

[^0]
## Digital Circlism as $\mathfrak{A l g o r i t f m i c ~ A r t ~}$

S. De
P. Bhowmick

## Background

According to artists and critics, it's a fusion of pop art and pointillism ${ }^{a}$

${ }^{a}$ Chipp, H.B. 1996: Theories of Modern Art

## Background

## First introduced by

Edward C. Stresino
in $1985^{a}$
${ }^{a}$ http://www.circlism.com

## Background

Digital artworks by
Ben Heine since $2010^{a}$

${ }^{a}$ http://benheine.deviantart.com/gallery/30782139, http://www.flickr.com/photos/benheine/sets/72157623553428960

## Background



Georges Seurat
(France, 1859-1891)


## Our $\mathfrak{A l g o r i t f i m}$

## Basic Steps


input

parsed
coloring


$r=20,10$

segmented

$r=20,10,5,2$

EDT



Macbeth Luv

## Mean shift segmentation



Input

$\left(h_{s}, h_{r}\right)=(7,6)$

$(14,13)$

Two types of bandwidth parameters: ${ }^{\text {ab }}$

- $h_{s}$ in spatial domain $(d=2)$
- $h_{r}$ in CIELUV color subspace $(d=3)$
${ }^{\text {a Comaniciu } \& ~ M e e r: ~ M e a n ~ s h i f t ~-~ A ~ r o b u s t ~ a p p r o a c h ~}$ toward feature space analysis. IEEE PAMI (2002)
${ }^{\mathrm{b}}$ Fairchild: Color Appearance Models. Addison-Wesley (1998)


## Circle packing



Packing density
$\rho=$ proportion of the region covered by packing circles-forms the maximization criterion.

## Circle packing

Solution to date: Only for packing inside geometric primitives like squares, circles, triangles, etc.

## Circle packing

Solution to date: Only for packing inside geometric primitives like squares, circles, triangles, etc.
Difficulty: Many packing problems are NP-hard. ${ }^{\text {cd }}$
Our work: Packing circles in discrete space instead of real space, where the circles are
c Demaine et al.: Circle packing for origami design is hard. arxiv.org (2010)
$\mathrm{d}_{\text {Melissen: }}$ Packing 16 , 17 or 18 circles in an equilateral triangle. Discrete Mathematics (1995)

## Circle packing

Solution to date: Only for packing inside geometric primitives like squares, circles, triangles, etc.
Difficulty: Many packing problems are NP-hard. ${ }^{\text {cd }}$
Our work: Packing circles in discrete space instead of real space, where the circles are defined by a finite and small set of radii.
${ }^{\text {c}}$ Demaine et al.: Circle packing for origami design is hard. arxiv.org (2010)
${ }^{\mathrm{d}}$ Melissen: Packing 16 , 17 or 18 circles in an equilateral triangle. Discrete Mathematics (1995)

## Circle packing

Random space fillinge ${ }^{e}$ : Attempts to solve the problem by iterative filling.

## - Increasing inefficiency as more and <br> $\square$

${ }^{e}$ http://paulbourke.net/texture colour/randomtile.

## Circle packing

Random space fillinge ${ }^{e}$ : Attempts to solve the problem by iterative filling.

Problems

- Increasing inefficiency as more and more circles are packed.
$\square$ Situation worsens in case of region with an arbitrary shape - a usual outcome of natural ohiect seomentation
ehttp://paulbourke.net/texture colour/randomtile.


## Circle packing

Random space fillinge ${ }^{e}$ : Attempts to solve the problem by iterative filling.

Problems

- Increasing inefficiency as more and more circles are packed.
- Situation worsens in case of region with an arbitrary shape - a usual outcome of natural object segmentation.
${ }^{e}$ http://paulbourke.net/texture colour/randomtile.


## Circle packing

## Our solution

- Compute Euclidean distance transform (EDT)


## Circle packing

## Our solution

- Compute Euclidean distance transform (EDT)
- Use EDT to pack denomination circles in different segments.


## Circle packing

## Our solution

- Compute Euclidean distance transform (EDT)
- Use EDT to pack denomination circles in different segments.
- DP technique of solving the coin denomination problem. ${ }^{f}$
${ }^{\mathrm{f}}$ Shallit: What this country needs is an 18c piece. Mathematical Intelligencer (2003).


## Circle packing

## Our solution

- Compute Euclidean distance transform (EDT)
- Use EDT to pack denomination circles in different segments.
- DP technique of solving the coin denomination problem. ${ }^{f}$
- Recompute the EDT of a segment after packing a circle and then greedily check feasibility of placing the next circle.
${ }^{\mathrm{f}}$ Shallit: What this country needs is an 18c piece. Mathematical Intelligencer (2003).


## Circle packing



## denomination set $D_{2}=\{20,10,5,3,2\}$

## Circle packing


$D_{1}=\{\mathbf{2 0 0}, \mathbf{1 0 0}, \mathbf{5 0}, 20,10,5,3,2\}$

$D_{3}=\{5,3,2\}$

## Runtime

$\mathrm{EDT} \rightarrow O(n)$ time, $n=\#$ image pixels. For packing circles of radius Local maxima finding


## Runtime

EDT $\rightarrow O(n)$ time, $n=\#$ image pixels.
For packing circles of radius $r$
Local maxima finding
$\rightarrow O(n)$ time.


## Runtime

EDT $\rightarrow O(n)$ time, $n=\#$ image pixels.
For packing circles of radius $r$
Local maxima finding
$\rightarrow O(n)$ time.
EDT recomputation in $R$ after packing each circle
$\rightarrow O(|R|)$ time in worst case.


## Runtime

EDT $\rightarrow O(n)$ time, $n=\#$ image pixels.
For packing circles of radius $r$
Local maxima finding
$\rightarrow O(n)$ time.
EDT recomputation in $R$ after packing each circle
$\rightarrow O(|R|)$ time in worst case.


Let $c_{R}=\#$ circles packed in $R$. $\pi r^{2} c_{R} \leqslant|R| \Rightarrow c_{R}=O\left(|R| / r^{2}\right)$.

## Runtime

Thus, to compute EDT over all the $r$-radius circles packed in $R$, worst-case time complexity is

$$
T(r)
$$

## Runtime

Thus, to compute EDT over all the $r$-radius circles packed in $R$, worst-case time complexity is

$$
T(r)=\sum_{R \subset I} c_{R}|R|, \text { where } c_{R}=O\left(|R| / r^{2}\right)
$$

## Runtime

Thus, to compute EDT over all the $r$-radius circles packed in $R$, worst-case time complexity is

$$
\begin{aligned}
T(r) & =\sum_{R \subset I} c_{R}|R|, \text { where } c_{R}=O\left(|R| / r^{2}\right) \\
& =\sum_{R \subset I} O\left(\left(\frac{|R|}{r}\right)^{2}\right)
\end{aligned}
$$

## Runtime

Thus, to compute EDT over all the $r$-radius circles packed in $R$, worst-case time complexity is

$$
\begin{aligned}
T(r) & =\sum_{R \subset I} c_{R}|R|, \text { where } c_{R}=O\left(|R| / r^{2}\right) \\
& =\sum_{R \subset I} O\left(\left(\frac{|R|}{r}\right)^{2}\right) \\
& =O\left(\sum_{R \subset I}\left(\frac{|R|}{r}\right)^{2}\right)
\end{aligned}
$$

## Runtime

Thus, to compute EDT over all the $r$-radius circles packed in $R$, worst-case time complexity is

$$
\begin{aligned}
T(r) & =\sum_{R \subset I} c_{R}|R|, \text { where } c_{R}=O\left(|R| / r^{2}\right) \\
& =\sum_{R \subset I} O\left(\left(\frac{|R|}{r}\right)^{2}\right) \\
& =O\left(\sum_{R \subset I}\left(\frac{|R|}{r}\right)^{2}\right) \\
& =O\left(\frac{n^{2}}{r^{2}}\right)
\end{aligned}
$$

## Runtime

If $|D|=k$, then total circle packing runtime is

$$
T=\sum_{r \in D} T(r)=O\left(\frac{k n^{2}}{r_{k}^{2}}\right)
$$

where $r_{k}=\min \left\{r_{i}: 1 \leqslant i \leqslant r_{k}\right\}$.

## Runtime

If $|D|=k$, then total circle packing runtime is

$$
T=\sum_{r \in D} T(r)=O\left(\frac{k n^{2}}{r_{k}^{2}}\right)
$$

where $r_{k}=\min \left\{r_{i}: 1 \leqslant i \leqslant r_{k}\right\}$.
Note: We've not considered the decreasing nature of the effective packing area of a region $R$ as circles are packed into it. So, $O(|R|)$ runtime for every recomputation of EDT is quite a loose bound.
A probabilistic analysis can possibly bring down the average time complexity.

Actual CPU time: Runtime increases with increase in

## Runtime



$$
\begin{gathered}
\left|D_{1}\right|=8 \\
69 \text { secs. } \\
\rho=0.827
\end{gathered}
$$

$$
\begin{gathered}
\left|D_{2}\right|=5 \\
18 \text { secs. } \\
\rho=0.824
\end{gathered}
$$

$$
\left|D_{3}\right|=3
$$

$$
16 \text { secs. }
$$

$$
\rho=0.749
$$

## Color Rendition



- Choose the primer colors for
foreground and background.
- Color each circle bv its average color from the original image


## Color Rendition



- Choose the primer colors for foreground and background.
- Color each circle by its average color from the original image.


## Color Rendition



- Choose the primer colors for foreground and background.
- Color each circle by its average color from the original image.


## Color Rendition




$$
\begin{aligned}
& \text { Iacbeth Color Mapping } \\
& \text { Replace the circle color by the nearest } \\
& \text { color of the Macbeth chart. } \\
& \text { - Nearness can be measured in different } \\
& \text { color subspaces (RGB, CIELUV,...). }
\end{aligned}
$$

## Color Rendition


 Macbeth Color Mapping

- Replace the circle color by the nearest color of the Macbeth chart.
- Nearness can be measured in different color subspaces (RGB, CIELUV


## Color Rendition



## 

## Macbeth Color Mapping

- Replace the circle color by the nearest color of the Macbeth chart.
- Nearness can be measured in different color subspaces (RGB, CIELUV, ...).


## Color Rendition



## Color Rendition



## Color Rendition



Macbeth color mapping to nearest

## Color Rendition



Macbeth color mapping to
2nd nearest

## Artwork Results



## Artwork Results



## Artwork Results



ISVC 2013 • Rethymnon, Crete, Greece
Digital Circfism - S. De \&̛ P. Bhowmick

## Artwork Results



## Artwork Results



ISVC 2013 • Rethymnon, Crete, Greece

## Artwork Results



ISVC 2013 • Rethymnon, Crete, Greece

## Artwork Results



## Artwork Results



ISVC 2013 • Rethymnon, Crete, Greece


ISVC 2013 • Rethymnon, Crete, Greece
Digital Circlism
S. De é P. Bhownick


[^0]:    ISVC 2013 - Rethymnon, Crete, Greece

