

Digital Circlism as Algorithmic Art

S. De

P. Bhowmick

According to artists and critics, it's a fusion of pop art and pointillism^a

^aChipp, H.B. 1996: Theories of Modern Art

First introduced by $Edward\ C.\ Stresino$ in 1985^a

ahttp://www.circlism.com

Digital artworks by $Ben\ Heine$ since 2010^a

ahttp://benheine.deviantart.com/gallery/30782139, http://www.flickr.com/photos/benheine/sets/72157623553428960

Pointillism

Georges Seurat (France, 1859-1891)

Pop art

Romero Britto (Brazil, b. 1963)

Digital circlism

Ben Heine (Ivory Coast, b. 1983)

Our Algorithm

Basic Steps

Mean shift segmentation

Input

 $(h_s, h_r) = (7, 6)$ (11, 10)

(14, 13)

Two types of bandwidth parameters: ab

- h_s in spatial domain (d=2)
- h_r in CIELUV color subspace (d=3)

^aComaniciu & Meer: Mean shift - A robust approach toward feature space analysis. IEEE PAMI (2002)

^bFairchild: Color Appearance Models. Addison-Wesley (1998)

Packing density

 ρ = proportion of the region covered by packing circles—forms the *maximization criterion*.

Solution to date: Only for packing inside geometric primitives like *squares*, *circles*, triangles, etc.

Solution to date: Only for packing inside geometric primitives like squares, circles, triangles, etc.

Difficulty: Many packing problems are *NP-hard*.^{cd}

^cDemaine et al.: Circle packing for origami design is hard. arxiv.org (2010)

^dMelissen: Packing 16, 17 or 18 circles in an equilateral triangle. Discrete Mathematics (1995)

Solution to date: Only for packing inside geometric primitives like squares, circles, triangles, etc.

Difficulty: Many packing problems are *NP-hard*.^{cd}

Our work: Packing circles in *discrete space* instead of real space, where the circles are defined by a *finite and small set of radii*.

^cDemaine et al.: Circle packing for origami design is hard. arxiv.org (2010)

dMelissen: Packing 16, 17 or 18 circles in an equilateral triangle. Discrete Mathematics (1995)

Random space filling^e: Attempts to solve the problem by iterative filling.

Problems

- Increasing inefficiency as more and more circles are packed.
- Situation worsens in case of region with an arbitrary shape—a usual outcome of natural object segmentation.

ehttp://paulbourke.net/texture colour/randomtile.

Random space filling^e: Attempts to solve the problem by iterative filling.

Problems

- Increasing inefficiency as more and more circles are packed.
- Situation worsens in case of region with an arbitrary shape—a usual outcome of natural object segmentation.

ehttp://paulbourke.net/texture colour/randomtile.

Random space filling^e: Attempts to solve the problem by iterative filling.

Problems

- Increasing inefficiency as more and more circles are packed.
- Situation worsens in case of region with an arbitrary shape—a usual outcome of natural object segmentation.

ehttp://paulbourke.net/texture colour/randomtile.

- Compute Euclidean distance transform (EDT)

- Compute Euclidean distance transform (EDT)
- Use EDT to pack *denomination circles* in different segments.
- *DP technique* of solving the coin denomination problem. ^f
- Recompute the EDT of a segment after packing a circle and then greedily check feasibility of placing the next circle.

^fShallit: What this country needs is an 18c piece athematical Intelligencer (2003).

- Compute Euclidean distance transform (EDT)
- Use EDT to pack *denomination circles* in different segments.
- *DP technique* of solving the coin denomination problem. f
- Recompute the EDT of a segment after packing a circle and then greedily check feasibility of placing the next circle.

^fShallit: What this country needs is an 18c piece. Mathematical Intelligencer (2003).

- Compute Euclidean distance transform (EDT)
- Use EDT to pack *denomination circles* in different segments.
- *DP technique* of solving the coin denomination problem. f
- Recompute the EDT of a segment after packing a circle and then greedily check feasibility of placing the next circle.

^tShallit: What this country needs is an 18c piece. Mathematical Intelligencer (2003).

denomination set $D_2 = \{20, 10, 5, 3, 2\}$

EDT $\rightarrow O(n)$ time, n = # image pixels.

EDT $\rightarrow O(n)$ time, n = # image pixels.

For packing circles of radius r

Local maxima finding $\rightarrow O(n)$ time.

EDT $\rightarrow O(n)$ time, n = # image pixels.

For packing circles of radius r

Local maxima finding $\rightarrow O(n)$ time.

EDT recomputation in R after packing each circle

 $\rightarrow O(|R|)$ time in worst case.

EDT $\rightarrow O(n)$ time, n = # image pixels.

For packing circles of radius r

Local maxima finding $\rightarrow O(n)$ time.

EDT recomputation in R after packing each circle

 $\rightarrow O(|R|)$ time in worst case.

Let $c_R = \#$ circles packed in R. $\pi r^2 c_R \leqslant |R| \Rightarrow c_R = O(|R|/r^2).$

$$T(r) = \sum_{R \subset I} c_R |R|, \text{ where } c_R = O(|R|/r^2)$$

$$= \sum_{R \subset I} O\left(\left(\frac{|R|}{r}\right)^2\right)$$

$$= O\left(\sum_{R \subset I} \left(\frac{|R|}{r}\right)^2\right)$$

$$= O\left(\frac{n^2}{r^2}\right).$$

$$T(r) = \sum_{R \subset I} c_R |R|, \text{ where } c_R = O(|R|/r^2)$$

$$= \sum_{R \subset I} O\left(\left(\frac{|R|}{r}\right)^2\right)$$

$$= O\left(\sum_{R \subset I} \left(\frac{|R|}{r}\right)^2\right)$$

$$= O\left(\frac{n^2}{r^2}\right).$$

$$T(r) = \sum_{R \subset I} c_R |R|, \text{ where } c_R = O(|R|/r^2)$$

$$= \sum_{R \subset I} O\left(\left(\frac{|R|}{r}\right)^2\right)$$

$$= O\left(\sum_{R \subset I} \left(\frac{|R|}{r}\right)^2\right)$$

$$= O\left(\frac{n^2}{r^2}\right).$$

$$T(r) = \sum_{R \subset I} c_R |R|, \text{ where } c_R = O(|R|/r^2)$$

$$= \sum_{R \subset I} O\left(\left(\frac{|R|}{r}\right)^2\right)$$

$$= O\left(\sum_{R \subset I} \left(\frac{|R|}{r}\right)^2\right)$$

$$= O\left(\frac{n^2}{r^2}\right).$$

$$T(r) = \sum_{R \subset I} c_R |R|, \text{ where } c_R = O(|R|/r^2)$$

$$= \sum_{R \subset I} O\left(\left(\frac{|R|}{r}\right)^2\right)$$

$$= O\left(\sum_{R \subset I} \left(\frac{|R|}{r}\right)^2\right)$$

$$= O\left(\frac{n^2}{r^2}\right).$$

If |D| = k, then total circle packing runtime is

$$T = \sum_{r \in D} T(r) = O\left(\frac{kn^2}{r_k^2}\right),\,$$

where $r_k = \min\{r_i : 1 \leq i \leq r_k\}$.

If |D| = k, then total circle packing runtime is

$$T = \sum_{r \in D} T(r) = O\left(\frac{kn^2}{r_k^2}\right),\,$$

where $r_k = \min\{r_i : 1 \leq i \leq r_k\}$.

Note: We've not considered the decreasing nature of the effective packing area of a region R as circles are packed into it. So, O(|R|) runtime for every recomputation of EDT is quite a loose bound.

A probabilistic analysis can possibly bring down the average time complexity.

Actual CPU time: Runtime increases with increase in

$$|D_1| = 8$$

69 secs.
 $\rho = 0.827$

$$|D_2| = 5$$

18 secs.
 $\rho = 0.824$

$$|D_3| = 3$$

16 secs.
 $\rho = 0.749$

Color Rendition

Color Rendition

- Choose the primer colors for foreground and background.

Color Rendition

- Choose the primer colors for foreground and background.
- Color each circle by its average color from the original image.

Macbeth Color Mapping

- Replace the circle color by the nearest color of the Macbeth chart.

Macbeth Color Mapping

- Replace the circle color by the nearest color of the Macbeth chart
- Nearness can be measured in different color subspaces (RGB, CIELUV, ...).

No mapping 1.904, 2 mins. 14

nearest color mapping Macbeth

