OCR++: A Robust Framework For Information Extraction from
Scholarly Articles

Mayank Singh, Barnopriyo Barua, Priyank Palod, Manvi Garg,
Sidhartha Satapathy, Samuel Bushi, Kumar Ayush, Krishna Sai Rohith, Tulasi Gamidi,
Pawan Goyal and Animesh Mukherjee
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur, WB, India
mayank.singh @cse.iitkgp.ernet.in

Abstract

This paper proposes OCR++, an open-source framework designed for a variety of information
extraction tasks from scholarly articles including metadata (title, author names, affiliation and
e-mail), structure (section headings and body text, table and figure headings, URLs and foot-
notes) and bibliography (citation instances and references). We analyze a diverse set of scientific
articles written in English language to understand generic writing patterns and formulate rules
to develop this hybrid framework. Extensive evaluations show that the proposed framework
outperforms the existing state-of-the-art tools with huge margin in structural information extrac-
tion along with improved performance in metadata and bibliography extraction tasks, both in
terms of accuracy (around 50% improvement) and processing time (around 52% improvement).
A user experience study conducted with the help of 30 researchers reveals that the researchers
found this system to be very helpful. As an additional objective, we discuss two novel use cases
including automatically extracting links to public datasets from the proceedings, which would
further accelerate the advancement in digital libraries. The result of the framework can be ex-
ported as a whole into structured TEI-encoded documents. Our framework is accessible online
at http://cnergres.iitkgp.ac.in/OCR++/home/.

1 Introduction

Obtaining structured data from documents is necessary to support retrieval tasks (Beel et al., 2011).
Various scholarly organizations and companies deploy information extraction tools in their production
environments. Google scholar!, Microsoft academic search?, Researchgate®, CiteULike* etc. provide
academic search engine facilities. European publication server (EPO)’, ResearchGate and Mendeley®
use GROBID (Lopez, 2009) for header extraction and analysis. A similar utility named SVMHeaderParse
is deployed by CiiteSeer®’ for header extraction.

Through a comprehensive literature survey, we find comparatively less research in document structure
analysis than metadata and bibliography extraction from scientific documents. The main challenges lie
in the inherent errors in OCR processing and diverse formatting styles adopted by different publishing
venues. We believe that a key strategy to tackle this problem is to analyze research articles from different
publishers to identify generic patterns and rules, specific to various information extraction tasks. We
introduce OCR++, a hybrid framework to extract textual information such as (i) metadata — title, author
names, affiliation and e-mail, (ii) structure — section headings and body text, table and figure headings,
URLSs and footnotes and (iii) bibliography — citation instances and references from scholarly articles.
The framework employs a variety of Conditional Random Field (CRF) models and hand-written rules
specially crafted for handling various tasks. Our framework produce comparative results in metadata

"http://scholar.google.com
2http://academic.research.microsoft.com
3researchgate.net

*“http://www.citeulike.org/
Shttps://data.epo.org/publication-server/?lg=en
Shttps://www.mendeley.com/
"http://citeseerx.ist.psu.edu/

extraction tasks. However, it significantly outperform state-of-the-art systems in structural information
extraction tasks. On an average, we record an accuracy improvement of 50% and a processing time
improvement of 52%. We claim that our hybrid approach leads to higher performance than complex ma-
chine learning models based systems. We also present two novel use cases including extraction of public
dataset links available in the proceedings of the NLP conferences available from the ACL anthology.

2 Framework overview

OCR++ is an extraction framework for scholarly articles, completely written in Python (Figure 2). The
framework takes a PDF article as input, 1) converts the PDF file to an XML format, 2) processes the
XML file to extract useful information, and 3) exports output in structured TEI-encoded® documents.
We use pdf2xml’ to convert PDF files into rich XML files. Each token in the PDF file is annotated with
rich metadata, namely, x and y co-ordinates, font size, font weight, font style etc. (Figure 1).

Logical Structure Recovery in Scholarly
Articles with Rich Document Features

Minh-Thang Luong, Thuy Dung Nguyen and Min-Yen Kan"
National Un i

ingapore, Singapore

s information about the logical document s
h as search, navigation and summarization. We describe S X
ps existing software to detect the logical structure of a document
g the formalism of conditional random fields. While previous work

that using such rich features improves logical structure detection by a significant 9 Fy points,
over a suitable baseline, motivating the use of richer document representations in other digital
library applications

Keywords: ParsCit, Metadata Extraction, Logical Structure Discovery, Conditional Random
Fields, Rich Document Features

i URL } ! Footnote !
. Extraction H + Extraction |

H i Citation instance - Reference :
N Mapping H

| Chunking

{ T Finding, Monitoring, and Checking Claims
Author - Email Computationally Based on Structured Data

Mapping

1

Author Name}
Extraction ;

Title

(a) Sub-tasks dependencies in OCR++. (b) Screenshot of OCR++ web interface.

Figure 2: OCR++ framework overview and user interface

Figure 2(a) describes the sub-task dependencies in OCR++. The web interface of the tool is shown
in Figure 2(b). We leverage the rich information present in the XML files to perform extraction tasks.
Although each extraction task described below is performed using machine learning models as well as
hand written rules/heuristics, we only include the better performing scheme in our framework. Next, we
describe each extraction task in detail.

2.1 Chunking
As a first step, we segment XML text into chunks by measuring distance from neighboring text and
differentiating from the surrounding text properties such as font-size and bold-text.

2.2 Title extraction

We train a CRF model to label the token sequences using 6300 training instances. Features are con-
structed based on generic characteristics of formatting styles. Token level feature set includes boldness,
relative position in the paper, relative position in the first chunk, relative size, case of first character,
boldness + relative font size overall, case of first character in present and next token and case of first
character in present and previous token.

8hittp://www.tei-c.org/index.xml
*http://sourceforge.net/projects/pdf2xml/

2.3 Author name extraction

In this sub-task, we use the same set of features as described in the title extraction sub-task to learn
the CRF model along with a heuristic that the tokens eligible for the author names are either present
in the first section or within 120 tokens after the title. Different author names are distinguished using
heuristics, such as, difference in y-coordinates, tab separation etc. Further, false positives are removed
using heuristics such as, length of consecutive author name tokens, symbol or digit in token and POS tag.
The first word among consecutive tokens is considered as the first name, the last word as the last name,
and all the remaining words are treated together as the middle name.

2.4 Author e-mail extraction

An e-mail consists of a user name, a sub-domain name and a domain name. In case of scholarly articles,
usually, the user names are written inside brackets separated by commas and the bracket is succeeded by
the sub-domain and domain name. On manual analysis of a set of scholarly articles, we find four different
writing patterns, authorl @cse.domain.com, {authorl, author2, author3}@cse.domain.com, [author4,
author5, author6]@cse.domain.com and [author7 @cse, author7 @ee].domain.com. Based on these ob-
servations, we construct hand written rules to extract e-mails.

2.5 Author affiliation extraction

We use hand written rules to extract affiliations. We employ heuristics such as, presence of country name,
tokens like “University”, “Research”, “Laboratories”, “Corporation”, “College”, “Institute”, superscript
character etc.

2.6 Headings and section mapping

We employ CRF model to label section headings. Differentiating features (the first token of the chunk,
the second token, avg. boldness of the chunk, avg. font-size, Arabic/Roman/alpha-enumeration etc.) are
extracted from chunks to train the CRF.

2.7 URL

We extract URLSs using a single regular expression described below:

http(s]?://(?2:[a-2zA-Z]1 | [0-91 | [\$—Q@.&+1 [['*\(\),11(?2:\%[0-9a-fA-F] [0-9a-fA-F]))

2.8 Footnote

Most of the footnotes have numbers or special symbols (like asterisk etc.) at the beginning in the form of
a superscript. Footnotes have font-size smaller than the surrounding text and are found in the lower end
of a page — average font size of tokens in a chunk and y-coordinate were used as features for training the
CRF. Moreover, footnotes are found in the lower half of the page (this heuristic helped in filtering false
positives).

2.9 Figure and table headings

Figure and table heading extraction is performed after chunking (described in Section 2.1). If the chunk
starts with the word “FIGURE” or “Figure” or “FIG.” or “Fig.”, then the chunk represents a figure
heading. Similarly, if the chunk starts with the word “Table” or “TABLE”, then the chunk represents a
table heading. However, it has been observed that table contents are also present in the chunk. Therefore,
we use a feature “bold font” to extract bold tokens from such chunks.

2.10 Citations and references

The bibliography extraction task includes extraction of citation instances and references. All the tokens
succeeding the reference section are considered to be part of references and further each reference is
extracted separately. Again, we employ hand written rules to distinguish between two consecutive refer-
ences. On manual analysis, we found 16 unique citation instance writing styles (Table 1). We code these
styles into regular expressions to extract citation instances.

Table 1: Generic set of regular expressions for citation instance identification. Here, AN represent author
name, Y represent year and I represent reference index within citation instance.

Citation Format Regular Expression

<AN> et al. [<I>] ([A-2] [a-zA-Z]* et all.][\string\d\{1,3\}])

<AN> [<I>] ([A-Z] [a-zA-Z]* [\string\d\{2\}])

<AN> et al.<spaces> [<I>] ([A-Z] [a—zA-Z]* et al[.][1*[\string\d\{1\}])
<AN>etal., <Y><I> ([A-Z] [a-zA-Z]* et al[.],\string\d\{4\}[a-z])
<AN>etal., <Y> ([A-Z] [a—zA-Z]* et al[.][,] \string\d\{4\})

<AN> etal, (<Y>) ([A-Z] [a-zA-Z]* et all.][,] (\string\d\{4\}))
<AN> etal. <Y> ([A-Z][a-zA-Z]* et al[.] \string\d\{4\})

<AN>etal. (<Y>) ([A-Z2][a-zA-Z]* et all.] (\string\d\{4\}))

<AN> and <AN> (<Y>) ([A-Z] [a—zA-Z]* and [A-Z][a-zA-Z]* (\string\d\&{4\}))
<AN> & <AN> (<Y>) ([A-Z] [a-zA-Z]* & [A-Z][a—zA-Z]* (\string\d\&{4\}))
<AN> and <AN>, <Y> ([A-2Z2] [a-zA-Z]* and [A-Z] [a-zA-Z]*x[,] \d\{4\})
<AN> & <AN>, <Y> ([A-Z] [a—zA-Z]* & [A-Z][a-zA-Z]=*[,] \d\{4\})
<AN>, <Y> ([A-Z][a-zA-Z]*[,] \string\d\{4\})

<AN> <Y> ([A-Z][a-zA-Z]* \string\d\{4\})

<AN>, (<Y><I>) ([A-Z] [a—zA-Z]* (\string\d\{4\} [a-z]*))

< multiple indices seperated by commas > | .*?[(.*?)]

2.11 Mapping tasks

Connecting author name to e-mail: In general, each author name present in the author section as-
sociates with some e-mail. OCR++ tries to recover this association using simple rules, for example,
sub-string match between username and author names, abbreviated full name as username, order of
occurrence of e-mails etc.

Citation reference mapping: Each extracted citation instance is mapped to respective reference. Since,
there are two different styles of writing citation instances, Indexed and Non-indexed, we define mapping
tasks for each style separately. Indexed citations are mapped directly to references with the index in-
side enclosed brackets. The extracted index is mapped with the corresponding reference. Non-indexed
citations are represented using combination of year of publication and author’s last name.

3 Results and discussion

Following an evaluation carried out by Lipinski et al. (2013), GROBID provided the best results over
seven existing systems, with several metadata recognized with over 90% precision and recall. Therefore,
we compare OCR++ with the state-of-the-art GROBID. We compare results for each of the sub-tasks
for both the systems against the ground-truth dataset. The ground-truth dataset is prepared by manual
annotation of title, author names, affiliations, URLs, sections, subsections, section headings, table head-
ings, figure headings and references for 138 articles from different publishers. The publisher names are
present in Table 3. We divide article set into training and test datasets in the ratio of 20:80. Note that each
of the extraction modules described in the previous section also have separate training sample count, for
instance, 6300 samples have been used to train the title extraction. Also, we observe that both the sys-
tems provide partial results in some cases. For example, in some cases, only half of the title is extracted
or the author names are incomplete. In order to accommodate partial results from extraction tasks, we
provide evaluation results at token level, i.e, what fraction of the tokens are correctly retrieved.

Table 2 presents comparative results for GROBID and OCR++. It shows that in terms of precision,
OCR++ outperforms GROBID in all the sub-tasks. Recall is higher for GROBID for some of the meta-
data extraction tasks. In OCR++, since title extraction depends on the first extracted chunk from section
extraction, the errors in chunk extraction lead to low recall in title extraction. Similar problem results
in lower recall in author name extraction. Due to the presence of variety of white space length between
author first, middle and last name in various formats, we observe low recall overall in author name ex-
traction subtasks. We also found that in many cases author-emails are quite different from author names
resulting in lower recall for author-email extraction subtask. OCR++ outperforms GROBID in majority
of the structural information extraction subtasks in terms of both precision and recall. We observe that
GROBID performs poorly for table heading extraction due to intermingling of table text with heading
tokens and unnumbered footnotes. Similar argument holds for the figure heading as well. URL extrac-

tion feature is not implemented in GROBID, while OCR++ extracts it very accurately. Similarly, poor
extraction of non-indexed footnotes resulted in lower recall for footnote extraction subtask.

Similarly, Table 3 compares GROBID and OCR++ for different publishing formats. Here the results
seem to be quite impressive with OCR++ outperforming GROBID in almost all cases. This demonstrates
the effectiveness and robustness of using generic patterns and rules used in building OCR++. As our
system is more biased towards single and double column formats, we observe less performance on three
column formats. Similarly, non-indexed sections format show less performance than indexed sections

format.
Table 2: Micro-average accuracy for GROBID and OCR++ for different extractive subtasks.

GROBID OCR++
Subtask Precision | Recall | F-Score || Precision | Recall | F-Score
Title 0.93 0.94 0.93 0.96 0.85 0.90
Author First Name 0.81 0.81 0.81 0.91 0.65 0.76
Author Middle Name N/A N/A N/A 1.0 0.38 0.55
Author Last Name 0.83 0.82 0.83 0.91 0.65 0.76
Email 0.80 0.20 0.33 0.90 0.93 0.91
Affiliation 0.74 0.60 0.66 0.80 0.76 0.78
Section Headings 0.70 0.87 0.78 0.80 0.72 0.76
Figure headings 0.59 0.42 0.49 0.96 0.75 0.84
Table headings 0.77 0.17 0.28 0.87 0.74 0.80
URLs N/A N/A N/A 1.0 0.94 0.97
Footnotes 0.80 0.42 0.55 0.91 0.63 0.91
Author-Email 0.38 0.24 0.29 0.93 0.44 0.60

Table 3: Micro-average accuracy for GROBID and OCR++ for different publishing styles.

GROBID OCR++

Publisher | paper count | Precision | Recall | F-Score || Precision | Recall | F-Score
IEEE 30 0.82 0.61 0.70 0.9 0.69 0.78
ARXIV 25 0.75 0.63 0.68 0.91 0.73 0.81
ACM 35 0.69 0.49 0.58 0.89 0.71 0.79
ACL 16 0.89 0.59 0.71 0.91 0.79 0.85
SPRINGER 17 0.78 0.6 0.68 0.85 0.63 0.72
CHI 3 0.13 0.20 0.16 0.5 0.36 0.42
ELSEVIER 6 0.58 0.6 0.59 0.82 0.74 0.78
NIPS 3 0.82 0.68 0.74 0.83 0.72 0.77
ICML 1 0.6 0.6 0.6 0.59 0.54 0.56
ICLR 1 0.49 0.55 0.52 0.67 0.52 0.59
JMLR 1 0.58 0.55 0.56 0.86 0.83 0.85

Since citation instance annotation demands significant extent of human-efforts, we randomly select
eight PDF articles from eight different publishers from ground-truth dataset PDFs. Manual annotation
produces 328 citation instances. We also annotate references to produce 187 references in total. Ta-
ble 4 shows performance comparison for bibliography related tasks. As depicted from Table 4, OCR++
performs better for both citation and reference extraction tasks. GROBID does not provide Citation-
Reference mapping, which is an additional feature of OCR++.

Table 4: Micro-average accuracy for GROBID and OCR++ bibliography extraction tasks.

GROBID OCR++
Precision | Recall | F-Score || Precision | Recall | F-Score
Citation 0.93 0.81 0.87 0.94 0.97 0.95
Reference 0.94 0.94 0.94 0.98 0.99 0.98
Citation-Reference N/A N/A N/A 0.94 0.97 0.95

Next, we investigate whether better formatting styles over the years lead to higher precision by the
proposed tool. Also, we compare OCR++ with GROBID in terms of processing time.
3.1 Effect of formatting style on precision

We select International Conference on Computational Linguistics (COLING) as a representative example
to understand the effect of evolution in formatting styles over the years on the accuracy of the extraction

task. We select ten random articles each from six different years of publications. OCR++ is used to
extract title for each year. Figure 3 presents title extraction accuracy for each year, reinstating the fact
that the recent year publications produce higher extraction accuracy due to better formatting styles and
advancement in converters from Word/LaTeX to PDF.

1.0
. 0.8
Q
g 0.6
g 0.4 B Precision
3 Recall
0.2 B F-score
0.0 I
1986 1990 1994 2004 2008 2010

Year

Figure 3: Title extraction accuracy calculated at six different years for COLING.

3.2 Processing time

To compare the processing times, we conducted experiments on a set of 1000 PDFs. The evaluation
was performed on a single 64-bit machine, eight core, 2003.0 MHz processor and CentOS 6.5 version.
Figure 4 demonstrates comparison between processing time of GROBID and OCR++, while processing
some PDF articles in batch mode. There is significant difference in the execution time of GROBID and
OCR++, with OCR++ being much faster than GROBID for processing a batch of 100 articles.

40 T T T I I
35 || B GROBID i
30 HE= OCR++ |

25 |- .

20 |- 1
15 |- 1
10 - 1

Processing time (minutes)

5
0 —
1 10 100 500 1000
Article count

T
|

Figure 4: Comparison between batch processing time of GROBID and OCR++.

3.3 User experience study

To conduct a user experience study, we present OCR++ to a group of researchers (subjects). Each
subject is given two URLs: 1) OCR++ server URL and 2) Google survey form'?. A subject can upload
any research article in PDF format on the server and visualize the output. In the end, the subject has to
fill a response sheet on the Google form. We ask subjects questions related to their experience such as,
a) which extraction task did you like the most? b) have you found the system to be really useful? c) have
you used similar kind of system before, d) do you find the system slow, fast or moderate,) comments
on the overall system experience and f) drawbacks of the system and suggestions for improvements.
Total 30 subjects participated in the user experience survey. Among the most liked sub-tasks, title
extraction comes first with 50% of votes. Affiliation and author name extraction tasks come second and
third respectively. All the subjects found the system to be very useful. Only two of the subjects had used

"http://tinyurl.com/juxq2bt

a similar system before. As far as the computational speed is concerned, 50% subjects found the system
performance to be fast while 33% felt it to be moderate.

4 Use Cases

4.1 Curation of dataset links

With the community is seeing a push towards reproducibility of results, the links to datasets in the re-
search papers are becoming very informative sources for researchers. Nevertheless, to best of our knowl-
edge, we do not find any work on automatic curation of dataset links from the conference proceedings.
With OCR++, we can automatically curate dataset related links present in the articles. In order to inves-
tigate this in further detail, we aimed to extract dataset links from the NLP venue proceedings. We ran
OCR++ on four NLP proceedings, ACL 2015, NAACL 2015, ACL 2014, and ECAL 2014, available in
PDF format. We extract all the URLs present in the proceedings. We then filter those URLs which are
either part of Datasets section’s body or are present in the footnotes of Datasets section, along with the
URLs that consist of one of the three tokens: datasets, data, dumps. Table 5 presents statistics over these
four proceedings for the extraction task. From the dataset links thus obtained, precision was found by
human judgement as to whether a retrieved link corresponds to a dataset. One clear trend we saw was the
increase in the number of dataset links from year 2014 to 2015. In some cases, retrieved link corresponds
to project pages, tools, researcher’s homepage etc. resulting in lowering of precision values.

Table 5: Proceedings dataset extraction statistics: Article count represents total number of articles present
in the proceedings. Total links and Dataset links correspond to total number of unique URLs and total
number of unique dataset links extracted by OCR++ respectively. Precision measures correct number of
dataset links.

Venue Year Articles Count Total links Dataset links Precision

ACL 2015 174 345 38 0.74
NAACL 2015 186 186 18 0.50
ACL 2014 139 202 16 0.50
EACL 2014 78 141 12 0.67

4.2 Section-wise citation distribution

Citation instance count plays a very important role in determining future popularity of a research paper.
An article’s text is distributed among several sections. Some sections have more fraction of citations
than the rest. In the second use case, we plan to study the section-wise citation distribution. Section-
wise citation distribution refers to how citations are distributed over multiple sections in the article’s
text. This is an important characteristic of the citations and has recently been used for developing a
faceted recommendation system (Chakraborty et al., 2016). We group specific sections to 5 generic
sections, Background, Datasets, Method, Result/Evaluation and Discussion/Conclusion. Table 6 shows
an example mapping from specific to generic section names. Note that this mapping can be changed
as per the requirement. Figure 5 shows citation distribution for article dataset consisting of the 138
articles mentioned earlier. Maximum number of citations are present in the method section, followed by
background and discussion and conclusion. Result section comprises the least number of citations.

Table 6: Specific to generic section mapping

Generic section Specific sections

Background Introduction, Related Work, Background
Method Methodology, Method Specific names
Result/Evaluation Results, Evaluation, Metrics
Discussion/Conclusion | Discussion, Conclusion, Acknowledgment

S Deployment
The current version of OCR++ is deployed at our research group server !!. The present infrastructure
consists of single CentOS instance. '2. We also make entire source code publicly available 3.

""CNeRG. http://cnergres.iitkgp.ac.in
2OCR++ server. http://cnergres.iitkgp.ac.in/OCR++/home/
3Source code. http:/tinyurl.com/hs9oap2.

0.45 | : | |
0.40 | .
0.35 |
0.30 |-
0.25 |
0.20 |-
0.15 |
0.10 |-
0.05 |
0.00

|l m I

Background Method Results Conclusion

Figure 5: Sectionwise citation distribution in article dataset

6 Related work

Researchers follow several different approaches for individual extraction tasks. The approaches based
on image processing segments document image into several text blocks. Further, each segmented block
is classified into predefined set of logical blocks using machine learning algorithms. Gobbledoc (Nagy
etal., 1992) used X-Y tree data structure that converts the two-dimensional page segmentation problem
into a series of one-dimensional string-parsing problem. Dengel and Dubiel (1995) employed the concept
language of the GTree for logical labeling. Similar work by Esposito et al. (1995) presented a hybrid
approach to segment an image by means of a top-down technique and then bottom-up approach to form
complex layout component.

Similarly, current state-of-the-art systems use support vector machine (SVM) (Han et al., 2003) and
conditional random field (CRF) (Councill et al., 2008; Luong et al., 2012; Lafferty et al., 2001) based
machine learning models for information extraction. A study by Granitzer et al. (2012) compares Par-
secit (a CRF based system) and Mendeley Desktop'* (a SVM based system). They observed that SVMs
provide reasonable performance in solving the challenge of metadata extraction than CRF based ap-
proach. However, Lipinski et al. (2013) observed that GROBID (a CRF based system) performed better
than Mendeley Desktop.

7 Conclusions

The goal of this work was to develop an open-source information extraction framework for scientific
articles using generic patterns present in various publication formats. In particular, we extract metadata
information and section related information. The framework also performs two mapping tasks, author
and e-mail mapping and citations to reference mapping. Despite OCR errors and the great difference in
the publishing formats, the framework outperforms the state-of-the-art systems with high margin. We
find that the hand-written rules and heuristics produced better results than previously proposed machine
learning models.

The current framework has certain limitations. As described in Section 2, we employ pdf2xml to
convert PDF article into a rich XML file. Even though the XML file consists of rich metadata, it suffers
from common errors generated during OCR conversion. Example of such common errors are end-of-
line hyphenation and character encoding problem. This is a common problem especially in two-column
articles. Secondly, the current version of pdf2xml lacks character encoding for non English characters.
The two mentioned major problems along with other minor OCR conversion errors are directly reflected
in the OCR++ output.

As discussed in previous section, considerable amount of work has already been done to extract refer-
ence entities (title, publisher name, date, DOI, etc.) with high accuracy. Therefore, OCR++ does not aim
to extract reference entities. In future, we aim to extend current framework by extracting information
present in figures and tables. Figures and tables present concise statistics about dataset and results. We
are also currently in process to extend the functionality for non English articles.

"“https://www.mendeley.com/

References

Joeran Beel, Bela Gipp, Stefan Langer, Marcel Genzmehr, Erik Wilde, Andreas Niirnberger, and Jim Pitman.
2011. Introducing mr. dlib, a machine-readable digital library. In Proceedings of the 11th annual international
ACM/IEEE joint conference on Digital libraries, pages 463—464. ACM.

Tanmoy Chakraborty, Amrith Krishna, Mayank Singh, Niloy Ganguly, Pawan Goyal, and Animesh Mukherjee.
2016. Ferosa: A faceted recommendation system for scientific articles. In Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, pages 528-541. Springer.

Isaac G Councill, C Lee Giles, and Min-Yen Kan. 2008. Parscit: an open-source crf reference string parsing
package. In LREC.

Andreas Dengel and Frank Dubiel. 1995. Clustering and classification of document structure-a machine learning
approach. In Document Analysis and Recognition, 1995., Proceedings of the Third International Conference
on, volume 2, pages 587-591. IEEE.

Floriana Esposito, Donato Malerba, and Giovanni Semeraro. 1995. A knowledge-based approach to the layout
analysis. In Document Analysis and Recognition, 1995., Proceedings of the Third International Conference on,
volume 1, pages 466—471. IEEE.

Michael Granitzer, Maya Hristakeva, Kris Jack, and Robert Knight. 2012. A comparison of metadata extraction
techniques for crowdsourced bibliographic metadata management. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, pages 962-964. ACM.

Hui Han, C Lee Giles, Eren Manavoglu, Hongyuan Zha, Zhenyue Zhang, Edward Fox, et al. 2003. Automatic
document metadata extraction using support vector machines. In Digital Libraries, 2003. Proceedings. 2003
Joint Conference on, pages 37-48. IEEE.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the Eighteenth International Conference
on Machine Learning, ICML °01, pages 282-289, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Mario Lipinski, Kevin Yao, Corinna Breitinger, Joeran Beel, and Bela Gipp. 2013. Evaluation of header metadata
extraction approaches and tools for scientific pdf documents. In Proceedings of the 13th ACM/IEEE-CS joint
conference on Digital libraries, pages 385-386. ACM.

Patrice Lopez. 2009. Grobid: Combining automatic bibliographic data recognition and term extraction for schol-
arship publications. In Research and Advanced Technology for Digital Libraries, pages 473—474. Springer.

Minh-Thang Luong, Thuy Dung Nguyen, and Min-Yen Kan. 2012. Logical structure recovery in scholarly articles
with rich document features. Multimedia Storage and Retrieval Innovations for Digital Library Systems, page
270.

George Nagy, Sharad Seth, and Mahesh Viswanathan. 1992. A prototype document image analysis system for
technical journals. Computer, 25(7):10-22, July.

