From circle to sphere and to related problems in the digital space

Partha Bhowmick
Associate Professor
Department of Computer Science and Engineering IIT Kharagpur

Circle Construction

Construction by Digitization

This is \mathbb{Z}^{2} — an infinite set of 2 D integer points

Construction by Digitization

This is a real circle (integer center, radius 14)

Construction by Digitization

This is the digital circle (integer center, radius 14)

Construction by Digitization

Construction by Digitization

Construction by Digitization

Construction by Digitization

Construction by Digitization

Algorithm	Inventors	Year
Incremental	Bresenham	1977
Optimized midpoint	Foley et al.	1993
Short run	Hsu et al.	1993
Hybrid run slice	Yao \& Rokne	1995
Number theory		
	Bhowmick \& Bhattacharya	2008

${ }^{a}$ P. Bhowmick and B. B. Bhattacharya,
Number-theoretic interpretation and construction of a digital circle,
Discrete Applied Mathematics, 156:2381-2399, 2008.

Octant Property

\#permutations of (i, j) including sign $=2 \times 2^{2}=8$.

Number-theoretic Properties

A simple question: What's the pattern here? (Disregard the 1st line)
0, 13
14, 39
40, 63
64, 85
86,105

Number-theoretic Properties

A simple question: What's the pattern here? (Disregard the 1st line)

0,13	length
14,39	$\longrightarrow 26$
40,63	$\longrightarrow 24$
64,85	$\longrightarrow 22$
86,105	$\longrightarrow 20$

Number-theoretic Properties

A simple question: What's the pattern here? (Disregard the 1st line)
$\left.\begin{array}{r}\begin{array}{r}0,13 \\ 14,39\end{array} \rightarrow 26 \\ 40,63 \longrightarrow 24 \\ 64,85 \longrightarrow 22 \\ 86,105 \longrightarrow 20\end{array}\right\} \rightarrow-2$

Number-theoretic Properties

A simple question: What's the pattern here? (Disregard the 1st line)
$\left.\begin{array}{r}\begin{array}{r}0,13 \\ 14,39\end{array} \rightarrow 26 \\ 40,63 \longrightarrow 24 \\ 64,85 \rightarrow 22 \\ 86,105 \longrightarrow-20\end{array}\right\} \rightarrow-2$

Number-theoretic Properties

A simple question: What's the pattern here? (Disregard the 1st line)
\(\left.\left.$$
\begin{array}{r}\begin{array}{r}0,13 \\
14,39\end{array}
$$ \rightarrow 26

40,63 \longrightarrow 24

64,85 \longrightarrow 22

86,105 \longrightarrow-20\end{array}\right\} \longrightarrow-2 $$
\begin{array}{l}\rightarrow-2\end{array}
$$\right\}\)| This is how we get |
| :---: |
| the digital circle for |
| $r=14$ |

Number-theoretic Properties

A simple question: What's the pattern here? (Disregard the 1st line)

Number-theoretic Properties

A simple question: What's the pattern here? (Disregard the 1st line)

Number-theoretic Properties

A simple question: What's the pattern here? (Disregard the 1st line)

Theorem I_{k} contains the x^{2} of the points at k th run.

Number-theoretic Properties

Algorithm DCS (int r)

$$
\begin{aligned}
& k=0:[0, r-1]=[0,13] \Rightarrow 4 \\
& k=1:[r, 3 r-3]=[14,39] \Rightarrow 3 \\
& k=2:[3 r-2,5 r-7]=[40,63] \Rightarrow 1 \\
& k=3:[5 r-6,7 r-13]=[64,85] \Rightarrow 2 \\
& k=4:[7 r-12,9 r-21]=[86,105] \Rightarrow 1
\end{aligned}
$$

More number-theoretic properties

A simple observation

Let u, v, w be three positive integers in increasing order such that $w-v=v-1-u$.
Let
$s[u, v-1]=$ \#squares in $[u, v-1]$,
$s[v, w]=$ \#squares in $[v, w]$.
Then can $s[v, w]>s[u, v-1]$? If so, by how much?

More number-theoretic properties

More number-theoretic properties

More number-theoretic properties

Lemma

For $u<v<w$ and $w-v=v-1-u, s[v, w] \leqslant s[u, v-1]+1$.

Hence, a useful result:

For $u<v<w$ and $w-v=v-u-3, s[v, w] \leqslant s[u, v-1]+1$.
And so the theorem follows in next slide!

More number-theoretic properties

Theorem (Upper bound of run length (λ))

$\lambda(j-1) \leqslant \lambda(j)+1$.

More number-theoretic properties

Lemma
For $u<v<w$ and $w-v=v-1-u, s[v, w] \geqslant\left\lfloor\frac{s[u, v-1]-1}{2}\right\rfloor$.
And so the theorem follows in next slide!

More number-theoretic properties

Theorem (Lower bound of run length (λ))

$\lambda(j-1) \geqslant\left\lfloor\frac{\lambda(j)-1}{2}\right\rfloor-1$

More number-theoretic properties

Constructive bounds

$$
\left\lfloor\frac{\lambda(j)-1}{2}\right\rfloor-1 \leqslant \lambda(j-1) \leqslant \lambda(j)+1
$$

Algorithm DCR

Demonstration of DCR for $r=106$.

Algorithm DCR: Square search

```
Algorithm DCR (int \(r\) ) \{
1. int \(i=0, j=r, w=r-1, m\);
2. int \(s=0, t=r, l=w \ll 1\);
3. while \((j \geqslant i)\) \{
4. \(\quad\) while \((s<t)\{\)
5. \(\quad m=s+t\);
6. \(\quad m=m \gg 1\);
7. \(\quad\) if \((w \leqslant\) square \([m])\)
8. \(\quad t=m\);
9. else
10. \(\quad s=m+1 ;\}\)
11. if \((w<\) square \([s])\)
    \(s\) - -
13. \(s++\);
14. include_run \((i, s-i, j)\);
15. \(t=s+s-i+1\);
16. \(\quad i=s\);
17. \(w=w+l\);
18. \(\quad l=l-2\);
19. \(j--;\}\}\)
```


Hybrid algorithm DCH

```
Algorithm DCH (int \(r\), int \(p\) ) \{
1. int \(i=0, j=r, w=r-1, m\);
2. int \(s=0, t=r, l=w \ll 1\);
3. while \((j \geqslant i)\) \{
4. while \((s<t)\) \{
5. \(m=s+t\);
6. \(m=m \gg 1\);
7. \(\quad\) if \((w \leqslant\) square \([m])\)
\(t=m\);
    else
        \(s=m+1 ;\}\)
    if \((w<\) square \([s])\)
        \(s-\);
        \(s++;\)
14. include_run \((i, s-i, j)\);
15. if \((s-i<p)\)
16. break;
17. \(t=s+s-i+1\);
18. \(i=s\);
19. \(w=w+l\);
20. \(l=l-2\);
21. \(j--;\}\)
```

22. $i=s-1$;
23. $s=$ square $[s]$;
24. $w=w+l$;
25. $l=l-2$;
26. $j--$;
27. while $(j \geqslant i)$ \{
28. do $\left\{s y m _8(i, j)\right.$;
29. $s=s+i$;
30. $i++$;
31. $s=s+i$; $\}$ while $(s \leqslant w)$;
32. $w=w+l$;
33. $l=l-2$;
34. $j--;\}\}$

Test Results...

DCB

Test Results...

DCR

Test Results...

DCH

Digital Circularity

Problem Statement

Does there exist a real circle (integer radius \& center) such that each point of the given sequence lies within a distance of $\frac{1}{2}$ from it?

Problem Statement

47 is far from true.
Seems, it will be much larger! But how large? And how to get it?

Problem Statement

170 is the solution!
How to get it very fast, using simple arithmetic (no trigonometry etc.)?

Conflicting Radii

$r \in[26,36]$

Conflicting Radii

Lemma

λ_{0} is the length of top run of a digital circle $\mathcal{C}^{\mathbb{Z}}(o, r)$ iff $r \in R_{0}:=\left[\left(\lambda_{0}-1\right)^{2}+1, \lambda_{0}^{2}\right]$.

Conflicting Radii

$$
r \in[26,27]
$$

Conflicting Radii

Conflicting Radii

Radii Nesting

Radii Nesting

Lemma

λ_{0} and λ_{1} are the lengths of top two runs of $\mathcal{C}^{\mathbb{Z}}(o, r)$ iff $r \in R_{0} \cap R_{1}$, where, $R_{1}=\left[\left[\frac{\left(\Lambda_{1}-1\right)^{2}+3}{3}\right\rceil,\left\lfloor\frac{\Lambda_{1}^{2}+2}{3}\right\rfloor\right], \Lambda_{1}=\lambda_{0}+\lambda_{1}$.
(If $R_{0} \cap R_{1}=\emptyset$, then there exists no digital circle ... λ_{0} and λ_{1}.)

Radii Nesting

Theorem (Radii interval)

$\left\langle\lambda_{0}, \ldots, \lambda_{n}\right\rangle$ is the sequence of top $n+1$ run-lengths of $\mathcal{C}^{\mathbb{Z}}(o, r)$ iff

$$
r \in \bigcap_{k=0}^{n} R_{k}
$$

where,

$$
R_{k}=\left[\left\lceil\frac{1}{2 k+1}\left(\left(\Lambda_{k}-1\right)^{2}+k(k+1)+1\right)\right\rceil,\left\lfloor\frac{1}{2 k+1}\left(\Lambda_{k}^{2}+k(k+1)\right)\right]\right]
$$

and

$$
\Lambda_{k}=\sum_{j=0}^{k} \lambda_{j}
$$

(If $\bigcap^{n} R_{k}=\emptyset$, then there exists no digital circle whose top $n+1$ runs have length $k=0$
$\left\langle\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right\rangle$.)

Algorithm DCT

1. $\Lambda \leftarrow S[0]$
2. $\left[r^{\prime}, r^{\prime \prime}\right] \leftarrow\left[(\Lambda-1)^{2}+1, \Lambda^{2}\right]$
3. for $k \leftarrow 1$ to $n-1$
4. $\quad \Lambda \leftarrow \Lambda+S[k]$
5. $s^{\prime} \leftarrow\left\lceil\left((\Lambda-1)^{2}+k(k+1)+1\right) /(2 k+1)\right\rceil$
6. $s^{\prime \prime} \leftarrow\left\lfloor\left(\Lambda^{2}+k(k+1)\right) /(2 k+1)\right\rfloor$
7. if $s^{\prime \prime}<r^{\prime}$ or $s^{\prime}>r^{\prime \prime}$
8. print " S is circular up to $(k-1)$ th run for $\left[r^{\prime}, r^{\prime \prime}\right]$."
9.

return
10. else
11. $\quad\left[r^{\prime}, r^{\prime \prime}\right] \leftarrow\left[\max \left(r^{\prime}, s^{\prime}\right), \min \left(r^{\prime \prime}, s^{\prime \prime}\right)\right]$
12. print " S is circular in entirety for $\left[r^{\prime}, r^{\prime \prime}\right]$."

Conflicting Radii: Resolved how fast?

Circle Circularity Sphere Geodesics Conclusion Ref \quad Properties DCT DCG Segmentation
Conflicting Radii: Resolved how fast?
Conflicting radii starting from $k=0$

Conflicting Radii: Resolved how fast?

Resolving the conflicting radii r^{\prime} with increasing k

$k=1$

Conflicting Radii: Resolved how fast?

Resolving the conflicting radii r^{\prime} with increasing k

$k=2$

Conflicting Radii: Resolved how fast?

Resolving the conflicting radii r^{\prime} with increasing k

$k=3$

Conflicting Radii: Resolved how fast?

Resolving the conflicting radii r^{\prime} with increasing k

$k=4$

General Case \& DCG

Lemma

If a digital circle of radius r contains a given run of length λ, then there exist two positive integers a and k such that
$r \geqslant\left\lceil\max \left(f_{1, \lambda}(a, k), f_{2, \lambda}(a, k)\right)\right\rceil$, where

$$
f_{1, \lambda}(a, k)=\frac{(a-1)^{2}+k(k-1)+1}{2 k-1}
$$

and

$$
f_{2, \lambda}(a, k)=\frac{(a+\lambda-1)^{2}+k(k+1)+1}{2 k+1} .
$$

General Case \& DCG

Lemma

If a digital circle of radius r contains a given run of length λ, then there exist two positive integers a and k such that
$r \leqslant\left\lfloor\min \left(f_{3, \lambda}(a, k), f_{4, \lambda}(a, k)\right)\right\rfloor$, where

$$
f_{3, \lambda}(a, k)=\frac{a^{2}+k(k-1)}{2 k-1}
$$

and

$$
f_{4, \lambda}(a, k)=\frac{(a+\lambda)^{2}+k(k+1)}{2 k+1} .
$$

General Case \& DCG

Theorem

An arbitrary run of given length λ belongs to only those digital circles whose radii are in the range

$$
\mathcal{R}_{a k}=\begin{array}{ll}
\left\{r \mid r \geqslant\left[\max _{a, k \in \mathbb{Z}^{+}}\left(f_{1, \lambda}(a, k), f_{2, \lambda}(a, k)\right) \mid\right\}\right. \\
& \left\{r \mid r \leqslant\left\lfloor\min _{a, k \in \mathbb{Z}^{+}}\left(f_{3, \lambda}(a, k), f_{4, \lambda}(a, k)\right)\right\rfloor\right\} .
\end{array}
$$

General Case \& DCG

General Case \& DCG

Points of intersection (in \mathbb{R}^{2}) among the parabolas
$\left\{f_{i, \lambda} \mid i=1,2,3,4\right\}$ defining $\mathcal{R}_{a k}$.

$$
(\underline{k}=2 k-1, \bar{k}=2 k+1, \underline{\hat{k}}=k(k-1), \hat{\bar{k}}=k(k+1), \underline{\lambda}=\lambda-1)
$$

Parabolas		Point	Abscissa of the point
$f_{1, \lambda}$	$f_{2, \lambda}$	α_{12}	$\frac{1}{2}\left(\underline{k} \lambda+\sqrt{(\underline{k} \lambda+2)^{2}+2\left(\underline{k} \lambda^{2}+2 \underline{\hat{k}}-3\right)}+2\right)$
$f_{2, \lambda}$	$f_{3, \lambda}$	α_{23}	$\frac{1}{2}\left(\underline{k} \underline{\lambda}+\sqrt{(\underline{k} \lambda)^{2}+2\left(\underline{k} \lambda^{2}+2 \hat{\bar{k}}-1\right)}\right)$
$f_{3, \lambda}$	$f_{4, \lambda}$	α_{34}	$\frac{1}{2}\left(\underline{k} \lambda+\sqrt{(\underline{k} \lambda)^{2}+2\left(\underline{k} \lambda^{2}+2 k^{2}\right)}\right)$
$f_{4, \lambda}$	$f_{1, \lambda}$	α_{41}	$\frac{1}{2}\left(\underline{k} \lambda+\bar{k} \pm \sqrt{(\underline{k} \lambda+\bar{k})^{2}+2\left(\underline{k} \lambda^{2}+2 \underline{\hat{k}}-\bar{k}-1\right)}\right)$

General Case \& DCG

Specifications of the parabolas $\left\{f_{i, \lambda} \mid i=1,2,3,4\right\}$.

Parabola	Axis	Directrix	Length of Latus Rectum	Vertex	Focus
$f_{1, \lambda}$	$x=1$	$\underline{k} y=3 / 4$	\underline{k}	$(1,(\underline{\hat{k}}+1) / \underline{k})$	$(1,(8 \hat{\bar{k}}+5) /(4 \underline{k}))$
$f_{2, \lambda}$	$x=-\underline{\lambda} \bar{k} y=3 / 4$	\bar{k}	$(-\underline{\lambda},(\hat{\bar{k}}+1) / \bar{k})$	$(-\underline{\lambda},(8 \hat{k}+5) /(4 \bar{k}))$	
$f_{3, \lambda}$	$x=0$	$\underline{k} y=-1 / 4$	\underline{k}	$(0,(\hat{k}) / \underline{k})$	$(0,(8 \hat{\bar{k}}+1) /(4 \underline{k}))$
$f_{4, \lambda}$	$x=-\lambda \bar{k} y=-1 / 4$	\bar{k}	$(-\lambda, \hat{\bar{k}} / \bar{k})$	$(-\lambda,(8 \underline{\hat{k}}+1) /(4 \bar{k}))$	

General Case \& DCG

Specifications of the parabolas $\left\{f_{i, \lambda} \mid i=1,2,3,4\right\}$.
Points of intersection (in \mathbb{R}^{2}) among the parabolas $\left\{f_{i, \lambda}: i=1,2,3,4\right\}$ defining $\mathcal{R}_{a k}$.
To obtain the value of $\left\{\alpha_{i j} \mid j=(i \bmod 4)+1, i=1,2,3,4\right\}$, we have solved the following quadratic equations in a. Out of the two values of a obtained, say $a=C \pm \sqrt{D}$, we define α as $C+\sqrt{D}$.

$$
\begin{aligned}
\alpha_{23}: & \frac{(a+\lambda-1)^{2}+k(k+1)+1}{2 k+1}=\frac{a^{2}+k(k-1)}{2 k-1} \\
& \text { or, }(2 k-1)\left(a^{2}+2(\lambda-1) a+(\lambda-1)^{2}+k(k+1)+1\right)=(2 k+1)\left(a^{2}+k(k-1)\right) \\
& \text { or, } 2 a^{2}-2(2 k-1)(\lambda-1) a-(2 k-1)(\lambda-1)^{2}-2 k^{2}-2 k+1=0 \\
& \text { or, } a=\frac{1}{2}\left((2 k-1)(\lambda-1) \pm \sqrt{(2 k-1)^{2}(\lambda-1)^{2}+2\left((2 k-1)(\lambda-1)^{2}+2 k^{2}+2 k-1\right)}\right) \\
& \text { or, } \alpha_{23}=\frac{1}{2}\left((2 k-1)(\lambda-1)+\sqrt{(2 k-1)^{2}(\lambda-1)^{2}+2\left((2 k-1)(\lambda-1)^{2}+2 k^{2}+2 k-1\right)}\right) . \\
\alpha_{12}: & \frac{(a-1)^{2}+k(k-1)+1}{2 k-1}=\frac{(a+\lambda-1)^{2}+k(k+1)+1}{2 k+1} \\
& \text { or, }(2 k+1)\left((a-1)^{2}+k(k-1)+1\right)=(2 k-1)\left((a+\lambda-1)^{2}+k(k+1)+1\right) \\
& \text { or, } 2 a^{2}-2((2 k-1) \lambda+2) a-(2 k-1)(\lambda-1)^{2}-2 k^{2}+2 k+3=0 \\
& \text { or, } a=\frac{1}{2}\left((2 k-1) \lambda+2 \pm \sqrt{((2 k-1) \lambda+2)^{2}+2\left((2 k-1)(\lambda-1)^{2}+2 k^{2}-2 k-3\right)}\right) \\
& \text { or, } \alpha_{12}=\frac{1}{2}\left((2 k-1) \lambda+2+\sqrt{((2 k-1) \lambda+2)^{2}+2\left((2 k-1)(\lambda-1)^{2}+2 k^{2}-2 k-3\right)}\right) .
\end{aligned}
$$

General Case \& DCG

```
\(\alpha_{41}: \quad \frac{(a+\lambda)^{2}+k(k+1)}{2 k+1}=\frac{(a-1)^{2}+k(k-1)+1}{2 k-1}\)
or, \((2 k-1)\left((a+\lambda)^{2}+k(k+1)\right)=(2 k+1)\left((a-1)^{2}+k(k-1)+1\right)\)
or, \(2 a^{2}-2(2 k(1+\lambda)-\lambda+1) a-(2 k-1) \lambda^{2}-2 k^{2}+4 k+2=0\)
or, \(a=\frac{1}{2}\left((2 k-1) \lambda+2 k+1 \pm \sqrt{((2 k-1) \lambda+2 k+1)^{2}+2\left((2 k-1) \lambda^{2}+2 k^{2}-4 k-2\right)}\right)\)
or, \(\alpha_{41}=\frac{1}{2}\left((2 k-1) \lambda+2 k+1+\sqrt{((2 k-1) \lambda+2 k+1)^{2}+2\left((2 k-1) \lambda^{2}+2 k^{2}-4 k-2\right)}\right)\).
\(\alpha_{34}: \frac{a^{2}+k(k-1)}{2 k-1}=\frac{(a+\lambda)^{2}+k(k+1)}{2 k+1}\)
or, \((2 k+1)\left(a^{2}+k(k-1)\right)=(2 k-1)\left((a+\lambda)^{2}+k(k+1)\right)\)
or, \(2 a^{2}-2(2 k-1) \lambda-(2 k-1) \lambda^{2}-2 k^{2}=0\)
or, \(a=\frac{1}{2}\left((2 k-1) \lambda \pm \sqrt{(2 k-1)^{2} \lambda^{2}+2\left((2 k-1) \lambda^{2}+2 k^{2}\right)}\right)\)
or, \(\alpha_{34}=\frac{1}{2}\left((2 k-1) \lambda+\sqrt{(2 k-1)^{2} \lambda^{2}+2\left((2 k-1) \lambda^{2}+2 k^{2}\right)}\right)\).
```

1. $n_{\text {max }} \leftarrow 0$
2. for $k^{\prime} \leftarrow k_{\text {min }}$ to $k_{\text {max }}$
3. $\quad \Lambda \leftarrow S[0], i \leftarrow 0$
4. $\operatorname{Find}-\operatorname{Params}\left(A, \Lambda, k^{\prime}\right)$
5. while $i<m$ and $n_{\max }<n \triangleright$ for all a 's of first run
6. $\left[s^{\prime}, s^{\prime \prime}\right] \leftarrow\left[r^{\prime}, r^{\prime \prime}\right] \leftarrow[A[i][1], A[i][2]]$
7.
8.
9.

$\Lambda \leftarrow A[i][0]+S[0], j \leftarrow 1$
while $j<n$ and $s^{\prime \prime} \geqslant r^{\prime}$ and $s^{\prime} \leqslant r^{\prime \prime} \triangleright$ verifying other $n-1$ runs

$$
\Lambda \leftarrow \Lambda+S[j], k \leftarrow k^{\prime}+j
$$

10.

$$
s^{\prime} \leftarrow\left\lceil\frac{(\Lambda-1)^{2}+k(k+1)+1}{2 k+1}\right\rceil, s^{\prime \prime} \leftarrow\left\lfloor\frac{\Lambda^{2}+k(k+1)}{2 k+1}\right\rfloor
$$

11.

$$
\text { if } s^{\prime \prime} \geqslant r^{\prime} \text { and } s^{\prime} \leqslant r^{\prime \prime}
$$

$$
\left[r^{\prime}, r^{\prime \prime}\right] \leftarrow\left[\max \left(r^{\prime}, s^{\prime}\right), \min \left(r^{\prime \prime}, s^{\prime \prime}\right)\right]
$$

13.
14.

if $n_{\text {max }}<j$

$$
n_{\max } \leftarrow j, k_{\text {off }} \leftarrow k^{\prime},\left[r_{\min }, r_{\max }\right] \leftarrow\left[r^{\prime}, r^{\prime \prime}\right]
$$

15. print " S is circular for $n_{\max }$ runs; starting run $=k_{\text {off }} ; r \in\left[r_{\min }, r_{\max }\right]$."

Procedure Find-PaRams

1. Compute $\left\{\alpha_{u v} \mid 1 \leqslant u \leqslant 4 \wedge v=(u+1) \bmod 4\right\} \triangleright$ (from Tables)
2. $i \leftarrow 0$
3. \quad for $a \leftarrow\left\lceil\alpha_{23}\right\rceil$ to $\left\lfloor\alpha_{41}\right\rfloor$
4. $\quad A[i][0] \leftarrow a \triangleright$ computing r^{\prime}
5. \quad if $a<\alpha_{12}$
6. $A[i][1] \leftarrow\left\lceil f_{2, \lambda}(a, k)\right\rceil$
7. else
8. $A[i][1] \leftarrow\left\lceil f_{1, \lambda}(a, k)\right\rceil \triangleright$ computing $r^{\prime \prime}$
9. if $a<\alpha_{34}$
10. $A[i][2] \leftarrow\left\lfloor f_{3, \lambda}(a, k)\right\rfloor$
11. else
12. $A[i][2] \leftarrow\left\lfloor f_{4, \lambda}(a, k)\right\rfloor$
13. $\quad i \leftarrow i+1$
14. $m \leftarrow i$

Find-Params on a run-length 7:
Solution space $\mathcal{R}_{a k}$ of the radius intervals $\left\{\left[r_{j}^{\prime}, r_{j}^{\prime \prime}\right] \mid j=0,1,2\right\}$ corresponding to $m=3$ square numbers lying in $\left[\left\lceil\alpha_{23}\right\rceil^{2},\left\lfloor\alpha_{41}\right\rfloor^{2}\right]=\left[9^{2}, 11^{2}\right]$.

Arc Segmentation

Arc Segmentation

Algorithm	Inventors	Year
Hough transform Davies 1984, Illingworth \& Kittler 1988, Yip et al. 1992, Chen \& Chung 2001, Kim \& Kim 2005, Chiu \& Liaw 2005,...		
Voronoi diagram	Coeurjolly et al.	2004
Chord \& Sagitta	Bera, Bhowmick \& Bhattacharya	2010
Discrete Curvature a	Pal, Dutta \& Bhowmick	2012
Number Theory b	Pal \& Bhowmick	2012
Number Theory \& Graph Theory ${ }^{c}$ Bhowmick \& Pal	2014	

[^0]

Circle Circularity Sphere Geodesics Conclusion Ref Properties DCT DCG Segmentation

Discretization of Sphere

Lattice, cells, voxels, adjacency

Lattice, cells, voxels, adjacency

lattice point (integer coordinates)

3-cell (voxel)

Discretization Models (general surface)

naive

Discretization Models

naive

Discretization Models

naive

no 2-path

Discretization Models

naive

no 2-path

1-path

Discretization Models

naive

no 2-path

1-path

standard

Discretization Models

naive

.

no 2-path

1-path

standard

Discretization Models

naive

-

no 2-path

no 0-path

Discretization Models

naive

no 2-path

1-path

standard

no 0-path

$$
\text { Naive }=2-\text { minimal } . \text { Standard }=0-\text { minimal } .
$$

Naive Sphere

Problem Statement: Given integer radius and integer center ${ }^{1}$, construct the naive sphere whose every voxel is non-redundant and lies as much close as possible to the real sphere.
${ }^{1}$ w.l.o.g., center $=(0,0,0)$

Non-redundant

Isothetic distance

To formalize "as much close as possible to the real sphere", we define $d_{\perp}(p, S)=\min \left\{d_{x}(p, S), d_{y}(p, S), d_{z}(p, S)\right\}$.

Discretization Models

Real plane $\Pi(a, b, c, \mu): a x+b y+c z=\mu$.
Digital plane
$\Pi^{\mathbb{Z}}(a, b, c, \mu, \omega)=\left\{(i, j, k) \in \mathbb{Z}^{3}: \mu-\frac{\omega}{2} \leqslant a i+b j+c k<\mu+\frac{\omega}{2}\right\}$, which is of thickness ω and centered on Π.

Example: $6 x+13 y+27 z=0$

$$
\omega=15
$$

$\omega=27$

$\omega=46$

Discretization Models

under-digitized	naive	standard
$\omega<\max (\|a\|,\|b\|,\|c\|)$	$\omega=\max (\|a\|,\|b\|,\|c\|)$ ω 2-minimal	$\omega\|a\|+\|b\|+\|c\|$ \Leftrightarrow-minimal

Example: $6 x+13 y+27 z=0$

Discretization Models

Lemma

For a point $p=(i, j, k)$ and a real plane $\Pi: a x+b y+c z=0$, $d_{\perp}(p, \Pi)=\frac{|a i+b j+c k|}{\max (|a|,|b|,|c|)}$.

Theorem (Point-to-Plane Distance ${ }^{a}$)

$d_{\perp}\left(p, \Pi_{r}^{\mathbb{R}}(s, t)\right) \leqslant\left\{\begin{array}{ll}\frac{1}{2} & \forall p \in \Pi_{1}^{\mathbb{Z}}(s, t)\end{array} \leftarrow\right.$ naive,$~\left(\frac{3}{2} \quad \forall p \in \Pi_{2}^{\mathbb{Z}}(s, t) \quad \leftarrow\right.$ standard

[^1]
Discretization Models

$$
\begin{aligned}
& p=(i, j, k) \in \mathbb{Z}^{3}, \\
& X=\{|i|,|j|,|k|\}, \\
& h=|i|+|j|+|k|, \\
& s=i^{2}+j^{2}+k^{2} .
\end{aligned}
$$

Theorem (Naive \& Standard Spheres)

$$
\begin{aligned}
& \mathbb{S}_{1}=\left\{\begin{aligned}
p \in \mathbb{Z}^{3}: & \left(r^{2}-\max (X) \leqslant s<r^{2}+\max (X)\right) \\
& \wedge\left(\left(s \neq r^{2}+\max (X)-1\right) \vee(\operatorname{mid}(X) \neq \max (X))\right)
\end{aligned}\right\} . \\
& \mathbb{S}_{2}=\left\{p \in \mathbb{Z}^{3}: r^{2}-h \leqslant s<r^{2}+h\right\} .
\end{aligned}
$$

Discretization Models (plane \& sphere)

naive

standard

Theorem (Point-to-Sphere Distance)

$d_{\perp}(p, S) \leqslant\left\{\begin{array}{lll}\frac{1}{2} & \forall p \in \mathbb{S}_{1} & \leftarrow \text { naive } \\ 2 & \forall p \in \mathbb{S}_{2} & \leftarrow \text { standard }\end{array}\right.$

Symmetry (quadraginta octants)

Symmetry

$\# \mathrm{q}$-octants $=$ \#permutations of $(\pm x, \pm y, \pm z)=3!\times 2^{3}=48$.

Symmetry

$$
r=15
$$

$\# \mathrm{q}$-octants $=$ \#permutations of $(\pm x, \pm y, \pm z)=3!\times 2^{3}=48$.

Symmetry

$$
r=15
$$

\#q-octants $=\#$ permutations of $(\pm x, \pm y, \pm z)=3!\times 2^{3}=48$.

Distance bound

Here $p=(i, j, k) \in \mathbb{Z}^{3}, s=i^{2}+j^{2}+k^{2}, X=\{|i|,|j|,|k|\}$.

Lemma (\mathbb{S}_{1}-to-S Distance)

$$
p \in \mathbb{S}_{1} \Longrightarrow d_{\perp}(p, S)=\left|k-\sqrt{r^{2}-\left(i^{2}+j^{2}\right)}\right| .
$$

Distance bound

Here $p=(i, j, k) \in \mathbb{Z}^{3}, s=i^{2}+j^{2}+k^{2}, X=\{|i|,|j|,|k|\}$.

Lemma (Supremum Distance)

$$
p \in \mathbb{S}_{1} \Longrightarrow d_{\perp}(p, S) \varsubsetneqq \frac{1}{2} .
$$

Properties \& Characterization

Here $p=(i, j, k) \in \mathbb{Z}^{3}, s=i^{2}+j^{2}+k^{2}, X=\{|i|,|j|,|k|\}$.

Lemma (Square Sum Interval)

$$
p \in \mathbb{S}_{1} \Longrightarrow s \in\left[r^{2}-k, r^{2}+k-1\right] .
$$

Properties \& Characterization

Here $p=(i, j, k) \in \mathbb{Z}^{3}, s=i^{2}+j^{2}+k^{2}, X=\{|i|,|j|,|k|\}$.

Theorem (Simple Voxel)

$p: d_{\perp}(p, S)<\frac{1}{2}$ is simple/redundant
$\Leftrightarrow\left(s=r^{2}+\max (X)-1\right) \wedge(\operatorname{mid}(X)=\max (X))$,
where mid denotes the median.

Properties \& Characterization

Here $p=(i, j, k) \in \mathbb{Z}^{3}, s=i^{2}+j^{2}+k^{2}, X=\{|i|,|j|,|k|\}$.

Theorem (Lattice Sphere)

$\mathbb{S}_{1}=\left\{\begin{aligned} p \in \mathbb{Z}^{3}: & \left(r^{2}-\max (X) \leqslant s<r^{2}+\max (X)\right) \\ & \wedge\left(\left(s \neq r^{2}+\max (X)-1\right) \vee(\operatorname{mid}(X) \neq \max (X))\right)\end{aligned}\right\}$.

Number-theoretic Properties

Lemma (Interval)

The interval $I_{n}=[(2 n-1) r-n(n-1),(2 n+1) r-n(n+1)-1]$ contains the sum of the squares of x - and y-coordinates of the voxels of \mathbb{S}_{1} whose z-coordinates are $r-n$, for $n \geqslant 1$.

Lemma (Interval Length)

The lengths of the intervals I_{n}, starting from I_{1}, decrease constantly by 2.

Number-theoretic Properties

Theorem (Interval Recurrence)

The sum of squares of x - and y-coordinates of voxels lying on \mathbb{S}_{1} and having z-coordinate $r-n$, lies in $I_{n}:=\left[u_{n}, v_{n}:=u_{n}+l_{n}-1\right]$, where

$$
\begin{align*}
& u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{n-1}+l_{n-1} & \text { otherwise } ;\end{cases} \tag{1}\\
& l_{n}= \begin{cases}r & \text { if } n=0 \\
2 r-2 & \text { if } n=1 \\
l_{n-1}-2 & \text { otherwise } .\end{cases} \tag{2}
\end{align*}
$$

Number-theoretic Properties

First q-octant of the naive sphere of $r=23$.

Number-theoretic Properties

Theorem (Next Voxel)

If (i, j, k) is the current voxel of A_{i}, then the next voxel of A_{i} is $(i, j+1, k-d)$, where $d \in\{\varnothing, 0,1\}$ is given as follows.

Interval	$j<k-1$	$j=k-1$
K_{0}	0	\varnothing
K_{-1}	1	\varnothing

Here, $d=\varnothing$ implies that there does not exist an appropriate value of d.

Number-theoretic Properties

Theorem (Next Arc)

If $(i, j=i, k)$ is the first voxel of A_{i}, then the first voxel of A_{i+1} is $(i+1, i+1, k-d)$, where $d \in\{\varnothing, 0,1,2\}$ is given as follows.

Interval	$i<k-2$	$i=k-2$	$i=k-1$
K_{0}	0	0	\varnothing
K_{-1}	1	$\varnothing, 1$	\varnothing
K_{-2}	2	\varnothing	\varnothing

Algorithm LS3

Algorithm 1: LS3 (r)

```
int \(i \leftarrow j \leftarrow 0, k \leftarrow k_{0} \leftarrow r, s \leftarrow s_{0} \leftarrow 0, v \leftarrow v_{0} \leftarrow r-1, l \leftarrow l_{0} \leftarrow 2 v_{0}\)
voxel set \(S \leftarrow\}\)
3 while \(i \leqslant k\) do \(\triangleright\) arc generator
while \(j \leqslant k\) do \(\triangleright\) voxel generator
if \(s>v\) then \(\triangleright d=1\) (Theorem 23)
\(k \leftarrow k-1, v \leftarrow v+l, l \leftarrow l-2 \triangleright\) Theorem 22
if \(T(j \leqslant k) \wedge((s \neq v) \vee(j \neq k))\) then \(\triangleright\) Lattice Sphere Thm
\(S \leftarrow S \cup\left\{\left(i^{\prime}, j^{\prime}, k^{\prime}\right):\left\{\left|i^{\prime}\right|\right\} \cup\left\{\left|j^{\prime}\right|\right\} \cup\left\{\left|k^{\prime}\right|\right\}=\{i, j, k\}\right\}\)
\(s \leftarrow s+2 j+1, j \leftarrow j+1\)
\(s_{0} \leftarrow s_{0}+4 i+2, i \leftarrow i+1\)
while \(\left(s_{0}>v_{0}\right) \wedge\left(i \leqslant k_{0}\right)\) do \(\triangleright\) next arc init (Theorem 24)
\(k_{0} \leftarrow k_{0}-1, v_{0} \leftarrow v_{0}+l_{0}, l_{0} \leftarrow l_{0}-2 \triangleright\) Theorem 22
\(j \leftarrow i, k \leftarrow k_{0}, v \leftarrow v_{0}, l \leftarrow l_{0}, s \leftarrow s_{0}\)
4 return \(S\)
```


Algorithm LS3

And so the lattice spheres are produced...

Techniques

Algorithm	Principle	PR	PL	IntOp
Montani-Scopigno, 1990 [7]	Incremental	No	No	Yes
Andres, 1994 [1]	Incremental	No	Yes	Yes
Andres-Jacob, 1997 [2]	Incremental	No	Yes	No
Roget-Sitaraman, 2013 [8]	Incremental	No	No	Yes
Toutant et al., 2013 [9]	Morphology	No	No	No
Biswas-Bhowmick, 2015 [5]	N.T. a	No	No	Yes
Biswas-Bhowmick, 2015 [3]	N.T. b	Yes	Yes	Yes
PR $=$ print by run; PL $=$ print by layer; IntOp $=$ based on N.T. $=$ integer operations;				

[^2]
Spherical Shell

For a spherical shell W, the voxel set is

$$
\mathbb{S}=\left\{p: 0 \leqslant d_{\perp}(p, W)<\frac{1}{2}\right\} .
$$

SPHEREB Y48S YM $\left(r_{1}=7, r_{2}=10\right)$

SPHEREB Y48SYM $\left(r_{1}=7, r_{2}=10\right)$

$\operatorname{SPHEREB} \mathrm{Y} 48 \mathrm{SYM}\left(r_{1}=7, r_{2}=10\right)$

SPHEREB Y48SYM $\left(r_{1}=7, r_{2}=10\right)$

SPHEREB Y48S YM $\left(r_{1}=7, r_{2}=10\right)$

SPHEREB Y48SYM $\left(r_{1}=7, r_{2}=10\right)$

SPHEREB Y48S YM $\left(r_{1}=7, r_{2}=10\right)$

SPHEREB Y48SYM $\left(r_{1}=7, r_{2}=10\right)$

End

$\operatorname{LAYERTHESPHERE}\left(r_{1}=7, r_{2}=10\right)$

$\operatorname{LAYERTHESPHERE}\left(r_{1}=7, r_{2}=10\right)$

$\operatorname{LAYERTHESPHERE}\left(r_{1}=7, r_{2}=10\right)$

$k=-8$

LAYERTHESPHERE $\left(r_{1}=7, r_{2}=10\right)$

LAYERTHESPHERE $\left(r_{1}=7, r_{2}=10\right)$

LAYERTHESPHERE $\left(r_{1}=7, r_{2}=10\right)$

$$
k=-5
$$

LAYERTHESPHERE $\left(r_{1}=7, r_{2}=10\right)$

$\operatorname{LAYERTHESPHERE}\left(r_{1}=7, r_{2}=10\right)$

$\operatorname{LAYERTHESPHERE}\left(r_{1}=7, r_{2}=10\right)$

LAYERTHESPHERE $\left(r_{1}=7, r_{2}=10\right)$

$$
k=10 \text { (end) }
$$

Spherical Geodesics

Spherical Geodesics [4]

$r=12, s=(10,-2,6) \in \mathrm{Q}_{15}, t=(-3,10,6) \in \mathrm{Q}_{12}$. Naive sphere, Standard plane \Longrightarrow Class NS $(l=1)^{a}$
a_{R}. Biswas and P. Bhowmick, On different topological classes of spherical geodesic paths and circles in \mathbb{Z}^{3}, Theoretical Computer Science 605:146-163, 2015.

DSGP Topological Classes

Naive model

Standard model

DSGP Topological Classes

NN) Naive-naive ($m=1, n=1$)
NS) Naive-standard $(m=1, n=2)$
SN) Standard-naive ($m=2, n=1$)
SS) Standard-standard $(m=2, n=2)$
Example: $r=17, s=(-6,-1,16), t=(2,14,10)$.

NN (1, 1)

NS (1, 2)

SN $(2,1)$

SS (2, 2)

DSGP Topological Classes

NN (1, 1)

DSGP Topological Classes

DSGP Topological Classes

SN $(2,1)$

DSGP Topological Classes

DSGP Topological Classes

Theorem (Class Bounds)

The respective upper bounds of the isothetic distance of the DSGP $\pi_{m, n}^{(l)}(s, t)$ from the real sphere S and of that from the real plane $\Pi_{r}^{\mathbb{R}}(s, t)$ for classes NS, SN, and SS are as follows.

$$
\max _{p \in \boldsymbol{\pi}_{m, n}^{(l)}(s, t)}\left\{d_{\perp}(p, S)\right\} \begin{cases}<\frac{1}{2} & \text { if } l \in\{0,1\}, m=1, n=2 \\ \leqslant 2 & \text { if } l \in\{0,1\}, m=2, n=1 \\ \leqslant 2 & \text { if } l \in\{0,1,2\}, m=2, n=2\end{cases}
$$

$$
\max _{p \in \pi_{m, n}^{(l)}(s, t)}\left\{d_{\perp}\left(p, \Pi_{r}^{\mathbb{R}}(s, t)\right)\right\} \begin{cases}\leqslant \frac{3}{2} & \text { if } l \in\{0,1\}, m=1, n=2 \\ \leqslant \frac{1}{2} & \text { if } l \in\{0,1\}, m=2, n=1 \\ \leqslant \frac{3}{2} & \text { if } l \in\{0,1,2\}, m=2, n=2\end{cases}
$$

DSGP Topological Classes

NS $(l=0): 16$

DSGP Topological Classes

DSGP Topological Classes

SN
SS

SS
$(l=1): 16$
($l=1$): 19
$(l=0): 16$
$(l=1): 18$
$(l=2): 30$
Different classes of DSGP (red voxels)
$(r=17, s=(-6,-1,16), t=(2,14,10))$

DSGP Topological Classes

$\mathrm{NS}(l=1), r=30$

DSGP Topological Classes

$\mathrm{NS}(l=0), r=30$

Open Problems

- Discrete 3D circles-maximum symmetry + minimum length-and-deviation.

NS (1, 1,2) : 102 vox

Open Problems

- Voxel strengthening-for improved 3D printing, by reshaping voxel as truncated tetrahedron, octahedron, sphere, or even Great Invention Kit (GIKs) [6].

Open Problems

A microscopic view of rounded crystals produced by the scientists for 3d-printing

Open Problems

- iso-contours, geodesic distance query-as in 3D real space [10, 11].
- Rational specification-characterization and algorithm.

Further Reading

E. Andres.

Discrete circles, rings and spheres.
Computers \& Graphics, 18(5):695-706, 1994.
E. Andres and M. Jacob.

The discrete analytical hyperspheres.
IEEE Trans. Visualization and Computer Graphics, 3(1):75-86, 1997.
R. Biswas and P. Bhowmick.

Layer the sphere.
The Visual Computer, 31:787-797, 2015.
R. Biswas and P. Bhowmick.

On different topological classes of spherical geodesic paths and circles in \mathbb{Z}^{3}.
Theoretical Computer Science, 605:146-163, 2015.

Further Reading

R. Biswas and P. Bhowmick.

From prima quadraginta octant to lattice sphere through primitive integer operations.
Theoretical Computer Science, 2015 (in press, doi:
http://dx.doi.org/10.1016/j.tcs.2015.11.018).
J. Hiller and H. Lipson.

Design and analysis of digital materials for physical 3D voxel printing.
Rapid Prototyping Journal, 15(2):137-149, 2009.C. Montani and R. Scopigno.

Graphics gems (Chapter: Spheres-to-voxels conversion), A. S. Glassner (Ed.).
pages 327-334. Academic Press Professional, Inc., San Diego, CA, USA, 1990.B. Roget and J. Sitaraman.

Wall distance search algorithm using voxelized marching spheres.
Journal of Computational Physics, 241:76-94, 2013.

Further Reading

J.-L. Toutant, E. Andres, and T. Roussillon.

Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties.
Discrete Applied Mathematics, 161(16-17):2662-2677, 2013.
S.-Q. Xin, X. Ying, and Y. He.

Constant-time all-pairs geodesic distance query on triangle meshes.
In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pages 31-38, 2012.
.
X. Ying, X. Wang, and Y. He.

Saddle Vertex Graph (SVG): A novel solution to the discrete geodesic problem.
ACM Trans. Graphics, 32(6):170:1-170:12, 2013.

Thank You

[^0]: ${ }^{a}$ S. Pal, R. Dutta \& P. Bhowmick, Circular Arc Segmentation by Curvature Estimation and Geometric Validation, Intl. Journal Image \& Graphics, 12:24p, 2012.
 ${ }^{b}$ S. Pal \& P. Bhowmick, Determining Digital Circularity Using Integer Intervals, Journal of Mathematical Imaging \& Vision, 42(1):1-24, 2012.
 ${ }^{c}$ S. Pal \& P. Bhowmick, Fast Circular Arc Segmentation Based on Approximate Circularity and Cuboid Graph, Journal of Mathematical Imaging \& Vision, 49:98-122, 2014.

[^1]: ${ }^{a_{\text {R }}}$. Biswas and P. Bhowmick, On different topological classes of spherical geodesic paths and circles in \mathbb{Z}^{3}, Theoretical Computer Science 605:146-163, 2015.

[^2]: ${ }^{a}$ From Prima Quadraginta Octant to Lattice Sphere through Primitive Integer Operations, Theoretical Computer Science (in press), 2015 (doi: http://dx.doi.org/10.1016/ j.tcs.2015.11.018)
 ${ }^{b}$ Layer the sphere, The Visual Computer 31: 787-797, 2015

