become divided into shorter and more diverse
sections; see the comments in the Introduction.

Proceedings of the ACM Symposia on Computational Geometry , ACM,
1985 and annually thereafter.

An excellent source of snapshots of a range of topics in computing with
geometry, although it inclines to the ‘orders of algorithms’ end of the
market.

Proceedings of the International Symposia on Spatial Data Handling |
Geographical Union, 1984 and every two years since.

Representing geographical geometry using computers is always a hard
problem. This series provides a good summary of the progress that car-
tographers and geographers have made in recent years. The papers tend
not to be very mathematical, and sometimes lack algorithmic and compu-
tational insight, but give a view of the field as seen by the practitioners.

174 References and Bibliography

Books and papers

J.H. Ahlberg, E.N. Nilson and A.J. Stein, The Theory of Splines
and their Applications, Academic Press, 1967.

A difficult book, but worth a glance into, to see where splines came from.

F. Ayres, Projective Geometry, McGraw-Hill, 1967.

One of McGraw-Hill’s Schaum Outline texts, intended for the student
pocket. Good value, and covers the basics.

T.F. Banchoff, Beyond the Third Dimension, Freeman, 1990.

A valiant attempt to show that you can visualize more than three spatial
dimensions: we’ve read the book, and still say you can’t.

R.E. Barnhill, G.E. Farin, M. Jordan and B.R. Piper, “Surface /surf-
ace intersection”, Computer Aided Geometric Design 4,1-2 (3-16),
1987.

About the classic patch-patch intersection problem.

B.A. Barsky and T.D. DeRose, “Geometric continuity of parametric
curves: three equivalent characterizations”, IEEE Computer Graph-
ics and Applications 9,6 (60-68), November 1989 and “Geometric
continuity of parametric curves: construction of geometrically con-
tinuous splines”, IEEE Computer Graphics and Applications 10,1
(60-68), January 1990.

These two papers constitute a tutorial on geometric continuity.

C. Bell, B. Landi and M.A. Sabin, “The programming and use of
numerical control to machine sculptured surfaces”, Proceedings of

the 14th International Machine Design and Research Conference,
Manchester (233-238), 1973.

Not a recent paper, but one of the few about the important practical
problem of non-spherical offsets.

C.B. Besant and C.W.K. Lui, Computer-Aided Design and Manu-
facture, Ellis Horwood, 1986.
There is rather too much about how computers and graphics devices

work, including glossy photographs of kit, but the book is a reasonable
introduction to computer-aided design and manufacture.

References and Bibliography 175

J.F. Blinn, “A generalization of algebraic surface drawing”, ACM
Transactions on Graphics, 1,3 (235-256), July 1982.

Blinn’s implicit blends for molecular graphics.

W. Bohm, G.E. Farin and J. Kahmann, “A survey of curve and
surface methods in CAGD”, Computer Aided Geometric Design 1,1
(1-60), 1984.

The first article ever published in this journal; a bit out-of-date but suc-
cinct.

K.M. Bolton, “Biarc curves”, Computer-Aided Design 7,2 (89-92),
April 1975.

Spline curves made out of biarc segments.

A. Bowyer, “Computing Dirichlet tessellations”, Computer Journal
24,2 (162-166), 1981.

A. Bowyer and J.R. Woodwark, A Programmer’s Geometry, But-
terworths, 1983, 2nd edition 1988.

A how-to-do-it book of code and explanation on some of the simpler
geometrical constructions.

H. Chiyokura, Solid Modeling with Designbase , Addison-Wesley,
1988.

Describes in considerable detail how Chiyokura’s Designbase boundary
modeller works. It is sufficiently detailed that, after reading it, you could
in principle write a similar modeller yourself.

W.F. Clocksin and C.S. Mellish, Programming in Prolog, Springer-
Verlag, 1981.

Maybe not the latest Prolog book, but a very well-known one; we’ve tried
to be more-or-less consistent with its notation in the few Prolog examples
we provide.

S.A. Coons and B. Herzog, “Surfaces for computer-aided aircraft
design” Proceedings of the ATAA 4th Annual Meeting and Technical
Display, Anaheim, ATAA Paper 67-895, 1967.

Not too easy to obtain, but included just to show how long Coons patches
have been around. There’s something about them in most books (e.g.
Woodwark 1986).

176 References and Bibliography

J.H. Davenport, Y. Siret and E. Tournier, Computer Algebra, Aca-
demic Press, 1989.

This is the best book on computer algebra that we have seen. It starts
very gradually, but gets tough later on, and the reader is sometimes foxed.
Try to understand the method of resultants from this book, for instance;
we couldn’t.

A.A. Dubrulle, “A class of numerical methods for the computation
of Pythagorean sums”, IBM Journal of Research and Development
27,6 (582-589), 1983.

R.A. Earnshaw (ed.), Fundamental Algorithms for Computer Graph-
ics, Springer-Verlag, 1985.

The proceedings of a NATO Advanced Study Institute on graphics al-
gorithms; the list of contributors is a Who’s Who of the field, and most
aspects of graphics are addressed, often in some depth.

H. Eves, A Survey of Geometry, Allyn and Bacon, 1972.

A very Euclidean perspective on the subject: not meaning that it deals
with FEuclidean space, but that it comprises a modern Euclid’s elements.
It starts with an interesting historical chapter at the beginning. Worth
consulting for links into other parts of mathematics, how about (e.g.)
the relationship between Lennes Polyhedra (polyhedra that can be split
into tetrahedra using only the original polyhedron vertices) and Cauchy’s
theorem?

G.E. Farin, Curves and Surfaces for Computer Aided Geometric De-
sign (2nd ed.), Academic Press, 1990.

A recent work which deals with parametric curves and surfaces from a
strongly ‘Bernsteinian’ viewpoint. This book is subtitled A Practical
Guide, and this promise is fulfilled by the inclusion of a number of rou-
tines in the C language as codas at the end of each chapter. However,
the overall approach is quite theoretical. The interpolated chapters on
“Differential geometry” by Bohm seem heavy going to us. The organiza-
tion of the final chapter “Evaluation of some methods” inspired our list
of advantages and disadvantages of the Bernstein basis in Chapter 4.

R.T. Farouki, “The approximation of non-degenerate offset sur-
faces”, Computer Aided Geometric Design, 3,1 (15-43), May 1986.

References and Bibliography 177

R.T. Farouki and V. Rajan, “On the numerical condition of poly-
nomials in Bernstein form”, Computer Aided Geometric Design 4,3
(191-216), 1987.

R.T. Farouki and V. Rajan, “Algorithms for polynomials in Bern-
stein form”, Computer Aided Geometric Design 5,1 (1-26), 1988.

R.T. Farouki and T. Sakkalis, “Pythagorean hodographs”, IBM
Thomas J. Watson Research Center Report RC 15223, 19809.

[.D. Faux and M.J. Pratt Computational Geometry for Design and
Manufacture, Ellis Horwood, 1979.

This book has worn well despite the lack of a second edition. Obviously
many things have changed since 1979, but some readers may prefer this
less Bernstein-oriented text. The level of coverage is a little uneven. For
instance, there is an introduction to Cartesian geometry that includes
stick figures at various angles. That’s rather quaint even for 1979; nev-
ertheless, it’s probably more use to most people than the ‘introductory’

work which starts “Consider an arbitrary mapping R" = R™...”.

J.D. Foley, A. van Dam, S.K. Feiner and J.F. Hughes, Computer
Graphics: Principles and Practice (2nd ed.), Addison-Wesley, 1990.

New edition of ‘Foley and van Dam’ which ousted ‘Newman and Sproull’
as the best-known graphics book.

P.C. Gasson, Geometry of Spatial Forms, Ellis Horwood, 1983.

Rather like an incomplete butterfly collection: there are many beautiful
and interesting things in it, but also some things that are missing com-
pletely. For instance, there is a section on crystal geometry, but nothing
on parametric surfaces: worth looking at, but not a ‘standard’ text.

A.S. Glassner, “Spacetime ray tracing for animation”, IEEE Com-
puter Graphics and Applications 8,3 (60-70), March 1988.

Not the first attempt to treat animation as a ‘four-dimensional model’
with time as one of the dimensions. Intuitively attractive, maybe: but
read the article and notice how little advantage (from ‘frame-to-frame
coherence’) was actually obtained (see Woodwark 1988).

178 References and Bibliography

A.S. Glassner, ed., Graphics Gems, J. Arvo Graphics Gems II,
D. Kirk Graphics Gems III, Academic Press, 1990, 1992 and 1993.

There a lot of geometry in these books, although they are primarily about
graphics. The sections were submitted by various authors, and the level
and coverage is correspondingly diverse: perhaps increasingly so as the
series progresses. There are some gems, but paste too. It was a good idea
to define a uniform pseudocode to link the contributions, but it seems an
unusually opaque one.

P.J. Green and R. Sibson, “Computing Dirichlet tessellations in the
plane”, The Computer Journal 21,2 (168-173), 1978.

B. Guenter and R. Parent “Computing the arc length of parametric
curves”, IEEE Computer Graphics and Applications 10,3 (72-78),
May 1990.

M.J. Haigh, An Introduction to Computer-Aided Design and Man-
ufacture, Blackwell, 1985.

Rather similar to Besant and Lui’s book.

D. Harper, C. Wooff and D. Hodgkinson A Guide to Computer Al-
gebra Systems, Wiley, 1991.

This is like a Which? guide to algebra systems—it says what all the com-
monly available ones can and can’t do using helpful tables, and also has a
section of example problem solutions at the back, computed using various
of the systems reviewed. If you're going to start using algebra systems
for the first time, read this book before doing so.

F.R.A. Hopgood, D.A. Duce, J.R. Gallop and D.C. Sutcliffe, Intro-
duction to the Graphics Kernel System , Academic Press, 1983.

Graphics standards are dull, and GKS is no exception. However, it is
sometimes necessary to refer to them, and this book makes the exercise
comparatively painless.

R. Klass, “An offset spline approximation for plane cubics”,
Computer-Aided Design 15,5 (296-299), 1983.

References and Bibliography 179

D.E. Knuth, The Art of Computer Programming (2nd ed.), Addison-
Wesley 1973.

All computer life is here. This is the best-known work—and rightly so—
on everything about computer programs.

J.J. Koenderink, Solid Shape, MIT Press, 1990.

Like Gasson’s book, Solid Shape contains many interesting observations,
in an individualistic and ‘descriptive’ treatment. The focus is on differen-
tial geometry, and the slant is towards vision, rather than graphics. For
once, this book can be recommended as a ‘read’.

A.E. Lord and C.B. Wilson, The Mathematical Description of Shape
and Form, Ellis Horwood, 1984.

An interesting mixture of geometric and topological approaches to the de-
scription of form. It covers both ‘conventional’ topics, such as transforms,
projection, curve and surface fitting, and also deals with self-similarity,
fractals, Penrose tessellations and other such topics.

W.E. Lorensen and H.E. Cline, “Marching cubes: a high resolution
3D construction algorithm”, Computer Graphics 21,4 (Proceedings
of SIGGRAPH 87) (163-169), July 1987.

A.M. MacBeath, Elementary Vector Algebra, Oxford University
Press, 1964.

What we said in A Programmer’s Geometry still holds: a good intro-
duction to vector algebra, with particular emphasis on applications in
three-dimensional geometry.

M. Méntyla, Solid Modeling, Computer Science Press, 1988.

Not dissimilar to Chiyokura’s book: very strongly orientated towards
boundary models and specifically reports the details of the GWB (Geom-
etric WorkBench) modeller.

G. Markowsky and M.A. Wesley, “Fleshing out wire frames”, IBM
Thomas J. Watson Research Center Report RC 8124, 1980.

180 References and Bibliography

P.S. Milne, “On the algorithms and implementation of a geometric
algebra system”, University of Bath Computer Science Technical
Report 90-40, 1990 (e-mail: tech-report uk.ac.bath.maths)

One of our research students’ PhD theses. It describes how to design a
symbolic system to do geometry; it also has a good section on interval
arithmetic, and a lot of detail on how to find the zeros of polynomial
expressions describing curves and surfaces.

C. Moler and D. Morrison, “Replacing square roots by Pythagorean
sums”, IBM Journal of Research and Development 27,6 (577-581),
1983.

R.E. Moore, Methods and Applications of Interval Analysis , STAM,
1979.

The prime use of intervals is in bounding approximate (e.g. floating-
point) arithmetic calculations. Not much of this book is very relevant to
geometry, but there doesn’t seem to be a better text about.

M.E. Mortenson Geometric Modeling, Wiley, 1985.

This book is remarkable for its lack of special pleading; it is probably the
only one in this field in which the author does not cite a single paper of
his own. Unfortunately, we have not often found it insightful.

N.M. Patrikalakis and G.A. Kriezis, “Representation of piecewise
continuous algebraic surfaces in terms of B-splines”, The Visual
Computer 5,6 (360-374), 1989.

N.M. Patrikalakis and P.V. Prakash, “Surface intersections for geom-
etric modeling”, Transactions of the ASME: Journal of Mechanical
Design, 112 (100-107), March 1990.

An accessible reference on this subject; many other results are in PhD
theses etc.

T. Pavlidis, Algorithms for Graphics and Image Processing,
Springer-Verlag, 1982.

Good coverage of the basic common ground between graphics and vi-
sion, twin subjects which often seem to have that well-known property of
parallel lines—that they never meet.

References and Bibliography 181

K. Perlin, “An image synthesizer”, Computer Graphics, 19,3 (Pro-
ceedings of SIGGRAPH 85) (287-296), 1985.

The first publication about ‘solid texture’, but not the paper to read if
you actually want to implement it.

L. Piegl, “Key developments in computer-aided geometric design”,
Computer-Aided Design 21,5 (262-274), June 1989.

A short history of parametric methods.

L. Piegl “On NURBS: a survey”, IEEE Computer Graphics and Ap-
plications 11,1 (55-71), January 1991.

Just what it says.

R.A. Plastock and G. Kalley, Computer Graphics, McGraw-Hill,
1986.

Like ‘Ayres’, a Schaum QOutline: good value, but graphics dates much
more quickly that ‘pure’ geometry.

D. Pletinckx, “Quaternion calculus as a basic tool in computer
graphics”, The Visual Computer 5 (2-13), March 1989.

Quaternions provide a more compact alternative to matrices for rotation
transforms; worth looking at to put matrices in perspective (last bad

pun).

F.P. Preparata and M.I. Shamos, Computational Geometry: an In-
troduction, Springer-Verlag, 1985.

At its publication date, a snapshot of the subject in considerable detail.
Like the ACM Symposia Proceedings, it tends to be over-concerned with
worst-case performance, as against more practical considerations.

W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling Nu-
merical Recipes and Numerical Recipes in C, Cambridge University
Press, 1986 and 1988.

Subtitled The Art of Scientific Computing, these are highly successful
compilations of snippets of numerical code, with enough explanation so
that (you think) you know what you’re doing when you use them. The
first book has FORTRAN and (in an Appendix) Pascal code; the sec-
ond book has the code in—of course—C. There are no explicit geometric
sections, but many sections are useful in geometric applications all the
same.

182 References and Bibliography

A. Ricci, “A constructive geometry for computer graphics”, Com-
puter Journal 16,2 (157-160), 1973.

The famous Ricci blend; note the date.

A.P. Rockwood and J.C. Owen, “Blending surfaces in solid mod-
elling”, Proceedings of a STAM Conference on Geometric Modeling
and Robotics, (G. Farin, ed.), Albany N.Y., 1985.

D.F. Rogers and J.A. Adams, Mathematical Elements for Computer
Graphics, McGraw-Hill, 1976.

Not a new book, but one of the few to provide lots of detailed worked
examples, for practical people such as ourselves who like that sort of thing.
We have heard reports of some typographical errors amongst the wealth
of mathematics presented, so do convince yourself of the correctness of
anything you use. (That of course applies to any book on geometric
computing, and especially the present volume.)

H. Samet, The Design and Analysis of Spatial Data Structures and
Applications of Spatial Data Structures , Addison-Wesley, 1989.

These two books undoubtedly comprise the most complete work on quad-
and oct-trees etc. available. They are good for reference: being, as one
reviewer said, extended survey papers. However, in our opinion they
follow the minutiae of the original authors’ approaches too closely to be
a completely successful exposition of the subject.

T.W. Sederberg and R.N. Goldman, “Algebraic geometry for comp-
uter-aided geometric design”, IEEE Computer Graphics and Appli-
cations 6,6 (52-59), June 1986.

Some comprehensible words on difficult topics such as intersections and
implicitization.

T.W. Sederberg, S.C. White and A.K. Zundel, “Fat arcs: a bound-
ing region with cubic convergence”, Brigham Young University, En-
gineering Computer Graphics Laboratory Report ECGL-88-1, 1988.

M. Tamminen, “The extendible cell method for fast geometric ac-
cess”, Helsinki University of Technology Report HTKK-TKO-A20,
1980.

References and Bibliography 183

W.C. Thibault and B.F. Naylor, “Set operations on polyhedra using
binary space partitioning trees”, Computer Graphics 21,2 (Proceed-
ings of SIGGRAPH 87) (153-162), July 1987.

M. Watkins and A. Worsey “Degree reduction for Bézier curves”,
Computer-Aided Design 13,4 (398-405), 1988.

J.R. Woodwark “Compressed quad trees”, Computer Journal 27,3
(225-229), August 1984.

J.R. Woodwark, Computing Shape, Butterworths, 1986.

This short book provides an introduction to the shape models used in
computer-aided design in a single volume. Not superseded, but in need
of revision, especially the list of references.

J.R. Woodwark, “Blends in geometric modelling”, in The Mathe-
matics of Surfaces (R.R. Martin, ed.) (Proceedings of the 2nd IMA
Conference on the Mathematics of Surfaces, Cardiff, 1986) (255-
297), Oxford University Press, 1987.

This was quite comprehensive in its day; blends need a new review paper.

J.R. Woodwark “Spacetime ray tracing”’, Letter to the editor, IFEE
Computer Graphics and Applications 8,5 (8), September 1988.

Comment on Glassner’s article “Spacetime ray tracing for animation”.

G. Wyvill, C. McPheeters and B.L.M. Wyvill “Soft objects”, Ad-
vanced Computer Graphics (Proceedings of Computer Graphics 86,
Tokyo) (113-128), 1986.

Around the first of a number of publications about the ‘soft object’ ap-
proach.

