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Abstract

The compositionality degree of multiword ex-
pressions indicates to what extent the meaning
of a phrase can be derived from the meaning
of its constituents and their grammatical rela-
tions. Prediction of (non)-compositionality is
a task that has been frequently addressed with
distributional semantic models. We introduce
a novel technique to blend hierarchical infor-
mation with distributional information for pre-
dicting compositionality. In particular, we use
hypernymy information of the multiword and
its constituents encoded in the form of the re-
cently introduced Poincaré embeddings in ad-
dition to the distributional information to de-
tect compositionality for noun phrases. Us-
ing a weighted average of the distributional
similarity and a Poincaré similarity function,
we obtain consistent and substantial, statis-
tically significant improvement across three
gold standard datasets over state-of-the-art
models based on distributional information
only. Unlike traditional approaches that solely
use an unsupervised setting, we have also
framed the problem as a supervised task, ob-
taining comparable improvements. Further,
we publicly release our Poincaré embeddings,
which are trained on the output of handcrafted
lexical-syntactic patterns on a large corpus.

1 Introduction

An important challenge in Natural Language Pro-
cessing is to represent words, phrases, and larger
spans in a way that reflects their meaning. Com-
positionality is one of the strongest assumptions
in semantics, stating that the meaning of larger
units can be derived from their smaller parts and
their contextual relation. However, for idiomatic
phrases, this assumption does not hold true as the

meaning of the whole phrase may not be related
to their parts in a straightforward fashion. The
meaning of the phrases like ‘data format’, ‘head
teacher’, ‘green tree’ can easily be understood
from the constituent words whereas the semantics
of the idiomatic phrases like ‘couch potato’, ‘rat
race’, ‘nut case’ are non-compositional, i.e., refer
to a different meaning than their parts suggest.

In this work, we address compositionality pre-
diction, which is the task of assigning a numerical
score to a phrase indicating the extent to which
the meaning of the phrase can be derived from the
meanings of its constituent words. To motivate
its importance, e.g., in machine translation, non-
compositional phrases must be translated as a unit;
in word sense disambiguation, assigning one of
the constituent word’s senses to the whole phrase
should be avoided for idiomatic phrases; semantic
parsing also requires to correctly identify complex
predicates and their arguments in this way.

A significant amount of effort has gone into
operationalizing dense-vector distributional se-
mantic models (DSMs) of different flavors such
as count-based models (Baldwin et al. (2003);
Venkatapathy and Joshi (2005); McCarthy et al.
(2007)), word embeddings based on word2vec
(both CBOW and SkipGram) and similar (Reddy
et al. (2011); Salehi et al. (2014); Cordeiro et al.
(2016, 2019)), and multi-sense skip-gram mod-
els for compositionality prediction (Salehi et al.,
2015). All these attempts are based on the hypoth-
esis that the composition of the representation of
constituent words will be closer to the representa-
tion of the entire phrase in case of compositional
phrases as compared to the non-compositional
ones (Choueka, 1988).

Observing that the distributional information
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alone is not enough for precise compositionality
prediction, we propose to utilize hypernymy in-
formation, hypothesizing that, for compositional
phrases, the hypernym of the whole phrase is se-
mantically closer to the hypernyms of one of the
constituent words (head words) as compared to
the non-compositional phrases. For example, ‘art
school’ and ‘school’ have one common hypernym
‘educational institution’ whereas ‘hot dog’ has no
common hypernym with ‘hot’ or ‘dog’, apart from
very abstract concepts such as ‘physical entity’.
Of course, this only holds for noun phrases, where
taxonomic relations between nouns apply.

To represent hypernymy information we use
Poincaré embeddings (Nickel and Kiela, 2017) for
learning hierarchical representations of symbolic
data by embedding them into a hyperbolic space.
To this end, we extract hyponym-hypernym pairs
by applying well-known lexical-syntactic patterns
proposed by Hearst (1992) on a large corpus and
train Poincaré embeddings on a list of hyponym-
hypernym pairs.

Relying on two types of representations, i.e.,
dense vectors in the Euclidean space and the novel
hyperbolic Poincaré embeddings, we interpolate
their similarity predictions in a novel composition-
ality score metric that takes both distributional and
hypernymy information into account. We eval-
uate our proposed metric on three well-accepted
English datasets, i.e., Reddy (Reddy et al., 2011),
Reddy++ (Ramisch et al., 2016) and Farahmand
(Farahmand et al., 2015), demonstrating a perfor-
mance boost when including hyperbolic embed-
dings by 2-4% absolute points across all datasets.

In particular, our work contains the three fol-
lowing contributions:

1. We devise a straightforward and efficient ap-
proach for combining distributional and hy-
pernymy information for the task of noun
phrase compositionality prediction. As far as
we are aware, this is the first application of
Poincaré embeddings to this task.

2. We demonstrate consistent and significant
improvements on benchmark datasets in un-
supervised and supervised settings.

3. We publicly release our Poincaré embeddings
trained on pattern extractions on a very large
corpus.

2 Related Work

Some of the initial efforts on compositionality pre-
diction were undertaken by Baldwin et al. (2003),
who use LSA to calculate the similarity between a
phrase and its components, whereas Venkatapathy
and Joshi (2005) extend this idea with collocation
features (e.g., phrase frequency, point-wise mutual
information). Researchers also tried to identify
non-compositionality in verb-noun phrases using
syntax (Cook et al., 2007) and selectional prefer-
ences (McCarthy et al., 2007). Attempts to ex-
amine the possibility to derive the semantics of a
compound or multiword expression from its parts
have been researched extensively (McCarthy et al.,
2003; Mitchell and Lapata, 2008; Tratz and Hovy,
2010). Reddy et al. (2011) define a composition-
ality score and use different vector operations to
estimate the semantic distance between a phrase
and its individual components. Some of the in-
vestigations are made for compositionality detec-
tion using representation learning of word embed-
dings (Socher et al., 2012; Salehi et al., 2015).
Salehi et al. (2014) also show that distributional
similarity over multiple languages can help in im-
proving the quality of compositionality prediction.

In a recent attempt, Yazdani et al. (2015) tries
to learn semantic composition and finds that com-
plex functions such as polynomial projection and
neural networks can model semantic composition
more effectively than the commonly used addi-
tive and multiplicative functions. Kiela and Clark
(2013) detect non-compositionality using con-
cepts of mutual information. Lioma et al. (2015)
replace the context vectors with language models
and compute their Kullback–Leibler divergence to
approximate their semantic distance. In another
stream, researchers have also attempted to classify
idiomatic vs. non-idiomatic expressions in differ-
ent languages considering the context of the ex-
pressions (Flor and Klebanov, 2018; Bizzoni et al.,
2018; Peng et al., 2018), see also a respective
shared task (Biemann and Giesbrecht, 2011). In
one of the recent attempts, Cordeiro et al. (2016)
conduct an analysis of several DSMs (word2vec,
GloVe, PPMI) with variations of hyper-parameters
and produce the state-of-the-art results in the com-
positionality prediction task, which is extended
further for different languages by Cordeiro et al.
(2019). We take their work as our baseline and
carry forward our investigation to improve the
state-of-the-art performance by introducing the



hyponymy-hypernymy information in the form of
Poincaré embeddings.

Le et al. (2019) and Aly et al. (2019) also
showed usefulness the use of Poincaré embed-
dings: in their case for inducing taxonomies from
the text. In both works, hyperbolic embeddings
are trained using relations harvested using Hearst
patterns, like in our work. The usefulness of hy-
perbolic embeddings was also shown beyond text
processing: Khrulkov et al. (2019) successfully
applied them for hierarchical relations in image
classification tasks.

3 Methodology

Our aim is to produce a compositionality score
for a given two-word noun phrase w1w2. As
per our hypothesis, the proposed compositional-
ity score metric has two components: one com-
ponent takes care of the extent of the distribu-
tional similarity between the phrase and the com-
position of constituent words. The second com-
ponent captures hypernymy-based similarity ob-
tained through Poincaré embeddings (Nickel and
Kiela, 2017). The rationale behind this is that
replacing a word with its hypernym should yield
phrases with similar meaning for compositional
cases, dissimilar phrases otherwise (e.g., a ‘red
herring’ is not similar to ‘red fish’).

Distributional component: For the first compo-
nent, we follow the scheme prescribed by Cordeiro
et al. (2016), relying on the state-of-the-art DSM
model and the score metric (ScoreD) proposed in
that work. The metric ScoreD is defined as,

ScoreD(w1w2) = cos(v(w1w2), v(w1 + w2)),
(1)

where

v(w1 + w2) =
v(w1)

‖v(w1)‖
+

v(w2)

‖v(w2)‖
, (2)

and v(w) is the vector representation of w ob-
tained from the DSM, ||.|| is the L2-norm. For the
composition of two component word vectors, we
use the additive model, which is well-accepted in
the literature (Mitchell and Lapata, 2010).

Hypernymy component: For the second com-
ponent, we prepare Poincaré embeddings. The
Poincaré embedding as introduced by Nickel and
Kiela (2017) is a very recent approach to learn hi-
erarchical representations of symbolic data by em-

bedding them into the hyperbolic space. The un-
derlying hyperbolic geometry helps to learn parsi-
monious representations of symbolic data by si-
multaneously capturing hierarchy and similarity.
As per this proposed Poincaré ball model, let

βd = {x ∈ R : ‖x‖ < 1} (3)

be the open d-dimensional unit ball, where ‖.‖ de-
notes the Euclidean norm.

The list of hyponym-hypernym pairs was ob-
tained by applying lexical-syntactic patterns de-
scribed by Hearst (1992) on the corpus prepared
by Panchenko et al. (2016). This corpus is a con-
catenation of the English Wikipedia (2016 dump),
Gigaword (Parker et al., 2009), ukWaC (Fer-
raresi et al., 2008) and English news corpora from
the Leipzig Corpora Collection (Goldhahn et al.,
2012). The lexical-syntactic patterns proposed by
Hearst (1992) and further extended and imple-
mented in the form of FSTs by Panchenko et al.
(2012)1 for extracting (noisy) hyponym-hypernym
pairs are given as follows – (i) such NP as NP,
NP[,] and/or NP; (ii) NP such as NP, NP[,] and/or
NP; (iii) NP, NP [,] or other NP; (iv) NP, NP [,]
and other NP; (v) NP, including NP, NP [,] and/or
NP; (vi) NP, especially NP, NP [,] and/or NP.

Pattern extraction on the corpus yields a list of
27.6 million hyponym-hypernym pairs along with
the frequency of their occurrence in the corpus.
We normalize the frequency of each hyponym-
hypernym pair by dividing it by the logarithm
of the global frequency of the hypernym in the
list, which realizes a TF-IDF (Sparck Jones, 1972)
weighting, to downrank noisy extractions with
frequent pattern-extracted ‘hypernyms’ such as
‘problem, issue, bit’.

Further, we sort the list of hyponym-hypernym
pairs with respect to their the normalized fre-
quency. As the Poincaré embedding method takes
as input a list of hyponym-hypernym pairs, we
first prepare a list by adding top k pairs (based
on normalized frequency) where the noun phrases
or component words present in the gold-standard
dataset exist as hyponym or hypernym. Note that
we embed noun phrases as extracted by the pat-
terns as units, i.e. a term like “educational insti-
tution” will get its own embedding if it appears
in the pattern extractions as an NP. This list is
quite sparse and therefore the hyperbolic space is

1https://zenodo.org/record/3234817
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not rich enough to produce good results (see Sec-
tion 5).

In order to circumvent this problem, we fur-
ther populate the above list by appending the top
m percent pairs from the complete sorted list
of hyponym-hypernym pairs we prepared earlier.
Next, we use this expanded list as input to prepare
Poincaré embeddings.

Hyperparameters for training Poincaré model:
For both the unsupervised and the supervised
setup we maintain the following settings for the
training of the Poincaré model unless otherwise
stated: vector dimensionality d = 50, number of
negative samples = 2, learning rate = 0.1, coeffi-
cient used for L2-regularization while training = 1,
and number of epochs to use for burn-in initializa-
tion = 10.

3.1 Unsupervised Setup

The Poincaré distance between points x, y ∈ βd is
defined in the following way:

d(x, y) = arcosh

(
1 + 2

||x− y||2

(1− ‖x‖2)(1− ‖y‖2)

)
.

(4)
Poincaré similarity score ScoreP is derived

from the Poincaré distance as

ScoreP (x, y) =
1

1 + d(x, y)
. (5)

Let w1w2 be the noun phrase for which we
compute the compositionality score. Further let
Hw1w2 be the set of top k hypernyms of the phrase
w1w2 and Hw1 , Hw2 be the set of top k hyper-
nyms of the constituent words w1 and w2, respec-
tively. Our proposed compositionality score met-
ric Score(w1w2) is defined as follows:

Score(w1w2) = (1− α)ScoreD(w1w2)+

α max
a∈Hw1w2
b∈Hw1w2
c∈Hw2w2

(ScoreP (v(a), v(b) + v(c))), (6)

where v(w) indicates the vector representation of
the word w and α is used to set the relative weight
of the two components.

3.2 Supervised Setup

We explore the utility of hierarchical information
encoded in Poincaré embeddings for the task of
compositionality prediction in a supervised setup

as well. As our aim is to predict a compositional-
ity score, we employ several regression techniques
like Support Vector Regression (Drucker et al.,
1997), Kernel Ridge Regression (Vovk, 2013), k-
Nearest Neighbours Regression (Altman, 1992),
Partial Least Squares Regression (PLS) (Abdi,
2007) etc. We randomly split the full dataset into
a 75% training set and a 25% test set, and experi-
ment on 25 such random splits. For each split, we
plugin the concatenation of the vector representa-
tion of the noun phrase as well as the component
words. The supervised predicted score is

ScoreS(w1w2) = (1− α)·ScoreDS(w1w2)+

α·ScorePS(w1w2),

(7)

where ScoreDS(w1w2) is the predicted score
when we plugin the vectors from DSMs into the
regression model and ScorePS(w1w2) is the pre-
dicted score when Poincaré embeddings are used
as input. Thus, ScoreS indicates the weighted
(weight = α) mixed prediction score from the su-
pervised model. We measure the performance of
our supervised model for each of the 25 random
splits and report the mean and standard deviation
of the performance metric.

3.3 Hyperparameters of the Model

Apart from the hyperparameters used to train the
Poincaré model, our proposed model has three hy-
perparameters: k, m and α. k indicates the num-
ber of top hypernyms or hyponyms per target word
to be used for training the Poincaré model. Since
only considering hyponym-hypernym pairs con-
taining target words does not lead to sufficient
training samples for the Poincaré model, we add
top m% hyponym-hypernym pairs extracted by
using Hearst pattern to the training set. Note that
we consider the top hyponym-hypernym pairs on
the basis of normalized frequency. α indicates the
relative weight between Poincaré similarity and
distributional similarity. We have optimized these
three hyperparameters by grid search.

4 Evaluation

4.1 Datasets

To evaluate our proposed models (both super-
vised and unsupervised) we use three gold stan-
dard datasets for English on compositionality de-
tection and describe them in the following.



Reddy (RD): This dataset contains composi-
tionality judgments for 90 compounds in a scale of
literality from 0 (idiomatic) to 5 (compositional),
obtained by averaging crowdsourced judgments
on these pairs (Reddy et al., 2011). For evaluation,
we use only the global compositionality score, ig-
noring individual word judgments.

Reddy++ (RD++): This is a recently introduced
resource created for evaluation (Ramisch et al.,
2016) that extends the Reddy dataset with an addi-
tional 90 English nominal compounds, amounting
to a total of 180 nominal compounds. Consistent
with RD, the scores range from 0 (idiomatic) to
5 (compositional) and are annotated through Me-
chanical Turk and averaged over the annotators.
The additional 90 entries are adjective-noun pairs,
balanced with respect to compositionality.

Farahmand (FD): This dataset contains 1042
English compounds extracted from Wikipedia
with binary non-compositionality judgments by
four experts (Farahmand et al., 2015). In evalu-
ations we use the sum of all the judgments to have
a single numeral compositionality score, ranging
from 0 (compositional) to 4 (idiomatic).

We optimize our method on subsets of the
datasets for pairs and constituents with available
Poincaré embeddings in order to measure the di-
rect impact of our method, which comprises 79,
146 and 780 datapoints for the three sets RD-R,
RD++-R and FD-R, respectively.

We subsequently report scores on the full
datasets RD-F (90), RD++-F (180) and FD-F
(1042) for the sake of fair comparison to previous
works. In cases where no Poincaré embeddings
are available, we use the fallback strategy of only
relying on the distributional model, i.e. ScoreDS .

For the supervised setup, we experiment on the
FD dataset (on the reduced version and the full
version) since for the other two datasets, the num-
ber of instances are not enough for supervision.

4.2 Baselines

We use the recent work by Cordeiro et al. (2016)
as the baseline, where authors apply several dis-
tributional semantic models and their variants by
tuning hyperparameters like the dimension of vec-
tors, the window-size during training and others.
We resort to PPMI-SVD, two variants of word2vec
(CBOW and SkipGram) and GloVe as our base-
lines. We use these models as provided, with the

vector dimension size of 750 (PPMI-SVD, W2V)
and 500 (GloVe)2.

PPMI-SVD baseline: For each word, its neigh-
boring nouns and verbs in a symmetric sliding
window of w words in both directions, using a
linear decay weighting scheme with respect to its
distance d to the target (Levy et al., 2015) are ex-
tracted. The representation of a word is a vector
containing the positive pointwise mutual informa-
tion (PPMI) association scores between the word
and its contexts. Note that, for each target word,
contexts that appear less than 1000 times are dis-
carded. The Dissect toolkit (Dinu et al., 2013) is
then used in order to build a PPMI matrix and its
dimensionality is reduced using singular value de-
composition (SVD) to factorize the matrix.

word2vec baseline: This DSM is prepared us-
ing the well-known word2vec (Mikolov et al.,
2013) in both variants CBOW (W2V-CBOW) and
Skip-Gram (W2V-SG), using default configura-
tions except for the following: no hierarchical
softmax; negative sampling of 25; frequent-word
downsampling weight of 10−6; runs 15 training it-
erations; minimum word count threshold of 5.

GloVe baseline: The count-based DSM of Pen-
nington et al. (2014), implementing a factorization
of the co-occurrence count matrix is used for the
task. The configurations are the default ones, ex-
cept for the following: internal cutoff parameter
xmax = 75; builds co-occurrence matrix in 15 it-
erations; minimum word count threshold of 5.

Other baseline models proposed by Reddy et al.
(2011), Salehi et al. (2014), Salehi et al. (2015)
report results only on Reddy dataset (since the
other two datasets have been introduced later)
whereas Yazdani et al. (2015) perform their eval-
uation only on the Farahmand dataset for their su-
pervised model. In addition, this supervised ap-
proach requires an additional resource of ∼ 70k
known noun phrases from Wikipedia for training.
However, Cordeiro et al. (2016) compare their best
models with all these baseline models and show
that their models outperform across all the respec-
tive datasets. Hence we execute all our evalu-
ations by considering only the best models pro-
posed by Cordeiro et al. (2016) as our baselines.

2These pre-trained DSMs were provided by Cordeiro
et al. (2016); on re-computation we get slightly different re-
sults than those reported in their paper.



4.3 Evaluation Setup
Quantitative evaluation is usually done by com-
paring model outcomes against the gold stan-
dard datasets. For all the three datasets (RD-R,
RD++-R, FD-R), we report Spearman’s rank cor-
relation (ρ) between the scores provided by the
humans and the compositionality score obtained
from the models. Note that for the nominal com-
pounds in FD-R dataset, higher human scores in-
dicate a higher degree of idiomaticity, which is
opposite to the scoring in the RD-R and RD++-R
datasets. We therefore always report the absolute
correlation values (|ρ|) for all the datasets.

5 Experimental Results

In this section, we report the results obtained from
the baseline models and the unsupervised and su-
pervised variants of our model.

5.1 Unsupervised Baseline Results
We compare the performance of the baseline mod-
els (Cordeiro et al., 2016) and Poincaré embed-
dings as a single signal on the reduced version
of the three gold standard datasets: RD-R (79
instances), RD++-R (146 instances), FD-R (780
instances) in order to closely examine the influ-
ence of Poincaré embeddings. Table 1 shows
the performance for all the baselines in terms
of Spearman’s rank correlation ρ. We observe
that W2V-CBOW model produces the best perfor-
mance across all the three datasets and W2V-SG
achieves the second-best performance. As noted
in the table, the Poincaré embeddings on their own
perform worse than all the other baselines. Fur-
ther, since our final model is based on an inter-
polation between Poincaré embeddings and W2V-
CBOW, we also attempted interpolation between
other four baseline models, but the best results
were always close to the better of the two models,
and are not reported here.

Base. Model RD-R RD++-R FD-R
W2V-CBOW 0.8045 0.6964 0.3405

W2V-SG 0.8034 0.6963 0.3396
GloVe 0.7604 0.6487 0.2620

PPMI-SVD 0.7484 0.6468 0.2428
Poincaré 0.6023 0.4765 0.2007

Table 1: Baseline (Cordeiro et al., 2016) results on the
reduced version of three gold-standard datasets ordered
in decreasing overall performance along with the re-
sults of using only Poincaré embedding.

5.2 Results of Proposed Unsupervised Model
We report the effect of tuning hyper-parameters in-
troduced in Section 3, e.g. k, m, or α.

Fixed k neighbours: We start by fixing k = 5
and obtain the correlations by varying m and α.
The results are presented in Table 2. We exper-
iment with values of m ranging from 0 to 10
and report results for m = 0, 1, 5, 10. Note that
here m = 0 indicates the case where we use the
Poincaré embeddings of the target word’s top k
hypernyms and hyponyms only with no additional
highly frequent hyponym-hypernym pairs. Values
of m > 10 degrade the quality, as too many noisy
pattern extractions would be used in training.
Key observations: For certain values of α
we obtain considerable improvements over the
baseline Spearman’s correlation when introduc-
ing Poincaré embeddings. The addition of top
hyponym-hypernym pairs (i.e., m > 0) improves
the performance of the model. Finally, note that
for m > 0, α = 0.4 generally produces better re-
sults across the three datasets.

m(%) α RD-R RD++-R FD-R
0.2 0.8160 0.7102 0.3536

0 0.4 0.8117 0.7012 0.3532
0.6 0.7844 0.6581 0.3278
0.2 0.8274 0.7155 0.3482

1 0.4 0.8391 0.7165 0.3373
0.6 0.8136 0.6817 0.3036
0.2 0.8362 0.7268 0.3501

5 0.4 0.8578 0.7389 0.3432
0.6 0.8467 0.7279 0.3126
0.2 0.8346 0.7250 0.3513

10 0.4 0.8421 0.7461 0.3469
0.6 0.8299 0.7372 0.3204

Table 2: Effect of the introduction of the Poincaré em-
beddings for varying values of m and α. Here W2V-
CBOW is used as distributional model.

MODEL-DP with W2V-CBOW
α RD-R RD++-R FD-R

0.2 0.8265 0.7177 0.3594
0.4 0.8324 0.7321 0.3646
0.6 0.8082 0.7077 0.3450

MODEL-DP with W2V-SG
α RD-R RD++-R FD-R

0.2 0.8244 0.7215 0.3603
0.4 0.8330 0.7337 0.3673
0.6 0.8152 0.7101 0.3461

Table 3: Performance of MODEL-DP using W2V-
CBOW as well as W2V-SG as distributional models:
Effect of removal of top 1% hypernym-hyponym pairs
from the top 10% pairs (k = 5).



Effect of the top m pairs: Since the extrac-
tion of the hypernyms from the corpus is com-
pletely unsupervised and based on handcrafted
lexical-syntactic patterns, we investigate whether
the most frequent hyponym-hypernym pairs are
affecting the quality of Poincaré embeddings, hav-
ing noted many erroneous extractions for very fre-
quent pairs. We fix the value of m = 10, but drop
the most frequent 1% hyponym-hypernym pairs
and retrain the Poincaré model with the rest of
the pairs. We call this variant MODEL-DP. The
upper half of Table 3 shows the performance of
this model while using W2V-CBOW as the distri-
butional models (k = 5, which was the optimal
k also in this setting). We compare the result of
MODEL-DP for α = 0.4 with Table 2, row corre-
sponding to m = 10%, α = 0.4.

k α RD-R RD++-R FD-R
0.2 0.8269 0.7228 0.3563

3 0.4 0.8275 0.7382 0.3557
0.6 0.8089 0.7188 0.3278
0.2 0.8265 0.7177 0.3594

5 0.4 0.8324 0.7321 0.3646
0.6 0.8082 0.7077 0.3450
0.2 0.8123 0.7103 0.3534

10 0.4 0.8168 0.7248 0.3589
0.6 0.7700 0.6957 0.3484

Table 4: Results obtained for MODEL-DP (m = 10,
top 1% hypernym-hyponym pairs removed) by varying
the values of k.

Key observations: We mainly observe that dis-
carding the most frequent 1% hyponym-hypernym
pairs improves the results for the largest dataset
FD-R considerably while making the results from
the other two datasets a little worse. We also pro-
duce results on MODEL-DP by varying the value
of k. We try with k = 3, 5, 10, the results of which
is presented in Table 4. Clearly, k = 5 gives the
best performance. If we consider very few hyper-
nyms per target word, it results in lack of sufficient
information for the Poincaré model, while training
with too many hypernyms per target word dilutes
the useful hierarchy information because it adds
noise.

Other DSM models: We use W2V-CBOW as
the DSM for MODEL-DP. Keeping all the other
parameters of MODEL-DP the same (i.e., m =
10, k = 5, α = 0.4) we replace the DSM by the
W2V-SG vectors, which was performing the sec-
ond best among the baselines. We are interested in
observing whether the Poincaré embeddings also

benefit other DSM models as well.
Key observations: The performance of this variant
of our model is presented in the lower half of Ta-
ble 3. We indeed observe the same effect of the
Poincaré embeddings improving the overall per-
formance by 3-4% on all datasets.

Other hyperparameters: In a series of experi-
ments that we do not report in detail for brevity, we
could make the following observations: For our
task, the vector dimensionality of Poincaré embed-
dings of d = 50 shows better results than higher
or lower values, as tested with d ∈ {20, 100}.
Similarly, we tried with several vector dimensions
of DSMs with d ∈ 50, 100, 300 but 750 gives
the best performance for the best models reported
by Cordeiro et al. (2016) and our model in the un-
supervised setup. We further tried varying the rel-
ative weight of single word vectors for the sum in
Equation 1, which did not have positive effects.

Performance for reduced dataset
Model RD-R RD++-R FD-R

W2V-CBOW 0.8045 0.6964 0.3405
MODEL-DP 0.8324 0.7321 0.3646

Performance for full dataset
Model RD-F RD++-F FD-F

W2V-CBOW 0.7867 0.7022 0.2688
MODEL-DP 0.8095 0.7302 0.2958

Table 5: Performance of our model (MODEL-DP) and
most competitive baseline (W2V-CBOW) for both the
reduced datasets and the whole datasets (using the fall-
back strategy).

Fallback strategy to encompass the whole
dataset: In all the above experiments we con-
sider the reduced version of the three gold-
standard datasets due to lack of the Poincaré em-
beddings for certain target words. We suggest a
fallback strategy to incorporate the target words
that do not have Poincaré embeddings. In cases
where the Poincaré embeddings are not present,
we fall back to the distributional similarity score.
In cases, where the Poincaré embeddings are avail-
able we use the combined score as discussed in
Section 3. Note that, the distributions of dis-
tributional similarity scores and proposed com-
bined scores are significantly different (accord-
ing to the z-test (Fisher, 1932)). Therefore while
falling back to the distributional similarity scores
we scale up the scores by the proportion of nor-
malized means of the two distributions.



Key observations: The results for this fall back
strategy is noted in the lower half of Table 5. We
observe that for all three datasets we perform sig-
nificantly better than the baselines. To be consis-
tent with the literature, we compare our perfor-
mance even with the supervised model proposed
by Yazdani et al. (2015) for the FD-F dataset. For
this dataset, the supervised model proposed by the
authors produces a Spearman’s rank correlation
(ρ) of 0.41 whereas the unsupervised MODEL-DP
produces 0.29. However, our supervised approach,
as we shall see later, beats this number reported
by Yazdani et al. (2015) by a considerable margin.

Significance test: From the extensive evaluation
of our model by tuning several hyper-parameters,
we obtain MODEL-DP (Table 3), which gives the
best performance for all the three datasets out-
performing the baselines (Table 1). We perform
Wilcoxon’s sign-rank test (Rey and Neuhäuser,
2011) for all the three datasets separately. We ob-
tain p < 0.05 while comparing MODEL-DP and
the best baseline model (W2V-CBOW) indicating
that the difference between their compositionality
predictions is statistically significant.

Error analysis: We investigate the erroneous
cases for which the annotators give a high compo-
sitionality score while our model produces a very
low compositional score, e.g. ‘area director’, ‘dis-
cussion page’, and ‘emergency transportation’.
We observe that the number of hypernyms ex-
tracted for these target noun phrases is very low (1
or 2), which leads to a less informative hierarchi-
cal representation in the Poincaré model; this is ei-
ther caused by a low frequency of terms overall, or
by a low occurrence in hypernym pattern contexts.
We also analyzed the non-compositional cases for
which the annotators give a low compositionality
score but our model produces a high score, e.g.
‘hard disk’, ‘hard drive’ and ‘soft drink’. In these
cases even though they are non-compositional, the
hypernyms of the noun phrases match with the hy-
pernyms of the head constituent words. For exam-
ple, ‘hard disk’ and ‘disk’ have the same hyper-
nym ‘storage device’; similarly ‘soft drink’ and
‘drink’ have ‘product’; ‘hard drive’ and ‘drive’
have ‘device’. Thus, these non-compositional
cases are different from entirely opaque expres-
sions like ‘couch potato’, ‘hot dog’ where none of
the hypernyms of the noun phrases match with the
hypernyms of any of the constituent words. Cat-

Model RD-RL RD++-RL FD-RL
W2V-CBOW 0.8111 0.7256 0.4198

MODEL-DP-L 0.8223 0.7451 0.4179
MODEL-DP 0.8288 0.7592 0.4790

Table 6: Comparisons of the results produced by
MODEL-DP-L from lexical resources vs. MODEL-DP
along with the baselines for the reduced dataset.

egorizing the non-compositional words based on
the above observation and dealing with such cases
is left for future work.

Training using lexical resources: We fur-
ther investigated the use of hyponym-hypernym
pairs extracted from lexical resources like Word-
Net (Miller, 1995) or ConceptNet (Speer et al.,
2017) for training the Poincaré model. Even
though the quality of the hyponym-hypernym
pairs from lexical resources is better compared to
the pairs extracted using Hearst patterns, the cov-
erage of target words is very low. Therefore, for a
fair comparison, we prepare a reduced version of
the three gold standard datasets (RD-RL, RD++-
RL, FD-RL), where all the target words are present
in lexical resources as well as hyponym-hypernym
pairs extracted using Hearst patterns. RD-RL,
RD++-RL, and FD-RL contain 74, 131, 380 target
words, respectively. MODEL-DP-L uses the same
compositionality score metric as MODEL-DP but
in the case of MODEL-DP-L, the Poincaré em-
bedding is learned using the hyponym-hypernym
pairs extracted only from WordNet and Concept-
Net combined. The results are presented in Ta-
ble 6. We see that even though MODEL-DP-L
performs better than the baselines for two of the
datasets, MODEL-DP gives the best result. We
attribute this to the relative sparsity of lexical re-
sources, which are seemingly not sufficient for
training reliable Poincaré embeddings.

5.3 Results of Proposed Supervised Model
For the supervised setup we present our results on
the reduced FD-R dataset (780 instances) and the
full Farhamand FD-F dataset (1042 instances). We
do not use the other two datasets for the super-
vised setup since the number of instances in both
these datasets are too small to produce a reason-
able training-test split required for supervision.

As discussed in Section 3.2, we use various re-
gression models; 75% of the dataset is used for
training and the remaining 25% is used for test-
ing; we experiment on 25 such random splits and



FD-R
Kernel Regression PLS Regression
µ(|ρ|) σ(|ρ|) µ(|ρ|) σ(|ρ|)

CBOW-S
(750)

0.4017 0.0599 0.3972 0.0590

α MODEL-DP-S
0.2 0.4294 0.0591 0.4078 0.0566
0.4 0.4347 0.0563 0.4096 0.0525
0.6 0.4221 0.0540 0.3959 0.0497

CBOW-S
(50)

0.4339 0.0570 0.4227 0.0584

α MODEL-DP-S, CBOW vectors of dim. 50
0.2 0.4487 0.0547 0.4361 0.0561
0.4 0.4520 0.0528 0.4372 0.0518
0.6 0.4410 0.0510 0.4196 0.0491

FD-F
Kernel Regression PLS Regression
µ(|ρ|) σ(|ρ|) µ(|ρ|) σ(|ρ|)

CBOW-S
(750)

0.3822 0.0471 0.3910 0.0434

α MODEL-DP-S
0.2 0.4030 0.0446 0.3984 0.0450
0.4 0.4083 0.0425 0.3941 0.0459
0.6 0.3986 0.0418 0.3747 0.0471

CBOW-S
(50)

0.4212 0.0502 0.4201 0.0470

α MODEL-DP-S, CBOW vectors of dim. 50
0.2 0.4329 0.0500 0.4270 0.0467
0.4 0.4340 0.0488 0.4211 0.0469
0.6 0.4213 0.0478 0.3943 0.0499

Table 7: Mean (µ) and Standard Deviation (σ) of
Spearman’s rank correlation (ρ) of the supervised ap-
proach for FD-R and FD-F datasets over 25 random
splits. We compare best baseline model (CBOW - 750
and 50 dimension) and our model (MODEL-DP-S) us-
ing both 750 and 50 dimension of CBOW vectors.

report mean and standard deviation of Spearman’s
rank correlation (ρ). Among all the regression
models (respective to the best choice of the hy-
perparameters), Kernel Ridge regression gives the
best performance while PLS regression is the sec-
ond best for both the FD-R and FD-F dataset. We
compare the performance of the best baseline su-
pervised model (CBOW-S) where only ScoreDS

from Equation 7 is used as the predicted score with
our proposed supervised model (MODEL-DPS)
where ScoreS from Equation 7 is used as the pre-
dicted score. The performance of these two best
regression models for the baseline and our model
(for α = 0.4)3 are noted in Table 7. In the same
table, we also report the results of the evaluation
on FD-F dataset using a fallback strategy for the
supervised setup: here, we use a 50-dimensional
zero vector of the target word or compound for

3α = 0.4 produces the best results per grid search.

which the Poincaré embedding is absent. We ob-
serve that for both the datasets (reduced and full)
our approach outperforms the baseline results by
a large margin. As discussed earlier, the CBOW
vectors used for experiments consist of 750 di-
mensions. Since the number of data points in
the training set is small, we also experiment with
CBOW vector dimension of 50 (MODEL-DPS-
50) in the supervised setup to avoid overfitting due
to a large number of parameters. The results pre-
sented in Table 7 show that with the reduced num-
ber of dimensions, our model yields even better
results and outperforms the correlations 0.41 and
0.34 reported respectively in (Yazdani et al., 2015)
and (Cordeiro et al., 2016).

6 Conclusion

In this paper, we present a novel straightforward
method for estimating degrees of compositional-
ity in noun phrases. The method is mixing hyper-
nymy and distributional information of the noun
phrases and their constituent words. To encode
hypernymy information, we use Poincaré embed-
dings, which – to the best of our knowledge – are
used for the first time to accomplish the task of
compositionality prediction. While these hyper-
bolic embeddings trained on hypernym pattern ex-
tractions are not a good signal on their own for
this task, we observe that mixing distributional and
hypernymy information via Euclidean and hyper-
bolic embeddings helps to substantially and signif-
icantly improve the performance of composition-
ality prediction, outperforming previous state-of-
the-art models. Our pretrained embeddings and
the source codes are publicly available.4

Two directions for future work are (i) to extend
our approach to other languages by using multilin-
gual resources or translation data; and (ii) to ex-
plore various compositionality functions to com-
bine the words’ representation on the basis of their
grammatical function within a phrase.
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