Convex Hulls and Ortho-convex Hulls

Partha Bhowmick

Associate Professor
http://cse.iitkgp.ac.in/~pb/
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur India

Convex hull

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal hull
Observations
Algorithm Result

Input: Point set P on $x y$-plane.

Convex hull

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Output: Convex hull, $\mathcal{C}_{P}=$ a sequence of vertices/edges.

Convex hull

Hulls
P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal hull
Observations
Algorithm
Result ick

Convex hull

Hulls
P Bhowmick

Convex hull Algorithm
Hull of Polygon

Orthogonal hull
Observations
Algorithm Result

No, it's not an edge of \mathcal{C}_{P}.

Convex hull

Hulls
P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm Result

Yes, it's an edge of \mathcal{C}_{P}.

Convex hull

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Convex hull

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal hull
Observations
Algorithm
Result

$\left|\mathcal{C}_{P}\right|=O(n): O\left(n^{3}\right)$ time is quite high!

Better observations

Hulls

P Bhowmick

Convex hull Algorithm
Hull of
Polygon
Orthogonal hull
Observations Algorithm Result

Obs 1
The leftmost point p_{L} and the rightmost point p_{R} of P form the leftmost and the rightmost vertices of \mathcal{C}_{P}.

Better observations

Hulls

P Bhowmick

Convex hull Algorithm
Hull of Polygon

Orthogonal hull
Observations Algorithm Result

Obs 2
Clockwise traversal along the boundary of \mathcal{C}_{P} always yields a right turn at each vertex of \mathcal{C}_{P}.

Better observations

The clue

Use turn type to decide whether a triplet of points forms a pair of consecutive edges of \mathcal{C}_{P}.

But how?

We have $O\left(n^{3}\right)$ triplets of points!
We can avoid checking so many triplets if we use incremental approach.

Better observations

A question

Let $\mathcal{C}_{P, i}=$ vertices of upper hull up to p_{i}. Then what's the relation between $\mathcal{C}_{P, i+1}$ and $\mathcal{C}_{P, i}$?

Better observations

Hulls

P Bhowmick
The answer
$\mathcal{C}_{P, i+1} \subseteq \mathcal{C}_{P, i} \cup\left\{p_{i+1}\right\}$.
It's a strong observation \Rightarrow Incremental algorithm!

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

After lexicographic sorting ($x=$ primary key, $y=$ secondary key)

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observation:
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observation:
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Incremental algorithm: Graham scan

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Time complexity

Hulls
P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull

Observations
Algorithm
Result
Let $p_{j} \in \mathcal{C}_{P, i}$.

Time complexity

Hulls
P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal hull

Observations
Algorithm
Result
Let $p_{j} \in \mathcal{C}_{P, i}$.
If $p_{j} \notin \mathcal{C}_{P, i+1}$,

Time complexity

Hulls
P Bhowmick

Convex hull Algorithm
Hull of
Polygon
Orthogonal
hull

Observations
Let $p_{j} \in \mathcal{C}_{P, i}$.
If $p_{j} \notin \mathcal{C}_{P, i+1}$, then $p_{j} \notin \mathcal{C}_{P, i+2}, p_{j} \notin \mathcal{C}_{P, i+3}, \ldots, p_{j} \notin \mathcal{C}_{P, n}$, since $\mathcal{C}_{P, i+1} \subseteq \mathcal{C}_{P, i} \cup\left\{p_{i+1}\right\}$.

Time complexity

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon

Let $p_{j} \in \mathcal{C}_{P, i}$.
If $p_{j} \notin \mathcal{C}_{P, i+1}$, then $p_{j} \notin \mathcal{C}_{P, i+2}, p_{j} \notin \mathcal{C}_{P, i+3}, \ldots, p_{j} \notin \mathcal{C}_{P, n}$, since $\mathcal{C}_{P, i+1} \subseteq \mathcal{C}_{P, i} \cup\left\{p_{i+1}\right\}$.
So, once p_{j} is removed from the upper hull, it's never reconsidered.

Time complexity

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon

Let $p_{j} \in \mathcal{C}_{P, i}$.
If $p_{j} \notin \mathcal{C}_{P, i+1}$, then $p_{j} \notin \mathcal{C}_{P, i+2}, p_{j} \notin \mathcal{C}_{P, i+3}, \ldots, p_{j} \notin \mathcal{C}_{P, n}$, since $\mathcal{C}_{P, i+1} \subseteq \mathcal{C}_{P, i} \cup\left\{p_{i+1}\right\}$.
So, once p_{j} is removed from the upper hull, it's never reconsidered.

Time complexity

Hulls
P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal hull

Observations
Algorithm
Result
Data structure:

Time complexity

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal hull

Data structure: Stack, whose top $=p_{i}$. If top two vertices in stack and p_{i+1} do not form a right turn at p_{i}, then p_{i} is popped out for ever!

Time complexity

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon

Data structure: Stack, whose top $=p_{i}$. If top two vertices in stack and p_{i+1} do not form a right turn at p_{i}, then p_{i} is popped out for ever!
\Rightarrow \#pushes $=n$ and $\#$ pops $<n$

Time complexity

Hulls

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Data structure: Stack, whose top $=p_{i}$.
If top two vertices in stack and p_{i+1} do not form a right turn at p_{i}, then p_{i} is popped out for ever!
\Rightarrow \#pushes $=n$ and \#pops $<n$
$\Rightarrow T(n)=O(n) \leftarrow$ no best, average, or worst case!

Time complexity

Hulls

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Data structure: Stack, whose top $=p_{i}$.
If top two vertices in stack and p_{i+1} do not form a right turn at p_{i}, then p_{i} is popped out for ever!
\Rightarrow \#pushes $=n$ and \#pops $<n$
$\Rightarrow T(n)=O(n) \leftarrow$ no best, average, or worst case!
For lexicographic sorting, it takes $O(n \log n)$ time.

Reference of Algorithms

Hulls
(1) Incremental — $O(n \log n) \triangleright n=$ \#points
R. Graham, An Efficient Algorithm for Determining the Convex Hull of a Finite Point Set, Info. Proc. Letters, 1, pp. 132-133, 1972.
(2) Gift wrapping - $O(n h) \triangleright h=$ \#hull vertices
R. A. Jarvis, On the Identification of the Convex Hull of a Finite Set of Points in the Plane, Info. Proc. Letters, 2, pp. 18-21, 1973.
(3) Divide and Conquer - $O(n \log n)$
F. P. Preparata and S. J. Hong, Convex Hulls of Finite Sets of Points in Two and Three Dimensions, Commun. ACM, 20, pp. 87-93, 1977.
(4) Marriage before Conquest - $O(n \log h)$
D. G. Kirkpatrick and R. Seidel, The Ultimate Planar Convex Hull Algorithm?, SIAM J. Comput., 15, pp. 287-299, 1986.
(5) Simpler optimal output-sensitive - $O(n \log h)$
T. M. Chan, Optimal Output-Sensitive Convex Hull Algorithms
in Two and Three Dimensions, Discrete $\mathcal{E}^{\text {E Computational }}$ Geometry, 16, pp. 361-368, 1996.

Convex hull of a polygon

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations
Algorithm Result

Linear-time algorithms

(1) 1979 McCallum-Avis, IPL
(2) 1983 Lee, Intl. J. Computers \& Info. Sc.
(3) 1983 Graham-Yao, J. Algorithms
(1) 1983 ElGindy-Avis-Toussaint, Computing
(0) 1984 Bhattacharya-ElGindy, IEEE Trans. Info. Thy.
(6) 1985 Preparata-Shamos, Computational Geometry, Ch. 4
(1) 1985 Orlowski, Pattern Rec.
(8) 1986 Shin-Woo, Pattern Rec.
© 1987 Melkman, IPL

Convex Hull versus Orthogonal Hull

Hulls

```
P Bhowmick
```

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

```
    *)
    Digital object
(A = set/connected component of integer points)
```


Convex Hull versus Orthogonal Hull

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Convex Hull versus Orthogonal Hull

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal hull

Observations
Algorithm
Result

Any straight line has at most one segment of intersection (a necessary property)

Convex Hull versus Orthogonal Hull

Hulls

Object A imposed on a grid G of size $g=4$

Convex Hull versus Orthogonal Hull

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Convex Hull versus Orthogonal Hull

Any horizontal or vertical line has at most one segment of intersection (a necessary property)

Observations

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations Algorithm Result

There are both left and right turns! (clockwise)

Observations

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations Algorithm Result

Observations

Hulls

P Bhowmick

Convex hull Algorithm
Hull of
Polygon
Orthogonal
hull
Observations Algorithm Result

or, 90° (Type 1) and 270° (Type 3) vertices

Observations

Hulls

P Bhowmick

Convex hull Algorithm
Hull of
Polygon
Orthogonal
hull
Observations Algorithm Result

But no two consecutive Type 3 vertices

Observations

Hulls

P Bhowmick

Convex hull Algorithm
Hull of
Polygon
Orthogonal
hull
Observations

Two consecutive Type 3 vertices defy the necessary property of line intersection

Algorithm

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Step 1: Traverse the border of isothetic cover of A

Algorithm

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Step 2: If 33, then process to remove the concavity.

Algorithm

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Step 2: If 33, then process to remove the concavity.

Algorithm

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Step 2: If 33, then process to remove the concavity.

Algorithm

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Step 2: If 33, then process to remove the concavity.

Combinatorial cases

Hulls

P Bhowmick

Convex hull Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm Result

Pattern 1331

Rule R11 ($l_{1}=l_{3}$):
$\left\langle v_{0}\left(\mathbf{t}_{\mathbf{0}}, l_{0}\right), v_{1}\left(\mathbf{1}, l_{1}\right), v_{2}\left(\mathbf{3}, l_{2}\right), v_{3}\left(\mathbf{3}, l_{3}\right), v_{4}\left(\mathbf{1}, l_{4}\right)\right\rangle \rightarrow$
$\left\langle v_{0}\left(\mathbf{t}_{\mathbf{0}}, l_{0}+l_{2}+l_{4}\right)\right\rangle$

Pattern 1331

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal hull

Observation: Algorithm Result

Rule R12 $\left(l_{1}>l_{3}\right)$:
$\left\langle v_{0}\left(\mathbf{t}_{\mathbf{0}}, l_{0}\right), v_{1}\left(\mathbf{1}, l_{1}\right), v_{2}\left(\mathbf{3}, l_{2}\right), v_{3}\left(\mathbf{3}, l_{3}\right), v_{4}\left(\mathbf{1}, l_{4}\right)\right\rangle \rightarrow$
$\left\langle v_{0}\left(\mathbf{t}_{\mathbf{0}}, l_{0}\right), v_{1}\left(\mathbf{1}, l_{1}-l_{3}\right), v_{2}\left(\mathbf{3}, l_{2}+l_{4}\right)\right\rangle$

Pattern 1331

Rule R13 $\left(l_{1}<l_{3}\right)$:
$\left\langle v_{0}\left(\mathbf{t}_{\mathbf{0}}, l_{0}\right), v_{1}\left(\mathbf{1}, l_{1}\right), v_{2}\left(\mathbf{3}, l_{2}\right), v_{3}\left(\mathbf{3}, l_{3}\right), v_{4}\left(\mathbf{1}, l_{4}\right)\right\rangle \rightarrow$
$\left\langle v_{0}\left(\mathbf{t}_{\mathbf{0}}, l_{0}+l_{2}\right), v_{3}\left(\mathbf{3}, l_{3}-l_{1}\right), v_{4}\left(\mathbf{1}, l_{4}\right)\right\rangle$

Pattern 1333

Rule R21 $\left(l_{1}<l_{3}\right)$:
$\left\langle v_{0}\left(\mathbf{t}_{\mathbf{0}}, l_{0}\right), v_{1}\left(\mathbf{1}, l_{1}\right), v_{2}\left(\mathbf{3}, l_{2}\right), v_{3}\left(\mathbf{3}, l_{3}\right), v_{4}\left(\mathbf{3}, l_{4}\right)\right\rangle \rightarrow$ $\left\langle v_{0}\left(\mathbf{t}_{\mathbf{0}}, l_{0}+l_{2}\right), v_{3}\left(\mathbf{3}, l_{3}-l_{1}\right), v_{4}\left(\mathbf{3}, l_{4}\right)\right\rangle$

Pattern 1333

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal hull Observation Algorithm Result

Let $v=$ current vertex (under traversal).
$l_{H}=$ horizontal line thru' $v_{2}, l_{V}=$ vertical line thru' v_{4}.
$l_{H}^{-} \cap l_{V}^{-}=$region lying below l_{H} and left of l_{V}.
if $v \in l_{H}^{-} \cap l_{V}^{-}$, then apply R22; else traverse ahead to get v.

Pattern 1333

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal hull Observation Algorithm Result

Rule R22 $\left(l_{1} \geqslant l_{3}\right.$ and $\left.d=d_{2}\right)$:
$\left\langle v_{0}\left(\mathbf{t}_{\mathbf{0}}, l_{0}\right), v_{1}\left(\mathbf{1}, l_{1}\right), v_{2}\left(\mathbf{3}, l_{2}\right), v_{3}\left(\mathbf{3}, l_{3}\right), v_{4}\left(\mathbf{3}, l_{4}\right)\right\rangle \rightarrow$
$\left\langle v_{0}\left(\mathbf{t}_{\mathbf{0}}, l_{0}\right), v_{1}\left(\mathbf{1}, l^{\prime}\right), v_{2}\left(\mathbf{3}, l_{2}-l^{\prime \prime}\right)\right\rangle$
$d=$ direction from $v, d_{2}=$ direction from v_{2}.

Pattern 1333

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal hull Result

if $v \in l_{H}^{-} \cap l_{V}^{-}$, then apply $\mathbf{R 2 3}$; else traverse ahead to get v.
Rule R23 $\left(l_{1} \geqslant l_{3}\right.$ and $\left.d=d_{3}\right)$:
$\left\langle v_{0}\left(\mathbf{t}_{\mathbf{0}}, l_{0}\right), v_{1}\left(\mathbf{1}, l_{1}\right), v_{2}\left(\mathbf{3}, l_{2}\right), v_{3}\left(\mathbf{3}, l_{3}\right), v_{4}\left(\mathbf{3}, l_{4}\right)\right\rangle \rightarrow$
$\left\langle v_{0}\left(\mathbf{t}_{\mathbf{0}}, l_{0}\right), v_{1}\left(\mathbf{1}, l_{1}-l_{3}\right), v_{2}\left(\mathbf{3},\left(l_{2}-l^{\prime \prime}\right), v_{3}\left(\mathbf{3},\left(l_{1}-l_{3}-l^{\prime}\right)\right\rangle\right.\right.$

Demo

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon

Orthogonal
hull
Observations
Algorithm
Result

Demo

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal hull
Observations
Algorithm
Result

Demo

Hulls

P Bhowmick

Convex hull
Algorithm
Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

Demo

Hulls

P Bhowmick

Convex hull Algorithm
Hull of
Polygon
Orthogonal
hull
Observations Algorithm
Result

Demo

Hulls

P Bhowmick

Convex hull Algorithm
Hull of
Polygon
Orthogonal
hull
Observations Algorithm
Result

Time Complexity

Hulls

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull
Observations Algorithm Result

Let $n=$ \#points on object border, $g=$ grid size.
(1) Checking object containment in a cell: $O(g)$ time.

Time Complexity

Hulls

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull
Observations Algorithm Result

Let $n=$ \#points on object border, $g=$ grid size.
(1) Checking object containment in a cell: $O(g)$ time.
(2) \#grid points visited: $O(n / g)$

Time Complexity

Let $n=$ \#points on object border, $g=$ grid size.
(1) Checking object containment in a cell: $O(g)$ time.
(2) \#grid points visited: $O(n / g)$
\Rightarrow Visiting all vertices: $O(n / g) \cdot O(g)=O(n)$ time.

Time Complexity

Let $n=$ \#points on object border, $g=$ grid size.
(1) Checking object containment in a cell: $O(g)$ time.
(2) \#grid points visited: $O(n / g)$
\Rightarrow Visiting all vertices: $O(n / g) \cdot O(g)=O(n)$ time.
(3) Removal of a concavity (applying Rule): $O(1)$ time.

Time Complexity

Let $n=$ \#points on object border, $g=$ grid size.
(1) Checking object containment in a cell: $O(g)$ time.
(2) \#grid points visited: $O(n / g)$
\Rightarrow Visiting all vertices: $O(n / g) \cdot O(g)=O(n)$ time.
(3) Removal of a concavity (applying Rule): $O(1)$ time.
(9) Maximum \#reductions: $O(n / g)-4$.

Time Complexity

Let $n=$ \#points on object border, $g=$ grid size.
(1) Checking object containment in a cell: $O(g)$ time.
(2) \#grid points visited: $O(n / g)$
\Rightarrow Visiting all vertices: $O(n / g) \cdot O(g)=O(n)$ time.
(3) Removal of a concavity (applying Rule): $O(1)$ time.
(9) Maximum \#reductions: $O(n / g)-4$.
\Rightarrow Total \#operations: $(O(n / g)-4) \cdot O(1)=O(n / g)$.

Time Complexity

Let $n=$ \#points on object border, $g=$ grid size.
(1) Checking object containment in a cell: $O(g)$ time.
(2) \#grid points visited: $O(n / g)$
\Rightarrow Visiting all vertices: $O(n / g) \cdot O(g)=O(n)$ time.
(3) Removal of a concavity (applying Rule): $O(1)$ time.
(9) Maximum \#reductions: $O(n / g)-4$.
\Rightarrow Total \#operations: $(O(n / g)-4) \cdot O(1)=O(n / g)$.
(6) Total time complexity: $O(n)+O(n / g)=O(n)$.

Result

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations
Algorithm
Result

digital object $=10541$ points

Result

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations Algorithm
Result

Isothetic cover

Result

Hulls

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations Algorithm
Result

Orthogonal hull

Result

Hulls

$$
g=4,8,14
$$

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal
hull
Observations Algorithm
Result

\#vertices $=18,16,16$

Result

Hulls

$$
g=4,8,14
$$

P Bhowmick

Convex hull Algorithm
Hull of
Polygon
Orthogonal hull
Observations Algorithm
Result

$$
\# \text { vertices }=120,60,32
$$

Result

$$
g=4,8,14
$$

P Bhowmick

Convex hull Algorithm

Hull of
Polygon
Orthogonal hull
Observations Algorithm Result

$$
\# \text { vertices }=88,44,32
$$

Feature analysis

- Concavity strength and concavity relation
- Narrow mouthed concavity
- Concavity complexity

References

- A. Biswas, P. Bhowmick, M. Sarkar, B. B. Bhattacharya, A linear-time combinatorial algorithm to find the orthogonal hull of an object on the digital plane, Information Sciences, 216, pp. 176-195, 2012.
- A. Biswas, P. Bhowmick, B. B. Bhattacharya, Construction of isothetic covers of a digital object: A combinatorial approach, Journal of Visual Communication and Image Representation, 21, pp. 295-310, 2010.

Thank you

