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INTRODUCTION 

• Academic dishonesty is a universal problem (our institute included) 

• Methods for finding duplicate code among peers generally works with 

heuristics based work or other language model based methods, which has 

proven to be ineffective in current scenario e.g. MOSS, JPlag, Sherlock 

• Advantage of a computer program, over normal text: Well defined formal 

grammar  

• Source codes are easy to process with the help of Abstract Syntax Tree and 

other flow diagrams using compiler toolchains. 
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LIBRARIES USED 

• CLANG 

• Clang is a compiler front end for the C, C++, Objective-C and Objective-C++ programming 

languages. It uses LLVM as its back end and has been part of the LLVM release cycle since 

LLVM 2.6. 

• NLTK ( http://www.nltk.org/ ) 

• NLTK is a leading platform for building Python programs to work with human language data.  

• TREE-SVM ( https://github.com/sitfoxfly/tree-svm ) 

• Tree-SVM is used for Sub Tree, Subset Tree & Partial Tree Kernel extraction. 

• Scikit-learn ( http://scikit-learn.org/stable/ ) 

• Scikit-learn is used to apply SVM. 
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DATASET USED  

• A set of C source code files, each containing multiple files for each user 

provided by mentors. 

• Used MOSS (Measure Of Software Similarity) to assign tags to the set of 

plagiarized codes. 
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CONCEPTS USED 

• Language Model  

•  Statistical Language Modelling is to build a statistical language model that can estimate the 

distribution of natural language as accurate as possible.  

• In-lining has been done to catch plagiarism, even if a person makes separate function for 

various parts of the code. 

• AST transversal 

• An abstract syntax tree is a tree representation of the abstract syntactic structure of the 

source code. Each node of the tree denotes a construct occurring in the source code. 

• KL Divergence 

• The Kullback–Leibler divergence, also known as information divergence, relative entropy is a 

non-symmetric measure of the difference between two probability distributions P and Q. 
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APPROACH 

• Language Model 

• N-grams (up to trigrams) keyword comparison for C source codes using KL 

divergence. For bigrams matching technique, we need to consider the 

possibility that in a plagiarised code, a function of original code may have 

been written after in-lining. So before extracting keywords, we need to 

replace all function references in the codes with respective function 

declarations.  
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Abstract Syntax Tree Matching 

• Abstract Syntax Tree - It provides the details about 

the basic structure of a code, such as Function 

declaration and Identifiers 

• Generated using ‘clang’ 

• Also helps in avoiding the attempt of deceiving 

system by changing variable or function name 
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WHAT IS NLP TREE KERNEL? 

• Think of Kernel as a 

transformation 

• Convert to the basic 

components 

• More suitable for source codes 

as generation of trees is easier 

using compiler toolchains 
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TYPES OF KERNEL USED 

1. Subtree Kernel (ST Kernel) 

• The kernel returns a weighted sum of the number of common substrings (proper subtrees) 

2. Subset Tree Kernel (SST Kernel) 

• The subset tree kernel (SST) defines a similarity measure between trees which is 

proportional to the number of shared subset trees 

3. Partial Tree Kernel (PT Kernel) 

• A convolutional tree kernel, obtained by relaxing the constraint over SSTs that 

grammatical rules can’t be broken 
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TREE KERNELS EXAMPLES 
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Subtree Kernel Subset Tree Kernel 

Partial Kernel 



KERNEL MATCHING: EXAMPLE 
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As 3 structures (out of 5) are completely identical the similarity is equal to 3 



CLASSIFICATION USING SVM 

1. Feature Vector: The 6 dimensional feature vector used for SVM contains 3 Kernel 

Similarity measures (Subset Tree, Sub Tree, Partial Tree) and KL Divergence between 

(File1 and File2), (File2and GeneralModel), (File2 and GeneralModel) between each 

pairs of files. 
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CONFUSION MATRIX 

True Prediction False Prediction Total 

Actual True Data 

(Plagiarism) 

True Positive = 20 False Negative = 3 

 

23 

Actual False Data 

(No Plagiarism) 

False Positive = 13 

 

True Negative = 117 130 

Total 33 120 
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RESULTS 
 
 
Precision and Recall 

1. Precision = true positives/(true positives + false positives) = 20/(20+ 13) = 60% 

2. Recall = true positives/(true positives + false negatives) = 20/(20+3) = 87% 

 

Comparison against baseline 

• Applying SVM on  kl divergence gives 50% accuracy on 10 fold cross validation. 

• Whereas SVM on kl divergence with Kernel Tree gives 78% accuracy  on 10 fold cross 

validation. 
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INPUT FORMAT 

• The user needs to paste 

the source code files to 

check for plagiarism 

detection in a specified 

folder as shown in the 

figure.  
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OUTPUT FORMAT  
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The pair of plagiarised codes will be 

shown in an output.txt file created in the 

project folder. 
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THANK YOU 
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