
Plagiarism Detection In Programming Language
Source Codes Using NLP Tree Kernel Methods

Members:

Ashish Manmode 12EC35006

Bishal Santra 12EC35001

Deep Kiran Shroti 12EC35013

Eashaan Baberwal 12EC35016

Vishnu Dutt Sharma 12EC35013

Soumya Sanyal 12EC10056

Mentors:

Amrith Krishna

Binny Mathew

Group - 27

INTRODUCTION

• Academic dishonesty is a universal problem (our institute included)

• Methods for finding duplicate code among peers generally works with

heuristics based work or other language model based methods, which has

proven to be ineffective in current scenario e.g. MOSS, JPlag, Sherlock

• Advantage of a computer program, over normal text: Well defined formal

grammar

• Source codes are easy to process with the help of Abstract Syntax Tree and

other flow diagrams using compiler toolchains.

07/12/2015 GROUP 27 2

LIBRARIES USED

• CLANG

• Clang is a compiler front end for the C, C++, Objective-C and Objective-C++ programming

languages. It uses LLVM as its back end and has been part of the LLVM release cycle since

LLVM 2.6.

• NLTK (http://www.nltk.org/)

• NLTK is a leading platform for building Python programs to work with human language data.

• TREE-SVM (https://github.com/sitfoxfly/tree-svm)

• Tree-SVM is used for Sub Tree, Subset Tree & Partial Tree Kernel extraction.

• Scikit-learn (http://scikit-learn.org/stable/)

• Scikit-learn is used to apply SVM.

07/12/2015 GROUP 27 3

DATASET USED

• A set of C source code files, each containing multiple files for each user

provided by mentors.

• Used MOSS (Measure Of Software Similarity) to assign tags to the set of

plagiarized codes.

07/12/2015 GROUP 27 4

CONCEPTS USED

• Language Model

• Statistical Language Modelling is to build a statistical language model that can estimate the

distribution of natural language as accurate as possible.

• In-lining has been done to catch plagiarism, even if a person makes separate function for

various parts of the code.

• AST transversal

• An abstract syntax tree is a tree representation of the abstract syntactic structure of the

source code. Each node of the tree denotes a construct occurring in the source code.

• KL Divergence

• The Kullback–Leibler divergence, also known as information divergence, relative entropy is a

non-symmetric measure of the difference between two probability distributions P and Q.

07/12/2015 GROUP 27 5

Abstract Syntax Tree

Plagiarized Source Code Data Set

Language Model

Normal C Code Inline C Code

KL Divergence Decision KL Divergence Decision

Compare Output with other
Methods

Compare Output with other
Methods

Method I

Method II Method III
Features from Sub Tree,

Subset Tree & Partial
Tree Kernels.

SVM Classifier

Inline C Code

Features from KL
Divergence Decision

Compare Output with
other Methods

Feature Vector

PLAGIARISM DETECTION MODEL

THE PLAGIARISM DETECTION ARCHITECTURE USING LANGUAGE MODEL

Function in

Line Filter

 D(A||B) <

D(U||B)

KL Divergence D(A||B)

(Relative Information lost)

Ti
m

e
li
ne

Code Snippet

A
Code Snippet B

Inline Code A Inline Code B

N- Gram

Generator

Code Repository U

Language Model

KL Divergence D(U || B)

(Relative Information lost)

Possible Plagiarism

Yes

Not Plagiarised

No

Inline Code Repository

Function in

Line Filter
Function in Line Filter

N- Gram

Generator

APPROACH

• Language Model

• N-grams (up to trigrams) keyword comparison for C source codes using KL

divergence. For bigrams matching technique, we need to consider the

possibility that in a plagiarised code, a function of original code may have

been written after in-lining. So before extracting keywords, we need to

replace all function references in the codes with respective function

declarations.

07/12/2015 GROUP 27 8

Abstract Syntax Tree Matching

• Abstract Syntax Tree - It provides the details about

the basic structure of a code, such as Function

declaration and Identifiers

• Generated using ‘clang’

• Also helps in avoiding the attempt of deceiving

system by changing variable or function name

07/12/2015 GROUP 27 9

WHAT IS NLP TREE KERNEL?

• Think of Kernel as a

transformation

• Convert to the basic

components

• More suitable for source codes

as generation of trees is easier

using compiler toolchains

07/12/2015 GROUP 27 10

TYPES OF KERNEL USED

1. Subtree Kernel (ST Kernel)

• The kernel returns a weighted sum of the number of common substrings (proper subtrees)

2. Subset Tree Kernel (SST Kernel)

• The subset tree kernel (SST) defines a similarity measure between trees which is

proportional to the number of shared subset trees

3. Partial Tree Kernel (PT Kernel)

• A convolutional tree kernel, obtained by relaxing the constraint over SSTs that

grammatical rules can’t be broken

07/12/2015 GROUP 27 11

TREE KERNELS EXAMPLES

07/12/2015 GROUP 27 12

Subtree Kernel Subset Tree Kernel

Partial Kernel

KERNEL MATCHING: EXAMPLE

07/12/2015 GROUP 27 13

As 3 structures (out of 5) are completely identical the similarity is equal to 3

CLASSIFICATION USING SVM

1. Feature Vector: The 6 dimensional feature vector used for SVM contains 3 Kernel

Similarity measures (Subset Tree, Sub Tree, Partial Tree) and KL Divergence between

(File1 and File2), (File2and GeneralModel), (File2 and GeneralModel) between each

pairs of files.

07/12/2015 GROUP 27 14

CONFUSION MATRIX

True Prediction False Prediction Total

Actual True Data

(Plagiarism)

True Positive = 20 False Negative = 3

23

Actual False Data

(No Plagiarism)

False Positive = 13

True Negative = 117 130

Total 33 120

07/12/2015 GROUP 27 15

RESULTS

Precision and Recall

1. Precision = true positives/(true positives + false positives) = 20/(20+ 13) = 60%

2. Recall = true positives/(true positives + false negatives) = 20/(20+3) = 87%

Comparison against baseline

• Applying SVM on kl divergence gives 50% accuracy on 10 fold cross validation.

• Whereas SVM on kl divergence with Kernel Tree gives 78% accuracy on 10 fold cross

validation.

07/12/2015 GROUP 27 16

INPUT FORMAT

• The user needs to paste

the source code files to

check for plagiarism

detection in a specified

folder as shown in the

figure.

07/12/2015 GROUP 27 17

OUTPUT FORMAT

07/12/2015 GROUP 27 18

The pair of plagiarised codes will be

shown in an output.txt file created in the

project folder.

ACKNOWLEDGEMENT

• We would like to take this opportunity to extend our thanks and gratitude to

Professor Pawan Goyal for his guidance and encouragement throughout the course of

our term project. His encouragement for finding new ideas to work on and choosing

our own topic helped us gain interest and confidence in this topic. We are indebted

to him for giving us this exposure in the field of Natural Language Processing.

• We would also like to thank our mentors, Amrith Krishna and Binny Mathew for

initiating our interest in NLP and their constant guidance, help and support over the

last few months in finding and learning new things in this field.

07/12/2015 GROUP 27 19

CITATIONS

• M. Tkachenko and H. W. Lauw. A convolution kernel approach to identifying comparisons in text. In

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. Association for

Computational Linguistics, 2015.

07/12/2015 GROUP 27 20

BIBLIOGRAPHY

• R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using second order information for training

support vector machines,” J. Mach. Learn. Res., vol. 6, pp. 1889–1918, Dec. 2005.

• M. Collins and N. Duffy, “New ranking algorithms for parsing and tagging: Kernels over discrete structures,

and the voted perceptron,” in Proceedings of 40th Annual Meeting of the Association for Computational

Linguistics, (Philadelphia, Pennsylvania, USA), pp. 263–270, Association for Computational Linguistics, July

2002.

• A. J. Smola and S. Vishwanathan, “Fast kernels for string and tree matching,” in Advances in Neural

Information Processing Systems 15 (S. Becker, S. Thrun, and K. Obermayer, eds.), pp. 585–592, MIT Press,

2003.

• A. Moschitti, “Efficient convolution kernels for dependency and constituent syntactic trees,” in Machine

Learning: ECML 2006 (J. Frnkranz, T. Scheffer, and M. Spiliopoulou, eds.), vol. 4212 of Lecture Notes in

Computer Science, pp. 318–329, Springer Berlin Heidelberg, 2006.

07/12/2015 GROUP 27 21

REFERENCE

• Alberto BarronCedeno, Paolo Rosso, and JoseMiguel Benede, Reducing the

Plagiarism Detection Search Space on the Basis of the KullbackLeibler Distance

• Thomas Bakker, W. A. Kosters, E. A. Verbitskiy, Plagiarism Detection in Source Code

• Asim M. El Tahir Ali, Hussam M. Dahwa Abdulla and Vaclav Snasel, Overview and

Comparison of Plagiarism Detection Tools

• Matt G. Ellis, Claude W. Anderson, Plagiarism Detection in Computer Code

• Alberto Barron-Cedeno and Paolo Rosso, On Automatic Plagiarism Detection Based

on nGrams Comparison

• KullbackLeibler Divergence, available at https://en.wikipedia.org/wiki/Kullback

• Language Model, available at https://en.wikipedia.org/wiki/Language Model

07/12/2015 GROUP 27 22

THANK YOU

07/12/2015 GROUP 27 23

