Morphologically Informed Pruning

Consider a 14 word verse, "Śriyah patiḥ śrīmati śāśītum jagat jagannivāsah vasudevasad- mani vasan dadarśa avatarantam ambarat hiranyakagbhaṅgabhuvam munim hariḥ", from the literary work 'Śiśupālavadha'. Here, the sequence is in its segmented form, and yet it would result in 23,040 different possible sentences owing to syncretism and homonymy. The analysis for the given sequence is shown in Figure 1. Further, each of the sentence would result in \(n^n - 2\) unlabelled spanning trees if we consider an unpruned complete graph as the input. Here \(n\) is the number of tokens in the sentence, i.e. 14 for the given sentence. This will result in a prohibitively large space of possible spanning trees, if we consider the possible spanning trees for all the 23,040 possible sentences. However, with our linguistic pruning we could restrict the number of total possible spanning trees to be just about 102,360 trees (combined count for all the 23,040 sentences).

As discussed in the main paper, an input multigraph is formed from the morphological analysis. Spanning trees are enumerated from the input multigraph and for each spanning tree, we evaluate its validity as a candidate dependency tree. Based on the edge selected from the input multigraph, every node in the tree will have a specific morphological tag. Further, we will assume the edges to be labelled with dependency relations, but only with those which are applicable as per the morphological tags of the nodes in the edge. If the tree evaluates to be a valid candidate, then its edges are retained in the multigraph. However, the label information from the tree is not added to the multigraph. The unlabelled pruned multigraph forms the input to MG-EBM.

Figure 2 shows the dependency tree for the aforementioned sequence. Here, "harih" is assigned as the subject (kartā) and "munim" as the object (karma), with the main verb "dadarśa" as the common head for both. The morphological analysis for "harih" produces two possible analyses, both of them in nominative case\(^3\). Similarly, morphological analysis for "munim" produces two analyses, both in accusative case\(^3\). Let us now illustrate some cases of using linguistic information to validate the candidacy of the generated spanning tree as a candidate dependency tree.

1. Consider the edges from "dadarśa" to "harih" and "dadarśa" to "munim" in the generated tree. Here, since "harih" is in nominative case, it can either be assigned the subject (kartā) relation or the object relation (karma). Being in the accusative case, "munim" on the other hand, can only take the object relation (karma). If we assume "harih" becomes the karma, instead of kartā, then the tree will eventually evaluate to false, as the edge between "munim" and "dadarśa" cannot be assigned any label. In such a case the tree is not a valid candidate tree. Though the previous state of the art model, T-EBM*, also perform linguistically informed pruning, it makes the decisions greedily, by considering only 3 nodes at a time. Here, we cannot check if all the edges will eventually have a label.

2. The linguistically informed pruning can at best be seen as a rule-based deterministic delexicalised dependency parsing approach. For instance, if two nodes, connected by an

---

\(^1\)Work done while at IIT Kharagpur

\(^2\)The sentence translates to, Laks.mi’s consort,Viṣṇu, who is the source of the world, who was born in the house of Vasudeva to control the world, saw Brahma’s son Nārada, descending from the sky.

\(^3\)Both tags differ by gender which is inconsequential here.
Figure 1: The morphological analysis from the lexicon driven shallow parser for the given input sequence. The cases of syncretism for the word Śriyah is also shown. In our analysis we assume that the sequence is segmented and each token is a word. Hence, we do not consider the cases where the tokens are split by the analyser, such as “u” and “asan” instead of “vasan”.

Figure 2: Dependency analysis for the sequence in Śiṣūpālavadha. The corresponding English translation for the dependency translation are given beneath each of these edge labels.
edge, have to be assigned a višeśaṇa (adjectival modifier) relation, then both the words must agree on all the three grammatical categories of a noun, i.e. case, number and gender. Now, the word “patiḥ” is an adjective to “harīḥ”. Since both the words are in nominative case, our pruning approach will not be able to decide on which of the two to be assigned the head.\(^4\) If we assume “patiḥ” as the head, it will be eligible to be connected to the verb with kartā relation, instead of “harīḥ”. Summarily, our pruning approach would validate both the candidate trees, i.e. one where harīḥ is assigned as the child of the kartā relation, as well as where patiḥ is assigned as the child of the kartā relation. To disambiguate between these, we require a data-driven approach, like MG-EBM, where the feature set makes use of distributional information of lemma and surface forms as well.

3. The word “āmbaraṭ” has only one analysis and it is in ablative case. It is is connected to “avatarantam” with the “apadāṇam” relation in its gold dependency tree (Figure 2). Here, ablative case words can be attached to a verb to form either a “hetu” or an “apadāṇam” relation. It needs to be noted that the word “avatarantam” is a nominal, though it is assigned as the head for a relation which is intended for a verb as the head. However, in Sanskrit, derivational nouns derived from a verb, are often considered as a verb when assigning the relations. We consider such cases as well in our pruning.

2 DCST++: Neural Morphosyntactic Parser

Neural Multi-task Morphological Parser (MTL): We first give an overview of the multi-task morphological parser, that forms backbone for DCST++. Gupta et al. (2020) propose a multi-task neural tagger, MTL, for morphological tagging in Sanskrit. Here, the composite morphological tag of a word is broken down into multiple grammatical categories, and a hierarchy is established between the categories. Each category is considered a separate task and then a model is trained in a multi-task setting. They provide some evidence that there might be an implicit hierarchy among grammatical categories in Sanskrit. For example, they found that the grammatical category number benefits from supervision at the shallowest layer, whereas tense benefits from supervision at deeper layers. The parser when evaluated on our test set reports a sentence level macro averaged F1-score of 63.55%.

DCST++ We now briefly describe DCST++, which integrates MTL with the DCST model (Rotman and Reichart, 2019). DCST or the Deep Contextualised Selft Training Parser essentially extends the biaffine parser by Dozat and Manning (2017) with self training. Here, first a base parser is trained with limited data, which is the biaffine parser from Dozat and Manning (2017). Then, dependency parses for unlabelled sentences are obtained using the base parser. The predicted trees are then used as input for training various sequence level auxiliary tasks. The auxiliary tasks performed in the paper are, predicting the number of children for each node in the tree, the distance of each node from the root and the relative POS encoding of each word in the tree. For these sequence level tasks, the input tree is adapted to a suitable sequence tagging scheme. Then the main parser is trained, where the biaffine parser is retrained with a fresh initialisation. However this time, the encoders from the auxiliary tasks are used to generate representations for the input and all of these representations are combined using a gating mechanism as proposed by Sato et al. (2017). DCST++ predicts only the dependency parsing results, and does not predict the morphological parsing results.

Table 1 shows the dependency parsing results, where none of the three DCST configurations use gold morphological tags as input. The neural DCST parser results reported in the main paper used surface form and gold morphological tags as input. Here, we report the results of the DCST configuration where the surface form and a coarse level POS tag from a rule based POS tagger is used as input. The tagset contains 4 POS tags, namely, nominal, finite verb, infinite verb and indeclinable. The model reports a UAS and LAS of 80.8 and 70.99, respectively. DCST+MTL is a pipeline model, where the standard DCST model uses predicted morphological tags from MTL as input. Here, we can observe that DCST+MTL and DCST++ report a UAS of 81.62 and 81.73, respectively.

\(^4\)In a Sanskrit sentence, written in prose, the adjective of a nominal would always precede it. However, this need not be true for sentences in verse form. We do not make any assumptions on the writing style of the input.
Table 1: Sentence-level macro UAS and LAS, Comparison of Neural Dependency Parsers

<table>
<thead>
<tr>
<th>Model</th>
<th>UAS</th>
<th>LAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCST</td>
<td>80.80</td>
<td>70.99</td>
</tr>
<tr>
<td>DCST + MTL</td>
<td>81.62</td>
<td>71.64</td>
</tr>
<tr>
<td>DCST++</td>
<td>81.73</td>
<td>72.28</td>
</tr>
</tbody>
</table>

Dataset: We use a test set of 1,300 sentences, where 1,000 come from Sanskrit Tree Bank Corpus (STBC) (Kulkarni, 2013) and 300 from the Sisupālavadha (Ryali, 2016). 1,500 and 1,000 sentences from STBC, other than the ones in the test data, were used as the training and validation data, respectively for DCST, DCST++, and BiAFF. However all the EBM models and YAP were trained on 12,320 sentences obtained by augmenting the training data in STBC (Krishna et al., 2020, §4.1). Here, the authors applied synonym replacement (Zhang et al., 2015), sentence simplifications (Vickrey and Koller, 2008) and sentence cropping approaches for the augmentation (Sahin and Steedman, 2018). Bi-AFF, DCST and DCST++ performed worse, when used with the sentences from the augmented training data. The dataset and the evaluation code can be downloaded at http://bit.ly/KISSData

References


