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Circle Construction
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Construction by Digitization

This is Z2 — an infinite set
of 2D integer points
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Construction by Digitization

This is a real circle
(integer center, radius 14)

Partha Bhowmick From circle to sphere and to related problems in the digital space



Circle Circularity Sphere Geodesics Conclusion Ref Construction Properties DCS DCR & DCH

Construction by Digitization

This is the digital circle
(integer center, radius 14)
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Construction by Digitization

distance < 1
2
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Construction by Digitization

r = 14

c

The challenge

Given r and c as integers,
use only integer arithmetic to
compute the digital circle.
(w.l.o.g., c = (0, 0))
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Construction by Digitization

r = 14

As displayed on computer
screen / book
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Construction by Digitization

r = 14

As displayed on computer
screen / book
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Construction by Digitization

Algorithm Inventors Year

Incremental Bresenham 1977

Optimized midpoint Foley et al. 1993

Short run Hsu et al. 1993

Hybrid run slice Yao & Rokne 1995

Number theory a Bhowmick & Bhattacharya 2008

aP. Bhowmick and B. B. Bhattacharya,
Number-theoretic interpretation and construction of a digital circle,
Discrete Applied Mathematics, 156 : 2381–2399, 2008.
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Octant Property

I

II

III

IVV

VI

VII

VIII

(i, j)

#permutations of (i, j) including sign = 2× 22 = 8.
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Number-theoretic Properties

A simple question: What’s the pattern here? (Disregard the 1st line)

0, 13

14, 39

40, 63

64, 85

86,105

· · ·
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Number-theoretic Properties

A simple question: What’s the pattern here? (Disregard the 1st line)

0, 13

14, 39

40, 63

64, 85

86,105

· · ·

26

24

22

20

length
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Number-theoretic Properties

A simple question: What’s the pattern here? (Disregard the 1st line)

0, 13

14, 39

40, 63

64, 85

86,105

· · ·

}
}
}

−2
−2
−2

26

24

22

20
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Number-theoretic Properties

A simple question: What’s the pattern here? (Disregard the 1st line)

0, 13

14, 39

40, 63

64, 85

86,105

· · ·

}
}
}

−2
−2
−2

26

24

22

20
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Number-theoretic Properties

A simple question: What’s the pattern here? (Disregard the 1st line)

r = 14

This is how we get
the digital circle for

0, 13

14, 39

40, 63

64, 85

86,105

· · ·

}
}
}

−2
−2
−2

26

24

22

20

Partha Bhowmick From circle to sphere and to related problems in the digital space



Circle Circularity Sphere Geodesics Conclusion Ref Construction Properties DCS DCR & DCH

Number-theoretic Properties

A simple question: What’s the pattern here? (Disregard the 1st line)

0, 13

14, 39

40, 63

64, 85

86,105

· · ·

}
}
}

−2
−2
−2

26

24

22

20

I0 = [0, r − 1]

I1 = [r, 3r − 3]

I2 = [3r − 2, 5r − 7]

· · ·
Ik = [uk, uk + lk − 1]

· · ·
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Number-theoretic Properties

A simple question: What’s the pattern here? (Disregard the 1st line)

0, 13

14, 39

40, 63

64, 85

86,105

· · ·

}
}
}

−2
−2
−2

26

24

22

20

I0 = [0, r − 1]

I1 = [r, 3r − 3]

I2 = [3r − 2, 5r − 7]

· · ·
Ik = [uk, uk + lk − 1]

· · ·

uk =

{
uk−1 + lk−1 if k ≥ 1
0 if k = 0

lk =





lk−1 − 2 if k ≥ 2
2r − 2 if k = 1
r if k = 0

R
ec
u
rr
en
ce

fo
r
r
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Number-theoretic Properties

A simple question: What’s the pattern here? (Disregard the 1st line)

0, 13

14, 39

40, 63

64, 85

86,105

· · ·

}
}
}

−2
−2
−2

26

24

22

20

I0 = [0, r − 1]

I1 = [r, 3r − 3]

I2 = [3r − 2, 5r − 7]

· · ·
Ik = [uk, uk + lk − 1]

· · ·

uk =

{
uk−1 + lk−1 if k ≥ 1
0 if k = 0

lk =





lk−1 − 2 if k ≥ 2
2r − 2 if k = 1
r if k = 0

R
ec
u
rr
en
ce

fo
r
r

Theorem Ik contains the x2 of the points at kth run.
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Number-theoretic Properties (1)

I

k = 0
1
2

3
4

r = 14 :
k = 0 : [0, 13]⇒ 4 squares
k = 1 : [14, 39]⇒ 3 squares
k = 2 : [40, 63]⇒ 1 square
k = 3 : [64, 85]⇒ 2 squares
k = 4 : [86, 105]⇒ 1 square
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Algorithm DCS (int r)

1. int i← 0, j← r, s← 0,w← r − 1, l← 2r − 2
2. while j > i
3. do
4. select (i, j)
5. s← s + 2i + 1
6. i← i + 1
7. while s 6 w
8. w← w + l
9. l← l− 2
10. j← j− 1

k = 0
1
2

3
4

r = 14

k = 0 : [0, r − 1] = [0, 13]⇒ 4
k = 1 : [r, 3r − 3] = [14, 39]⇒ 3
k = 2 : [3r − 2, 5r − 7] = [40, 63]⇒ 1
k = 3 : [5r − 6, 7r − 13] = [64, 85]⇒ 2
k = 4 : [7r − 12, 9r − 21] = [86, 105]⇒ 1
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More number-theoretic properties (1)

A simple observation

0 u v − 1

uv

Let u, v,w be three positive integers in increasing order such that
w− v = v− 1− u.
Let
s[u, v− 1] = #squares in [u, v− 1],
s[v,w] = #squares in [v,w].
Then can s[v,w] > s[u, v− 1]? If so, by how much?
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More number-theoretic properties (2)

0 8 16 24 32 40 48 56 64

4 2
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More number-theoretic properties (3)

0 8 16 24 32 40 48 56 64

3 1
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More number-theoretic properties (4)

0 8 16 24 32 40 48 56 64

1 2

u v w

Lemma

For u < v < w and w− v = v− 1− u, s[v,w] 6 s[u, v− 1] + 1.

Hence, a useful result:
For u < v < w and w− v = v− u− 3, s[v,w] 6 s[u, v− 1] + 1.

And so the theorem follows in next slide!
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More number-theoretic properties (5)

Theorem (Upper bound of run length (λ))

λ(j− 1) 6 λ(j) + 1.

r = 41
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More number-theoretic properties (6)

0 8 16 24 32 40 48 56 64

4 2

0 8 16 24 32 40 48 56 64

3 1

0 8 16 24 32 40 48 56 64

1 2

u v w

Lemma

For u < v < w and w− v = v− 1− u, s[v,w] >
⌊

s[u,v−1]−1
2

⌋
.

And so the theorem follows in next slide!
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More number-theoretic properties (7)

Theorem (Lower bound of run length (λ))

λ(j− 1) >
⌊
λ(j)−1

2

⌋
− 1

r = 41
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More number-theoretic properties (8)

Constructive bounds
⌊
λ(j)− 1

2

⌋
− 1 6 λ(j− 1) 6 λ(j) + 1

r = 41
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Algorithm DCR

106

104

102

100

98

96

94

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Demonstration of DCR for r = 106.
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Algorithm DCR: Square search

Algorithm DCR (int r) {
1. int i = 0, j = r,w = r − 1,m;
2. int s = 0, t = r, l = w << 1;
3. while (j > i) {
4. while (s < t) {
5. m = s + t;
6. m = m >> 1;
7. if (w 6 square[m])
8. t = m;
9. else
10. s = m + 1; }
11. if (w < square[s])
12. s−−;
13. s + +;
14. include run (i, s− i, j);
15. t = s + s− i + 1;
16. i = s;
17. w = w + l;
18. l = l− 2;
19. j−−; }}

106

104

102

100

98

96

94

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
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Hybrid algorithm DCH (1)

Algorithm DCH (int r,int p) {
1. int i = 0, j = r,w = r − 1,m;
2. int s = 0, t = r, l = w << 1;
3. while (j > i) {
4. while (s < t) {
5. m = s + t;
6. m = m >> 1;
7. if (w 6 square[m])
8. t = m;
9. else
10. s = m + 1; }
11. if (w < square[s])
12. s−−;
13. s + +;
14. include run (i, s− i, j);
15. if (s− i < p)
16. break;
17. t = s + s− i + 1;
18. i = s;
19. w = w + l;
20. l = l− 2;
21. j−−; }

22. i = s− 1;
23. s = square[s];
24. w = w + l;
25. l = l− 2;
26. j−−;
27. while (j > i) {
28. do {sym 8 (i, j);
29. s = s + i;
30. i + +;
31. s = s + i; }while (s 6 w);
32. w = w + l;
33. l = l− 2;
34. j−−; }}
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Test Results...

DCB
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Test Results...

DCR
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Test Results...

DCH
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Digital Circularity
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Problem Statement (1)

7
5

4
4

4
3

Does there exist a real circle (integer radius & center) such that each
point of the given sequence lies within a distance of 1

2 from it?
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Problem Statement (2)

7
5

4
4

4
3

7
5

4
4

4
3

r = 47

47 is far from true.
Seems, it will be much larger!
But how large? And how to get it?
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Problem Statement (3)

7
5

4
4

4
3

7
5

4
4

4
3

r = 170

170 is the solution!
How to get it very fast, using simple arithmetic (no trigonometry
etc.)?

Partha Bhowmick From circle to sphere and to related problems in the digital space



Circle Circularity Sphere Geodesics Conclusion Ref Properties DCT DCG Segmentation

Conflicting Radii (1)

r = 36

r =
26

r =
28r =

27

λ0 = 6

r ∈ [26, 36]

Partha Bhowmick From circle to sphere and to related problems in the digital space



Circle Circularity Sphere Geodesics Conclusion Ref Properties DCT DCG Segmentation

Conflicting Radii (2)

Lemma

λ0 is the length of top run of a digital circle CZ(o, r) iff
r ∈ R0 := [(λ0 − 1)2 + 1, λ2

0].
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Conflicting Radii (3)

r =
26

r =
27

λ0 = 6 λ1 = 3

r ∈ [26, 27]
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Conflicting Radii (4)

λ0 = 6 λ1 = 4

r = 34

r =
28

r ∈ [28, 34]
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Conflicting Radii (5)

r = 36

λ0 = 6 λ1 = 5

r = 35

r ∈ [35, 36]
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Radii Nesting (1)

r = 36

r =
26

r =
28r =

27

λ0 = 6

r =
26

r =
27

λ0 = 6 λ1 = 3

λ0 = 6 λ1 = 4

r = 34

r =
28

r = 36

λ0 = 6 λ1 = 5

r = 35
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Radii Nesting (2)

Lemma

λ0 and λ1 are the lengths of top two runs of CZ(o, r) iff r ∈ R0 ∩ R1,

where, R1 =
[⌈

(Λ1−1)2+3
3

⌉
,
⌊

Λ2
1+2
3

⌋]
, Λ1 = λ0 + λ1.

(If R0 ∩ R1 = ∅, then there exists no digital circle ... λ0 and λ1.)
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Radii Nesting (3)

Theorem (Radii interval)
〈λ0, . . . , λn〉 is the sequence of top n + 1 run-lengths of CZ(o, r) iff

r ∈
n⋂

k=0

Rk

where,

Rk =

[⌈
1

2k + 1

(
(Λk − 1)2 + k(k + 1) + 1

)⌉
,

⌊
1

2k + 1

(
Λ2

k + k(k + 1)
)⌋]

and

Λk =

k∑
j=0

λj.

(If
n⋂

k=0
Rk = ∅, then there exists no digital circle whose top n + 1 runs have length

〈λ0, λ1, . . . , λn〉.)
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Algorithm DCT

1. Λ← S[0]

2. [r′, r′′]← [(Λ− 1)2 + 1,Λ2]

3. for k← 1 to n− 1

4. Λ← Λ + S[k]

5. s′ ←
⌈
((Λ− 1)2 + k(k + 1) + 1)/(2k + 1)

⌉
6. s′′ ←

⌊
(Λ2 + k(k + 1))/(2k + 1)

⌋
7. if s′′ < r′ or s′ > r′′

8. print “S is circular up to (k − 1)th run for [r′, r′′].”

9. return

10. else

11. [r′, r′′]← [max(r′, s′),min(r′′, s′′)]

12. print “S is circular in entirety for [r′, r′′].”

Partha Bhowmick From circle to sphere and to related problems in the digital space



Circle Circularity Sphere Geodesics Conclusion Ref Properties DCT DCG Segmentation

Conflicting Radii: Resolved how fast? (1)

 1 4  9  16
 25

 36
 49

 64
 81

 100 1 4
 9

 16

 25

 36

 49

 64

 81

 100

 0
 2
 4
 6
 8

 10
 12
 14
 16

k

r

r’

k
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Conflicting Radii: Resolved how fast? (2)

Conflicting radii starting from k = 0
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Conflicting Radii: Resolved how fast? (3)

Resolving the conflicting radii r′ with increasing k

 36
 41

 49
 57  36

 41

 49

 57

 64

 1

 16
 

 

 

 

k = 1

Partha Bhowmick From circle to sphere and to related problems in the digital space



Circle Circularity Sphere Geodesics Conclusion Ref Properties DCT DCG Segmentation

Conflicting Radii: Resolved how fast? (4)

Resolving the conflicting radii r′ with increasing k

 36
 41

 49
 57  36

 41

 49

 57

 64

 2

 16
 

 

 

 

k = 2
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Conflicting Radii: Resolved how fast? (5)

Resolving the conflicting radii r′ with increasing k

 36
 41

 49
 57  36

 41

 49

 57

 64

 3

 16
 

 

 

 

k = 3
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Conflicting Radii: Resolved how fast? (6)

Resolving the conflicting radii r′ with increasing k

 36
 41

 49
 57  36

 41

 49

 57

 64

 4

 16
 

 

 

 

k = 4
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General Case & DCG (1)

Lemma
If a digital circle of radius r contains a given run of length λ, then
there exist two positive integers a and k such that
r > dmax (f1,λ(a, k), f2,λ(a, k))e, where

f1,λ(a, k) =
(a− 1)2 + k(k − 1) + 1

2k − 1

and

f2,λ(a, k) =
(a + λ− 1)2 + k(k + 1) + 1

2k + 1
.
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General Case & DCG (2)

Lemma
If a digital circle of radius r contains a given run of length λ, then
there exist two positive integers a and k such that
r 6 bmin (f3,λ(a, k), f4,λ(a, k))c, where

f3,λ(a, k) =
a2 + k(k − 1)

2k − 1

and

f4,λ(a, k) =
(a + λ)2 + k(k + 1)

2k + 1
.
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General Case & DCG (3)

Theorem
An arbitrary run of given length λ belongs to only those digital circles
whose radii are in the range

Rak =

{
r | r >

⌈
max

a,k∈Z+
(f1,λ(a, k), f2,λ(a, k))

⌉}

⋂
{

r | r 6
⌊

min
a,k∈Z+

(f3,λ(a, k), f4,λ(a, k))

⌋}
.
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General Case & DCG (4)

7 8 9 10 11 12

120

60

70

80

90

100

110 f1

f2

f4f3

108
101

97

87
81

76A[0][1] =

A[0][2] =
A[1][1] =

A[1][2] =

A[2][1] =
A[2][2] =

α41α12α34α23

dα23e bα12c bα41cbα34cA[0][0] = = A[2][0]
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General Case & DCG (5)

Points of intersection (in R2) among the parabolas
{fi,λ | i = 1, 2, 3, 4} definingRak.

(k = 2k − 1, k = 2k + 1, k̂ = k(k − 1), k̂ = k(k + 1), λ = λ− 1)

Parabolas Point Abscissa of the point

f1,λ f2,λ α12
1
2

(
kλ+

√
(kλ+ 2)2 + 2(kλ2 + 2k̂ − 3) + 2

)
f2,λ f3,λ α23

1
2

(
kλ+

√
(kλ)2 + 2(kλ2 + 2k̂ − 1)

)
f3,λ f4,λ α34

1
2

(
kλ+

√
(kλ)2 + 2(kλ2 + 2k2)

)
f4,λ f1,λ α41

1
2

(
kλ+ k ±

√
(kλ+ k)2 + 2(kλ2 + 2k̂ − k − 1)

)
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General Case & DCG (6)

Specifications of the parabolas {fi,λ | i = 1, 2, 3, 4}.

Parabola Axis Directrix

Length

of

Latus

Rectum

Vertex Focus

f1,λ x = 1 k y = 3/4 k
(

1, (k̂ + 1)/k
) (

1, (8k̂ + 5)/(4k)
)

f2,λ x = −λ k y = 3/4 k
(
−λ, (k̂ + 1)/k

) (
−λ, (8k̂ + 5)/(4k)

)
f3,λ x = 0 k y = −1/4 k

(
0, (k̂)/k

) (
0, (8k̂ + 1)/(4k)

)
f4,λ x = −λ k y = −1/4 k

(
−λ, k̂/k

) (
−λ, (8k̂ + 1)/(4k)

)
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General Case & DCG (7)

Specifications of the parabolas {fi,λ | i = 1, 2, 3, 4}.
POINTS OF INTERSECTION (IN R2) AMONG THE PARABOLAS {fi,λ : i = 1, 2, 3, 4}
DEFINING Rak .

To obtain the value of {αij | j = (i mod 4) + 1, i = 1, 2, 3, 4}, we have solved the

following quadratic equations in a. Out of the two values of a obtained, say

a = C ±
√

D, we define α as C +
√

D.

α23: (a+λ−1)2+k(k+1)+1
2k+1 =

a2+k(k−1)
2k−1

or, (2k − 1)(a2 + 2(λ− 1)a + (λ− 1)2 + k(k + 1) + 1) = (2k + 1)(a2 + k(k − 1))
or, 2a2 − 2(2k − 1)(λ− 1)a− (2k − 1)(λ− 1)2 − 2k2 − 2k + 1 = 0

or, a = 1
2

(
(2k − 1)(λ− 1)±

√
(2k − 1)2(λ− 1)2 + 2((2k − 1)(λ− 1)2 + 2k2 + 2k − 1)

)
or, α23 = 1

2

(
(2k − 1)(λ− 1) +

√
(2k − 1)2(λ− 1)2 + 2((2k − 1)(λ− 1)2 + 2k2 + 2k − 1)

)
.

α12: (a−1)2+k(k−1)+1
2k−1 =

(a+λ−1)2+k(k+1)+1
2k+1

or, (2k + 1)((a− 1)2 + k(k − 1) + 1) = (2k − 1)((a + λ− 1)2 + k(k + 1) + 1)
or, 2a2 − 2((2k − 1)λ + 2)a− (2k − 1)(λ− 1)2 − 2k2 + 2k + 3 = 0

or, a = 1
2

(
(2k − 1)λ + 2±

√
((2k − 1)λ + 2)2 + 2((2k − 1)(λ− 1)2 + 2k2 − 2k − 3)

)
or, α12 = 1

2

(
(2k − 1)λ + 2 +

√
((2k − 1)λ + 2)2 + 2((2k − 1)(λ− 1)2 + 2k2 − 2k − 3)

)
.
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General Case & DCG (8)

α41: (a+λ)2+k(k+1)
2k+1 =

(a−1)2+k(k−1)+1
2k−1

or, (2k − 1)((a + λ)2 + k(k + 1)) = (2k + 1)((a− 1)2 + k(k − 1) + 1)
or, 2a2 − 2(2k(1 + λ)− λ + 1)a− (2k − 1)λ2 − 2k2 + 4k + 2 = 0

or, a = 1
2

(
(2k − 1)λ + 2k + 1±

√
((2k − 1)λ + 2k + 1)2 + 2((2k − 1)λ2 + 2k2 − 4k − 2)

)
or, α41 = 1

2

(
(2k − 1)λ + 2k + 1 +

√
((2k − 1)λ + 2k + 1)2 + 2((2k − 1)λ2 + 2k2 − 4k − 2)

)
.

α34: a2+k(k−1)
2k−1 =

(a+λ)2+k(k+1)
2k+1

or, (2k + 1)(a2 + k(k − 1)) = (2k − 1)((a + λ)2 + k(k + 1))
or, 2a2 − 2(2k − 1)λ− (2k − 1)λ2 − 2k2 = 0

or, a = 1
2

(
(2k − 1)λ±

√
(2k − 1)2λ2 + 2((2k − 1)λ2 + 2k2)

)
or, α34 = 1

2

(
(2k − 1)λ +

√
(2k − 1)2λ2 + 2((2k − 1)λ2 + 2k2)

)
.

Partha Bhowmick From circle to sphere and to related problems in the digital space



Circle Circularity Sphere Geodesics Conclusion Ref Properties DCT DCG Segmentation

Algorithm DCG (1)

1. nmax ← 0
2. for k′ ← kmin to kmax

3. Λ← S[0], i← 0
4. FIND-PARAMS(A,Λ, k′)
5. while i < m and nmax < n . for all a’s of first run
6. [s′, s′′]← [r′, r′′]← [A[i][1],A[i][2]]

7. Λ← A[i][0] + S[0], j← 1
8. while j < n and s′′ > r′ and s′ 6 r′′ . verifying other n− 1 runs
9. Λ← Λ + S[j], k← k′ + j

10. s′ ←
⌈

(Λ−1)2+k(k+1)+1
2k+1

⌉
, s′′ ←

⌊
Λ2+k(k+1)

2k+1

⌋
11. if s′′ > r′ and s′ 6 r′′

12. [r′, r′′]← [max(r′, s′),min(r′′, s′′)]
13. if nmax < j
14. nmax ← j, koff ← k′, [rmin, rmax]← [r′, r′′]
15. print “S is circular for nmax runs; starting run = koff; r ∈ [rmin, rmax].”
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Algorithm DCG (2)

Procedure FIND-PARAMS

1. Compute {αuv | 1 6 u 6 4 ∧ v = (u + 1) mod 4} . (from Tables)
2. i← 0
3. for a← dα23e to bα41c
4. A[i][0]← a . computing r′

5. if a < α12

6. A[i][1]← df2,λ(a, k)e
7. else
8. A[i][1]← df1,λ(a, k)e . computing r′′

9. if a < α34

10. A[i][2]← bf3,λ(a, k)c
11. else
12. A[i][2]← bf4,λ(a, k)c
13. i← i + 1
14. m← i
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Algorithm DCG (3)

7 8 9 10 11 12

120

60

70

80

90

100

110 f1

f2

f4f3

108
101

97

87
81

76A[0][1] =

A[0][2] =
A[1][1] =

A[1][2] =

A[2][1] =
A[2][2] =

α41α12α34α23

dα23e bα12c bα41cbα34cA[0][0] = = A[2][0]

FIND-PARAMS on a run-length 7:

Solution spaceRak of the radius intervals {[r′j , r′′j ] | j = 0, 1, 2} corresponding to

m = 3 square numbers lying in
[
dα23e2 , bα41c2

]
=
[
92, 112].
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Arc Segmentation
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Arc Segmentation
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Arc Segmentation
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Arc Segmentation
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Arc Segmentation
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Arc Segmentation

input output
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Arc Segmentation

Algorithm Inventors Year

Hough transform Davies 1984, Illingworth & Kittler 1988, Yip et al. 1992,
Chen & Chung 2001, Kim & Kim 2005, Chiu & Liaw 2005,...

Voronoi diagram Coeurjolly et al. 2004

Chord & Sagitta Bera, Bhowmick & Bhattacharya 2010

Discrete Curvaturea Pal, Dutta & Bhowmick 2012

Number Theory b Pal & Bhowmick 2012

Number Theory & Graph Theory c Bhowmick & Pal 2014

aS. Pal, R. Dutta & P. Bhowmick, Circular Arc Segmentation by Curvature Estimation and
Geometric Validation, Intl. Journal Image & Graphics, 12:24p, 2012.

bS. Pal & P. Bhowmick, Determining Digital Circularity Using Integer Intervals, Journal of
Mathematical Imaging & Vision, 42(1):1-24, 2012.

cS. Pal & P. Bhowmick, Fast Circular Arc Segmentation Based on Approximate Circularity
and Cuboid Graph, Journal of Mathematical Imaging & Vision, 49:98-122, 2014.
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Discretization of Sphere
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Lattice, cells, voxels, adjacency (1)

lattice point

lattice line
lattice plane
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Lattice, cells, voxels, adjacency (2)

lattice line

0-cell ≡ vertex
1-cell ≡ edge
2-cell ≡ face

(integer coordinates)

3-cell ≡ voxel

lattice point

(8 vertices, 12 edges, 6 faces)
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Lattice, cells, voxels, adjacency (3)

lattice point

lattice line

0-cell
1-cell
2-cell
lattice plane

(integer coordinates)

3-cell (voxel) 2-adjacency 1-adjacency 0-adjacency

lattice point
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Discretization Models (general surface)

naive
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Discretization Models (general surface)

naive
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Discretization Models (general surface)

naive no 2-path
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Discretization Models (general surface)

naive no 2-path 1-path
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Discretization Models (general surface)

naive no 2-path 1-path

standard
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Discretization Models (general surface)

naive no 2-path 1-path

standard
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Discretization Models (general surface)

naive no 2-path 1-path

standard no 0-path
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Discretization Models (general surface)

naive no 2-path 1-path

standard no 0-path

Naive = 2-minimal. Standard = 0-minimal.
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Naive Sphere

Problem Statement: Given integer radius and integer center1,
construct the naive sphere whose every voxel is non-redundant and
lies as much close as possible to the real sphere.

1w.l.o.g., center = (0, 0, 0)
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Non-redundant
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Isothetic distance

To formalize “as much close as possible to the real sphere”, we define
d⊥(p, S) = min{dx(p, S), dy(p, S), dz(p, S)}.

z

dx(p,S) = ∞

dz(p,S) = ∞

p'

p
y

x

dy(p,S) = pp'
__
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Discretization Models (plane & sphere) (1)

Real plane Π(a, b, c, µ) : ax + by + cz = µ.
Digital plane
ΠZ(a, b, c, µ, ω) =

{
(i, j, k) ∈ Z3 : µ− ω

2 6 ai + bj + ck < µ+ ω
2

}
,

which is of thickness ω and centered on Π.

Example: 6x + 13y + 27z = 0

ω = 15 ω = 27 ω = 46
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Discretization Models (plane & sphere) (2)

under-digitized naive standard

ω < max(|a|, |b|, |c|) ω = max(|a|, |b|, |c|) ω = |a|+ |b|+ |c|
⇔ 2-minimal ⇔ 0-minimal

Example: 6x + 13y + 27z = 0

ω = 15 ω = 27 ω = 46
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Discretization Models (plane & sphere) (3)

Lemma
For a point p = (i, j, k) and a real plane Π : ax + by + cz = 0,

d⊥(p,Π) =
|ai + bj + ck|

max(|a|, |b|, |c|) .

Theorem (Point-to-Plane Distancea)

d⊥(p,ΠRr (s, t)) 6
{ 1

2 ∀ p ∈ ΠZ1 (s, t) ← naive
3
2 ∀ p ∈ ΠZ2 (s, t) ← standard

aR. Biswas and P. Bhowmick, On different topological classes of spherical geodesic paths
and circles in Z3, Theoretical Computer Science 605:146–163, 2015.
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Discretization Models (plane & sphere) (4)

p

p

p = (i, j, k) ∈ Z3,
X = {|i|, |j|, |k|},
h = |i|+ |j|+ |k|,
s = i2 + j2 + k2.

Theorem (Naive & Standard Spheres)

S1 =

{
p ∈ Z3 :

(
r2 −max(X) 6 s < r2 + max(X)

)

∧
((

s 6= r2 + max(X)− 1
)
∨ (mid(X) 6= max(X))

)
}
.

S2 =
{

p ∈ Z3 : r2 − h 6 s < r2 + h
}

.
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Discretization Models (plane & sphere) (5)

naive standard

Theorem (Point-to-Sphere Distance)

d⊥(p, S) 6
{ 1

2 ∀ p ∈ S1 ← naive

2 ∀ p ∈ S2 ← standard
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Symmetry (quadraginta octants)

Q4

Q2

Q1

Q3

Q5Q6

x

y

z

r = 5

#q-octants = #permutations of (±x,±y,±z) = 3!× 23 = 48.
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Symmetry (quadraginta octants)

Q4

Q2

Q1

Q3

Q5Q6

x

y

z

r = 10

#q-octants = #permutations of (±x,±y,±z) = 3!× 23 = 48.
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Symmetry (quadraginta octants)

Q4

Q2

Q1

Q3

Q5Q6

x

y

z

r = 15

#q-octants = #permutations of (±x,±y,±z) = 3!× 23 = 48.
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Symmetry (quadraginta octants)

Q4

Q2

Q1

Q3

Q5Q6

x

y

z

r = 15

#q-octants = #permutations of (±x,±y,±z) = 3!× 23 = 48.
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Distance bound

p

p

Here p = (i, j, k) ∈ Z3, s = i2 + j2 + k2,X = {|i|, |j|, |k|}.

Lemma (S1-to-S Distance)

p ∈ S1 =⇒ d⊥
(
p, S
)

=
∣∣∣k −

√
r2 − (i2 + j2)

∣∣∣.
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Distance bound

p

p

Here p = (i, j, k) ∈ Z3, s = i2 + j2 + k2,X = {|i|, |j|, |k|}.

Lemma (Supremum Distance)

p ∈ S1 =⇒ d⊥
(
p, S
)
� 1

2 .
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Properties & Characterization

p

p

Here p = (i, j, k) ∈ Z3, s = i2 + j2 + k2,X = {|i|, |j|, |k|}.
Lemma (Square Sum Interval)

p ∈ S1 =⇒ s ∈ [r2 − k, r2 + k − 1].
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Properties & Characterization

p

p

Here p = (i, j, k) ∈ Z3, s = i2 + j2 + k2,X = {|i|, |j|, |k|}.
Theorem (Simple Voxel)

p : d⊥(p, S) < 1
2 is simple/redundant

⇔
(
s = r2 + max(X)− 1

)
∧
(
mid(X) = max(X)

)
,

where mid denotes the median.
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Properties & Characterization

p

p

Here p = (i, j, k) ∈ Z3, s = i2 + j2 + k2,X = {|i|, |j|, |k|}.
Theorem (Lattice Sphere)

S1 =

{
p ∈ Z3 :

(
r2 −max(X) 6 s < r2 + max(X)

)

∧
((

s 6= r2 + max(X)− 1
)
∨ (mid(X) 6= max(X))

)
}
.
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Number-theoretic Properties (1)

Lemma (Interval)

The interval In = [(2n− 1)r − n(n− 1), (2n + 1)r − n(n + 1)− 1]
contains the sum of the squares of x- and y-coordinates of the voxels
of S1 whose z-coordinates are r − n, for n > 1.

Lemma (Interval Length)

The lengths of the intervals In, starting from I1, decrease constantly by
2.
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Number-theoretic Properties (2)

Theorem (Interval Recurrence)

The sum of squares of x- and y-coordinates of voxels lying on S1 and
having z-coordinate r − n, lies in In := [un, vn := un + ln − 1], where

un =

{
0 if n = 0
un−1 + ln−1 otherwise;

(1)

ln =





r if n = 0
2r − 2 if n = 1
ln−1 − 2 otherwise.

(2)
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Number-theoretic Properties (3)

k = 23

k = 22

k = 21

k = 20

k = 19
k = 18
k = 17

k = 16

i = 0

i = 4

i = 8

i = 11

i = 13
j
=
0

j
=
4

j
=
8

j
=
12

j
=
16 k = 15

k = 14

A0 A1 A12 A13

+i

+j

+k

First q-octant of the naive sphere of r = 23.
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Number-theoretic Properties (4)

Theorem (Next Voxel)

If (i, j, k) is the current voxel of Ai, then the next voxel of Ai is
(i, j + 1, k − d), where d ∈ {∅, 0, 1} is given as follows.

Interval j < k − 1 j = k − 1
K0 0 ∅
K−1 1 ∅

Here, d = ∅ implies that there does not exist an appropriate value of
d.
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Number-theoretic Properties (5)

Theorem (Next Arc)

If (i, j = i, k) is the first voxel of Ai, then the first voxel of Ai+1 is
(i + 1, i + 1, k − d), where d ∈ {∅, 0, 1, 2} is given as follows.

Interval i < k − 2 i = k − 2 i = k − 1
K0 0 0 ∅
K−1 1 ∅, 1 ∅
K−2 2 ∅ ∅
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Algorithm LS3 (1)

Algorithm 1: LS3 (r)

1 int i← j← 0, k← k0 ← r, s← s0 ← 0, v← v0 ← r − 1, l← l0 ← 2v0

2 voxel set S← {}
3 while i 6 k do B arc generator

4 while j 6 k do B voxel generator

5 if s > v then B d = 1 (Theorem 23)

6 k← k − 1, v← v + l, l← l− 2 B Theorem 22
7 if ((j 6 k) ∧ ((s 6= v) ∨ (j 6= k)) then B Lattice Sphere Thm

8 S← S ∪ {(i′, j′, k′) : {|i′|} ∪ {|j′|} ∪ {|k′|} = {i, j, k}}
9 s← s + 2j + 1, j← j + 1

10 s0 ← s0 + 4i + 2, i← i + 1
11 while (s0 > v0) ∧ (i 6 k0) do B next arc init (Theorem 24)

12 k0 ← k0 − 1, v0 ← v0 + l0, l0 ← l0 − 2 B Theorem 22

13 j← i, k← k0, v← v0, l← l0, s← s0

14 return S
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Algorithm LS3 (2)

And so the lattice spheres are produced...
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Techniques

Algorithm Principle PR PL IntOp

Montani-Scopigno, 1990 [7] Incremental No No Yes

Andres, 1994 [1] Incremental No Yes Yes

Andres-Jacob, 1997 [2] Incremental No Yes No

Roget-Sitaraman, 2013 [8] Incremental No No Yes

Toutant et al., 2013 [9] Morphology No No No

Biswas-Bhowmick, 2015 [5] N.T.a No No Yes

Biswas-Bhowmick, 2015 [3] N.T.b Yes Yes Yes

PR = print by run; PL = print by layer; IntOp = based on integer operations;
N.T. = based on elementary number-theoretic properties.

aFrom Prima Quadraginta Octant to Lattice Sphere through Primitive Integer Operations,
Theoretical Computer Science (in press), 2015 (doi: http://dx.doi.org/10.1016/
j.tcs.2015.11.018)

bLayer the sphere, The Visual Computer 31: 787–797, 2015
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Spherical Shell (1)

d⊥(p,W) > ½
d⊥(p,W) < ½ 

d⊥(p,W) = 0
d⊥(p,W) < ½
d⊥(p,W) > ½

r1

r2

W

For a spherical shell W, the voxel set is
S =

{
p : 0 6 d⊥(p,W) < 1

2

}
.
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Demo: SPHEREBY48SYM(r1 = 7, r2 = 10)

i = 0, j = 0
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Demo: SPHEREBY48SYM(r1 = 7, r2 = 10)

i = 0, j = 1
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Demo: SPHEREBY48SYM(r1 = 7, r2 = 10)

i = 0, j = 2
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Demo: SPHEREBY48SYM(r1 = 7, r2 = 10)

i = 0, j = 3
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Demo: SPHEREBY48SYM(r1 = 7, r2 = 10)

i = 0, j = 4
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Demo: SPHEREBY48SYM(r1 = 7, r2 = 10)

i = 0, j = 7
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Demo: SPHEREBY48SYM(r1 = 7, r2 = 10)

i = 1, j = 4
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Demo: SPHEREBY48SYM(r1 = 7, r2 = 10)

i = 1, j = 7
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Demo: SPHEREBY48SYM(r1 = 7, r2 = 10)

i = 2, j = 7
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Demo: SPHEREBY48SYM(r1 = 7, r2 = 10)

i = 3, j = 6
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Demo: SPHEREBY48SYM(r1 = 7, r2 = 10)

i = 4, j = 6
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Demo: SPHEREBY48SYM(r1 = 7, r2 = 10)

End
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Demo: LAYERTHESPHERE(r1 = 7, r2 = 10)

k = −10
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Demo: LAYERTHESPHERE(r1 = 7, r2 = 10)

k = −9
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Demo: LAYERTHESPHERE(r1 = 7, r2 = 10)

k = −8
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Demo: LAYERTHESPHERE(r1 = 7, r2 = 10)

k = −7
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Demo: LAYERTHESPHERE(r1 = 7, r2 = 10)

k = −6
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Demo: LAYERTHESPHERE(r1 = 7, r2 = 10)

k = −5
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Demo: LAYERTHESPHERE(r1 = 7, r2 = 10)

k = −4
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Demo: LAYERTHESPHERE(r1 = 7, r2 = 10)

k = −3

Partha Bhowmick From circle to sphere and to related problems in the digital space



Circle Circularity Sphere Geodesics Conclusion Ref Models Naive Properties LS3 Techniques Shell

Demo: LAYERTHESPHERE(r1 = 7, r2 = 10)

k = −2
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Demo: LAYERTHESPHERE(r1 = 7, r2 = 10)

k = 10 (end)
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Spherical Geodesics
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Spherical Geodesics [4]

Q1

Q2
Q3

Q4

Q5Q6

Q1

Q2
Q3

Q4

Q5Q6

s

t

s

t

r = 12, s = (10,−2, 6) ∈ Q15, t = (−3, 10, 6) ∈ Q12.
Naive sphere, Standard plane =⇒ Class NS (l = 1)a

aR. Biswas and P. Bhowmick, On different topological classes of spherical geodesic paths
and circles in Z3, Theoretical Computer Science 605:146–163, 2015.
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DSGP Topological Classes (1)

Naive model Standard model
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DSGP Topological Classes (2)

NN) Naive-naive (m = 1, n = 1)

NS) Naive-standard (m = 1, n = 2)

SN) Standard-naive (m = 2, n = 1)

SS) Standard-standard (m = 2, n = 2)

Example: r = 17, s = (−6,−1, 16), t = (2, 14, 10).

NN (1, 1) NS (1, 2) SN (2, 1) SS (2, 2)
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DSGP Topological Classes (3)

NN (1, 1)
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DSGP Topological Classes (4)

NS (1, 2)
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DSGP Topological Classes (5)

SN (2, 1)
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DSGP Topological Classes (6)

SS (2, 2)
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DSGP Topological Classes (7)

Theorem (Class Bounds)

The respective upper bounds of the isothetic distance of the DSGP
π

(l)
m,n(s, t) from the real sphere S and of that from the real plane

ΠRr (s, t) for classes NS, SN, and SS are as follows.

max
p∈π(l)

m,n(s,t)
{d⊥(p, S)}





< 1
2 if l ∈ {0, 1},m = 1, n = 2

6 2 if l ∈ {0, 1},m = 2, n = 1
6 2 if l ∈ {0, 1, 2},m = 2, n = 2

max
p∈π(l)

m,n(s,t)
{d⊥(p,ΠRr (s, t))}





6 3
2 if l ∈ {0, 1},m = 1, n = 2

6 1
2 if l ∈ {0, 1},m = 2, n = 1

6 3
2 if l ∈ {0, 1, 2},m = 2, n = 2
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DSGP Topological Classes (8)

NS (l = 0) : 16
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DSGP Topological Classes (9)

NS (l = 1) : 19
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DSGP Topological Classes (10)

SN SN SS SS SS
(l = 1) : 16 (l = 1) : 19 (l = 0) : 16 (l = 1) : 18 (l = 2) : 30

Different classes of DSGP (red voxels)
(r = 17, s = (−6,−1, 16), t = (2, 14, 10))
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DSGP Topological Classes (11)

NS(l = 1), r = 30
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DSGP Topological Classes (12)

NS(l = 0), r = 30
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Open Problems (1)

Discrete 3D circles—maximum symmetry + minimum
length-and-deviation.

NS (0, 1, 2) : 90 vox NS (1, 1, 2) : 102 vox
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Open Problems (2)

Voxel strengthening—for improved 3D printing, by reshaping
voxel as truncated tetrahedron, octahedron, sphere, or even Great
Invention Kit (GIKs) [6].
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Open Problems (3)

A microscopic view of rounded crystals
produced by the scientists for 3d-printing
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Open Problems (4)

iso-contours, geodesic distance query—as in 3D real space
[10, 11].

Rational specification—characterization and algorithm.
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Thank You
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