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ABSTRACT
E-commerce customers express their purchase intents in several
ways, some of which may use a different vocabulary than that of
the product catalog. For example, the intent for “women maternity
gown” is often expressed with the query, “ladies pregnancy dress”.
Search engines typically suffer from poor performance on such
queries because of low overlap between query terms and specifica-
tions of the desired products. Past work has referred to these queries
as vocabulary gap queries. In our experiments, we show that our
technique significantly outperforms strong baselines and also show
its real-world effectiveness with an online A/B experiment.
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1 INTRODUCTION
A significant fraction of queries in E-commerce search suffer from
vocabulary gap (VG). VG expresses the difficulty faced by users in
expressing their need, in a manner which could best match products
from product catalog. For example, the query “ladies pregnancy
dress” expresses the same need as “women maternity gown”. But,
the query does not perform well due to vocabulary mismatch be-
tween query terms and product catalog definition of relevant prod-
ucts. Query Rewriting has been applied as an effective technique to
bridge this gap between user queries and the documents to improve
retrieval performance [1, 7, 15, 17]. Most recent techniques either
rely on sufficient implicit feedback [6, 7, 14] or restrictive dataset
specific assumptions [15, 17] limiting their general applicability.

Null and low recall VG queries are mostly tail queries as also
observed in [17]. From an editorial analysis of a random sample
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of queries exhibiting VG from query logs from Flipkart, it was
observed that approximately 97% of these queries convey intent
similar to a well performing (WP) query. WP queries are defined
as head queries with high click-through rate [4]. These results are
corroborated with past research, which indicates that a significant
fraction of tail queries are head queries expressed differently [8, 16].
Motivated by this observation, we propose a supervised classifica-
tion technique by modelling the probability of rewriting VG queries
to semantically similar WP queries. A measure of semantic simi-
larity between queries is learned by projecting similar queries to
nearby points in space using Manhattan-LSTM (MaLSTM) [12].
We propose an improvement of this base similarity measure by
incorporating Co-Attention [11] on MaLSTM states which cap-
tures an interdependent notion of similarity between queries. More
specifically, our model for semantic similarity learns an attention
distribution on terms of one query dependent on the other query
as an additional layer in MaLSTM. Our formulation ensures re-
trieval performance by limiting the rewrite candidates to this set
of known WP queries. Our experiments show that the proposed
technique is significantly better in addressing vocabulary gap in
comparison to strong baselines in multiple experimental settings.
We also report a large-scale online A/B experiment run at Flipkart,
where we achieved 1.37% improvement in click-through rate, 6.74%
improvement in add-to-cart ratio and a reduction of null search
ratio by 15.84% over the production system in place.

In summary, we make the following contributions: (i) We pro-
pose a novel formulation for addressing VG in e-commerce search
by rewriting VG queries to semantically similar WP queries. (ii) We
propose a novel Co-Attentive MaLSTM semantic similarity mea-
sure, which incorporates an interdependent measure of semantic
similarity on query pairs. (iii) We demonstrate effectiveness of our
technique in multiple experimental settings including an online
A/B experiment at Flipkart.

2 RELATEDWORK
Techniques for Query Rewriting (QRW), Reformulation, and Ex-
pansion have been shown to improve the retrieval performance
of search engines on queries with vocabulary gap. Automatic rele-
vance feedback based techniques [18] require multi-phase retrieval
which is prohibitively expensive for commercial search engines.
Later techniques incorporate implicit user feedback in the form
of click-through rate [2], query co-occurrence [9], and co-clicked
query similarity [1, 5] to rewrite queries. More recent techniques
pose query rewriting as a machine translation task [6, 14]. However,
they do not explicitly optimize for retrieval performance and a two
stage framework to handle this is developed in [7]. A fundamental
drawback of these techniques is their need for sufficient implicit
user feedback which limits their applicability to vocabulary gap
queries that are either infrequent, null or have low recall. Recent
work on such queries [15] infers taxonomy constraints for relaxed
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versions of the query to retrieve relevant products. Subsequent
work [17] uses domain specific attribute taggings and hand crafted
rules. These techniques are limited by their dataset specific assump-
tions which are not easily extendable in a general e-commerce
setting.

3 PRELIMINARIES & DATASET CREATION
Dataset Creation: A team of domain experts at Flipkart periodi-
cally analyses a large random sample of queries from query logs
to identify and categorize (e.g., spell mistakes, ranking-issues, vo-
cabulary gap) poorly performing queries. From this analysis, we
obtained 5k queries identified to be VG, which is a substantial frac-
tion of poorly performing queries. The human experts also provided
an alternate query for each VG query which reflects the same user
intent expressed in the original query and has better term overlap
with product catalog. For example, in the query pair (“scratch jeans,
distressed jeans”), “scratch jeans” is a VG query and “distressed
jeans” is an alternate query which expresses the same user intent.
We observed that approximately 97% of these alternate queries were
WP queries. We consider frequent queries (> 70 impressions per
week) from past 1 year query logs from Flipkart with high click-
through rate (approximately > 30%) as the set of WP queries. In
our formulation, we treat the human labeled dataset of VG to WP
queries as ground truth. We will refer to this ground truth dataset
as D = {(x1,x2)}, where x1 is a VG query and x2 is a WP query,
and this pair is called a query rewrite pair.

Past work on web query understanding highlights that a signifi-
cant fraction of tail queries are head queries expressed differently
[8, 16]. Since most VG queries are tail queries [17], our findings
corroborate with the past work.
Limitations of product co-clicks and user query reformula-
tion behavior We evaluate the applicability of recent work on
QRW [7] by comparing co-clicked products on 5k labelled query-
rewrite pairs. A huge fraction (89%) of these pairs have no co-clicked
products. Of the remaining pairs, 70% have a Jaccard similarity < 0.2
on the clicked product set. We also evaluate whether query-rewrite
pairs from the above 5k set co-occur in query logs from Flipkart
as part of the same search session. We observe that only 8.24%
of the 5k query pairs exhibit such co-occurrence. This limits the
applicability of techniques based on user reformulation behaviour
in query logs.

4 REWRITING VOCABULARY GAP QUERIES:
PROPOSED FRAMEWORK

We formulate the problem of rewriting VG queries to WP queries
as a supervised classification task. The probability of rewriting a
VG query x1 to a WP query x2 is given by,

p (y = 1 | (x1, x2)) = σ (wfattn (x1, x2) + b) (1)

wherew,b are parameters of the model and fattn (x1,x2) denotes
a similarity measure between queries. Below we describe the pro-
posed Co-Attentive MaLSTM to model this similarity.

4.1 Modelling Semantic Similarity using
Co-Attentive MaLSTM

Consider a query pair x = (x1,x2), where x1 = (x (1)1 ,x
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Figure 1: Co-AttentiveMaLSTMarchitecture. The Cmatrix captures
the interdependence between LSTM representations of queries
Q1, Q2. The max pooling results in attention on a particular term of
one query to depend on the most similar terms in the other query.

words in these queries, respectively. We consider two queries to be
similar if they express the same user intent, e.g., “nike hood tshirts,
nike hoodies". More specifically, we are interested in learning a
similarity measure between VG and WP queries, which we learn
from the ground truth datasetD. Our first attempt at modelling the
similarity is based on MaLSTM [12], which also serves as building
block for the proposed Co-Attentive MaLSTM .

In MaLSTM, queries x1 and x2 are passed through bi-directional
Siamese LSTMs (i.e., parameters across LSTMs are shared). The
ℓ1 norm of the final hidden state representations of the two queries
h
(n)
1 and h

(m)
2 serves as a measure of similarity in the following

function
f (x1, x2) = exp

(
−



h(n)

1 − h(m)
2





1

)
(2)

where f ∈ [0, 1] is a function of similarity between the two queries.
Equation (2) however falls short in modelling similarity because
while the final hidden state alone might not be fully representative
of the query, this representation is also independent of the other
query. Further, we observe that all terms across the query pairs do
not contribute equally towards the similarity measure based on the
following characterizations of the similarity :
(i) Consider the similar query pair “nike hood tshirts, nike hood-

ies”. The similarity is really expressed between “hood tshirts,
hoodies” (i.e., it holds for brands other than “nike”). One way
of addressing this redundancy is by focusing less on the term
“nike” while modelling the similarity.

(ii) Consider the similar query pair “ladies pregnancy dress, women
maternity gown”. It is apparent that strict subsets of two queries
are related to each other, i.e., “pregnancy dress” to “maternity
gown” and “ladies” to “women”. One way to address this is to
learn a similarity measure across subsets of the two queries,
such that combined measure is representative of the overall
similarity.
Addressing the above characterization, we propose an improved

measure of similarity by incorporating an attention distribution
over the hidden state vectors of the two queries. Intuitively, across
the query pair, the attention on a particular term of a query depends
upon how similar it is to terms of the other query. Therefore, the



Query pair women maternity gown maternity gown gown
ladies pregnancy dress 0.98 (0.78) 0.56 (0.47) 0.11 (0.15)
pregnancy dress 0.67 (0.44) 0.97 (0.91) 0.31 (0.16)
dress 0.05 (0.05) 0.11 (0.05) 0.27 (0.35)

Query pair nike hoodies hoodies adidas hoodies
nike hood tshirts 0.99 (0.95) 0.28 (0.16) 0.96 (0.35)
hood tshirts 0.44 (0.19) 0.98 (0.90) 0.23 (0.29)

Table 1: The measure of similarity learned by Co-Attentive MaL-
STM and MaLSTM (in brackets) across subsets of two query pairs
“ladies pregnancy dress, women maternity gown” and “nike hood
tshirts, nike hoodies”. In both cases, proposed measure of similar-
ity is high for both original as well as all the relevant subset query
pairs (highlighted in color).

inter-dependent notion of attention between queries models simi-
larity at a more granular level of terms in context of queries. This
interdependent notion of attention was first proposed in computer
vision literature on visual question answering [11] and named Co-
Attention. Figure 1 provides a block level illustration of our model.

Concretely, we introduceWA ∈ Rd×d as a learnable attention
matrix. Let, Q1 ∈ Rd×n be n hidden state vectors of x1 and Q2 ∈
Rd×m be m hidden state vectors of x2. We define the following
similarity matrix C ∈ Rn×m

C = tanh
(
QT

1 WAQ2
)

The similarity matrix C is the bilinear form corresponding to the
attention matrixWA, with element-wise tanh introduced to rescale
similarities in [−1, 1] range. From the similarity matrix, we compute
the attention on the kth term of x1 as its maximum similarity to
terms in x2 and vice versa.

a(k )1 = max
j

{
Ck, j

}
a(k )2 = max

j

{
Cj,k

}
Intuitively, the max pooling operation aids in modelling the overall
query similarity as combination of similarities over term pairs by
co-attending on term pairs most similar to each other across the
queries. We apply a softmax on attentions to form distributions per
query,

a1 = softmax
(
a(k )1

)
a2 = softmax

(
a(k )2

)
Combining the attention distributions with hidden state vectors of
x1 and x2 we have the following representations,

z1 =
∑
k

a(k )1 h(k )
1 z2 =

∑
k

a(k )2 h(k )
2

Using z1, z2 in Equation (2), we define the Co-AttentiveMaLSTM sim-
ilarity function as

fattn (x1, x2) = exp (− ∥z1 − z2 ∥1) (3)

We use Equation (3) as a measure of similarity to rewrite VG queries
to WP queries. Table 1 illustrates our model’s ability to address
the aforementioned characterizations (i) and (ii). Specifically, the
learned measure of similarity is high between relevant query pair
subsets (e.g “pregnancy dress, maternity gown”) and by focusing
less on brand term “nike”, it learns a high similarity between “nike
hood tshirts, adidas hoodies” as well, while MaLSTM is not able to
generalize to this case.

4.2 Rewriting Vocabulary Gap Queries
The similarity measure in Equation (3) is trained in an end-to-end
manner with the task of rewriting VG to WP queries. For each
VG query x1 corresponding to the positive pair (x1,x2) ∈ D, 50

negative examples are randomly selected from WP queries for
supervised training. We refer to the dataset thus constructed as
DL = {((x1,x2) ,y)}, where y = 1 if (x1,x2) ∈ D or 0 otherwise.
The model is trained using binary cross-entropy loss w.r.t. y ∈ DL ,
as modelled using Equation (1).

To improve model’s performance, we employ max negative sam-
pling [13]. Specifically, out of 50 negative query pairs for each
positive pair, we select 20 pairs having the highest probability of
rewrite (hence, incorrectly classified) as defined by Equation (1) as
negatives in every training epoch. We will refer to our model as
Co-Attentive MaLSTM -QRW.

5 EXPERIMENTS
5.1 Baselines & Methods
We compare our proposed model against four baselines: Word Cen-
troid Distance (WCD), Word Mover's Distance (WMD) [10], BERT
Sentence Pair Classification [3] and MaLSTM [12]. WCD measures
the cosine similarity between query vector representations calcu-
lated by summing/averaging over embedded word vectors. WMD
measures the notion of similarity as the minimum amount of dis-
tance that the embedded words of first query need to “travel” to
reach the embedded words of the other. We compare against BERT
fine-tuned on the labelled query-rewrite dataset for the binary Sen-
tence Pair Classification task using aggregate classification embed-
dings ([CLS]). The fine-tuningwas donewith the same experimental
settings as in the original paper [3]. The model MaLSTM-QRW is
obtained by replacing fattn in (3) with f from (2) corresponding
to MaLSTM. We train a 100 dimensional word embedding while
treating queries occurring in a single session (query chain) [9] as a
document. We use the same embedding across all the competing
models except BERT, which uses BERT pre-trained embeddings.
We set an appropriate class weight ratio to account for the class
imbalance in our training data DL (20 is to 1), while training all
the supervised models.

5.2 Experimental Settings
We evaluate our model against baselines in three experimental
settings. First, we report recall@k on a random holdout subset
of 1000 query pairs from D. Second, we report human labeled
product retrieval quality scores for VG queries rewritten to WP
queries. Third, we report the results of an online A/B experiment
conducted at Flipkart. We observe that VG is most exhibited by
queries belonging to Clothing category at Flipkart, thus we conduct
product quality evaluation and online A/B in the Clothing category.
In all our experiments, for each VG query, the entire WP query set
(roughly 80k for Clothing category) is considered as candidate set
for rewriting and is ranked by probability of rewrite. For WMD and
WCD, ranking is based on the similarity scores.

Model R@1 R@3 R@5 R@30
WCD 11.60 11.60 21.25 43.80
WMD 14.39 14.39 22.53 40.38
BERT 43.79 51.60 53.21 54.13
MaLSTM-QRW 44.82 59.31 65.48 70.68
Co-Attentive MaLSTM -QRW 47.12 62.06 67.93 74.48

Table 2: Recall of baselines and Co-Attentive MaLSTM on random
holdout set of 1000 query pairs from D.
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Figure 2: Comparison of product retrieval quality rating on scale
from 1 (Poor) to 5 (Excellent) for Production and Co-Attentive MaL-
STM -QRW, respectively
Performance on holdout dataset:We perform a 70/10/20 train/
development/ test random split of the ground truth dataset D. For
training each baseline and model, we construct DL as discussed
in Section 4.2. The loss on the development set was used for early
stopping of the training procedure, a common practice for regular-
ization of neural networks. Table 2 reports Recall@{1, 3, 5, 30} for
the competing models. Co-Attentive MaLSTM -QRW outperforms
BERT and MaLSTM-QRW consistently at all k . While BERT’s R@1
is very competitive, the improvement in recall for large k is very
marginal. WMD and WCD fair poorly as baselines demonstrating
the efficacy of our formulation of semantic similarity beyond the
term level similarity represented by embeddings.

Retrieval Quality Evaluation: To mimic production setting
& limitations, we restrict scope of the experiment to rewriting a
VG query to a single WP query. This necessitates a high precision
operating point. We obtain a large set of queries Dpoor from Flip-
kart search logs with low CTR and low recall, a segment known
to exhibit VG [7]. First, we obtain the high precision operating
point for classification on Dpoor by manual evaluation of rewrite
correctness on a random sample of 1000 queries (achieving 87%
precision at 37% recall). We use this operating point to obtain 2000
query-rewrite pairs (exclusive from the earlier sample of 1000) from
Dpoor , we call this as Dtest . We now obtain top 10 retrieved prod-
ucts as per these rewrites (Co-Attentive MaLSTM -QRW) and from
a sophisticated production system that handles low recall queries
by adding relevant or dropping irrelevant terms to increase recall.
The exact details of the production system is out of scope. The
retrievals (top 10 products) from both the systems were now rated
by domain experts on a 5 point scale from Poor (1) to Excellent (5).
The results from this manual evaluation are reported in Figure 2.
Clearly, our method results in 12.78% reduction in Poor and Bad
queries (rating ≤ 2) and 10.55% increase in Good and Excellent
queries (rating ≥ 4) over the production baseline.
Online A/B Experiment:We tested the Co-Attentive MaLSTM -
QRW against the production system (discussed above) at Flipkart
in a standard A/B testing configuration where production behaves
as control and our model as treatment condition. The experiment
affected only low recall and low CTR queries. 15% of the user base
was randomly assigned to each condition and the experiment ran
for 20 days. The query volume affected by the experiment was
roughly 75k . We report significant improvements in click-through-
rate (CTR) and add-to-cart ratio (fraction of searches leading to
products being added to shopping cart, an important metric for
e-commerce search relevance) against the production system. In
addition, we report a significant reduction in Null search ratio

which is defined as fraction of queries resulting in no products
retrieved. Table 3 reports the exact improvements in the metrics.

Metric % Improvement
CTR 1.37%
Add-to-cart ratio 6.74%
Null search ratio 15.84%

Table 3: Results of online A/B experiment comparing production
system with Co-Attentive MaLSTM -QRW

6 CONCLUSION & FUTUREWORK
In this paper, we investigated the problem of vocabulary gap in e-
commerce queries. Our empirical study suggested that most vocab-
ulary gap queries are well performing queries expressed differently.
Using this observation as motivation, we developed a novel inter-
dependent measure of semantic similarity between pair of queries
to rewrite vocabulary gap queries to well performing queries. Our
approach ensures retrieval performance by restricting rewrites to
well performing queries. In future, we plan to conduct further ex-
periments, by evaluating our model in more product categories at
Flipkart, and explore better ways of modelling similarity. The BERT
baseline shows promising results and we would explore ways to
incorporate it in our model. To further improve the retrieval per-
formance of VG queries, we would also like to extend our approach
to merge the results of multiple WP query rewrites.
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