Random Walks on Graphs - Part II

Pawan Goyal

CSE, IITKGP

September 11, 2015
The problem of link prediction and recommendation

Link Prediction

- We are given a snapshot of a social network at time t
- We seek to predict the edges that will be added to the network during the interval from time t to a future time t'

E.g. we are given a large network, say Facebook, at time t and for each user we would like to predict what new edges (friendships) that particular user will create between t and t'
The problem of link prediction and recommendation

Link Prediction

- We are given a snapshot of a social network at time t
- We seek to predict the edges that will be added to the network during the interval from time t to a future time t'

 e.g. we are given a large network, say Facebook, at time t and for each user we would like to predict what new edges (friendships) that particular user will create between t and t'

Link Recommendation Problem

The same problem can also be viewed as a link recommendation problem, where we aim to suggest to each user a list of people that the user is likely to create new connections to.
Challenges Involved

Sparsity
Real networks are really sparse, in Facebook, a typical user is connected to about 100-200 out of more than 500 million nodes

Can it be modeled using network features only?
New edges in Facebook social network
How do network and node features interact?

- How important it is to have common interests and characteristics?
- How important it is to be in the same social circle and be “close” in the network in order to eventually connect.
- Develop a method that combines the features of nodes (user profile) and edges (interaction) with the network structure
Problem definition

Estimate the importance/affinity of node “B” with respect to another node “A” in the graph.
Problem definition

Estimate the importance/affinity of node “B” with respect to another node “A” in the graph.

Framework: Random walk with restarts

- **Goal:** Compute the importance of node “B” for node “A”
- Consider a random walker that starts from node “A”, choosing among the available edges every time
- Except that, before he makes a choice, with probability c_r, he goes back to node “A” (restart)
Random walk with restarts

Let $u_A(B)$ denote the steady state probability that the random walker will find himself at node “B”.

$u_A(B)$ is what we want, the importance of “B” with respect to “A”.

$u_A = (u_A(1), \ldots, u_A(N))$

Steady-state vector: $u_A = (1 - c_r)u_AA + c_r v_A$

A: transition matrix, c_r: restart probability, v_A: restart vector with all its N elements zero except for the entry corresponding to node A.
Choice of restart probability c

- c_r controls how “far” the walk wanders from the seed node s before it restarts and jumps back to s.
- High values of c_r give very short and local random walks, while low values allow the walk to go further away.

A good choice Depends on the diameter of the graph. A good choice would follow $(1 - c_r) = 0.045$, where d is the diameter.

$d = 6 \rightarrow c_r = 0.4$, $d = 19 \rightarrow c_r = 0.15$.
Choice of restart probability c

- c_r controls how “far” the walk wanders from the seed node s before it restarts and jumps back to s.
- High values of c_r give very short and local random walks, while low values allow the walk to go further away.

A good choice

Depends on the diameter of the graph. A good choice would follow $(1 - c_r)^d = 0.045$, where d is the diameter.

$d = 6 \rightarrow c_r = 0.4$, $d = 19 \rightarrow c_r = 0.15$
Basic Idea

In a *supervised way*, learn how to bias a PageRank-like random walk on the network so that it visits given nodes (positive training examples) more often than the others.

- Use node and edge features to learn *edge strengths*.
- Random walk on such a weighted network will be more likely to visit “positive” than “negative” nodes.
- Link Prediction: ‘*positive*’: nodes to which new edges will be created in the future, *negative*: all other nodes.
- Link recommendation: ‘*positive*’: nodes to which user clicks on
Learning Task

Training data
A source node s is given, along with the training examples to which s will create links in the future.

Goal
Learn a function that assigns a strength (random walk probability) to each edge.
Link Prediction: Baseline Approaches

Link Prediction as a classification task

- Take nodes to which s has created edges as positive training examples, all other nodes as negative training examples.
- Learn a classifier that predicts where node s is going to create links.

Random walk with restarts

Start a random walk at node s and compute the proximity of each other node to node s.
We are given a source node s and a set of destination nodes $d_1, \ldots, d_k \in D$ to which s will create edges in the future.

Aim is to bias the random walk such that it will visit nodes d_i more often than the other nodes in the network.
We are given a source node s and a set of destination nodes $d_1, \ldots, d_k \in D$ to which s will create edges in the future.

Aim is to bias the random walk such that it will visit nodes d_i more often than the other nodes in the network.

Can we directly set an arbitrary transition probability to each edge?
Relation to personalized PageRank

- We are given a source node s and a set of destination nodes $d_1, \ldots, d_k \in D$ to which s will create edges in the future.
- Aim is to bias the random walk such that it will visit nodes d_i more often than the other nodes in the network.
- Can we directly set an arbitrary transition probability to each edge?
- Would result in drastic over-fitting.
We are given a source node s and a set of destination nodes $d_1, \ldots, d_k \in D$ to which s will create edges in the future.

Aim is to bias the random walk such that it will visit nodes d_i more often than the other nodes in the network.

Can we directly set an arbitrary transition probability to each edge?

Would result in drastic over-fitting.

Instead, we assign the transition probability for each edge (u, v) based on features of nodes u and v, as well as features of edge (u, v).
Problem Formulation

- Directed graph $G(V, E)$
- Node s, destination nodes $D = \{d_1, \ldots, d_k\}$ and no-link nodes $L = \{l_1, \ldots, l_n\}$
Problem Formulation

- Directed graph $G(V,E)$
- Node s, destination nodes $D = \{d_1, \ldots, d_k\}$ and no-link nodes $L = \{l_1, \ldots, l_n\}$
- Each edge (u, v) has a feature vector $\psi(u, v)$ that describes the nodes u and v (e.g., gender, age, hometown) and the interaction attributes (e.g., time of edge creation, messages exchanges, photos appeared together in)

$$a_{uv} = f_w(\psi_{uv})$$ for edge (u, v). We want to learn the function $f_w(\psi)$ in the training phase of the algorithm.
Problem Formulation

- Directed graph $G(V, E)$
- Node s, destination nodes $D = \{d_1, \ldots, d_k\}$ and no-link nodes $L = \{l_1, \ldots, l_n\}$
- Each edge (u, v) has a feature vector $\psi(u, v)$ that describes the nodes u and v (e.g., gender, age, hometown) and the interaction attributes (e.g., time of edge creation, messages exchanges, photos appeared together in)
- Compute the strength $a_{uv} = f_w(\psi_{uv})$ for edge (u, v).
Problem Formulation

- Directed graph $G(V, E)$
- Node s, destination nodes $D = \{d_1, \ldots, d_k\}$ and no-link nodes $L = \{l_1, \ldots, l_n\}$
- Each edge (u, v) has a feature vector $\psi(u, v)$ that describes the nodes u and v (e.g., gender, age, hometown) and the interaction attributes (e.g., time of edge creation, messages exchanges, photos appeared together in)
- Compute the strength $a_{uv} = f_w(\psi_{uv})$ for edge (u, v).
- We want to learn the function $f_w(\psi)$ in the training phase of the algorithm
Edge strengths of all edges are calculated using f_w

Random walk with restarts is run from s

Stationary distribution p of the random walk assigns each node u a probability p_u

Top ranked nodes are predicted as destinations of future links of s
Function $f_w(\psi_{uv})$ combines the attributes ψ_{uv} and the parameter vector w to output a non-negative weight a_{uv} for each edge.
Using edge weights

- Function $f_w(\psi_{uv})$ combines the attributes ψ_{uv} and the parameter vector w to output a non-negative weight a_{uv} for each edge.
- We use this to build the random walk stochastic transition matrix Q' such that

$$Q'_{uv} = \frac{a_{uv}}{\sum_w a_{uw}}, (u, v) \in E$$
Using edge weights

- Function $f_w(\psi_{uv})$ combines the attributes ψ_{uv} and the parameter vector w to output a non-negative weight a_{uv} for each edge.
- We use this to build the random walk stochastic transition matrix Q' such that

$$Q'_{uv} = \frac{a_{uv}}{\sum_w a_{uw}}, (u, v) \in E$$

- Corresponding matrix for random walk with restart:

$$Q_{uv} = (1 - c)Q'_{uv} + c1(v = s)$$

- Verify that Q is row stochastic.
Using edge weights

- Function $f_w(\psi_{uv})$ combines the attributes ψ_{uv} and the parameter vector w to output a non-negative weight a_{uv} for each edge.
- We use this to build the random walk stochastic transition matrix Q' such that

$$Q'_{uv} = \frac{a_{uv}}{\sum_w a_{uw}}, (u, v) \in E$$

- Corresponding matrix for random walk with restart:

$$Q_{uv} = (1 - c)Q'_{uv} + c1(v = s)$$

- Verify that Q is row stochastic.
- $P_{1 \times n}$ is the stationary distribution of the Random walk with restarts, and is the solution of the following equation:

$$P = PQ$$
Optimization Problem

- Aim: Learn the parameters w of function $f_w(\psi_{uv})$ that assigns each edge a strength of a_{uv}
- Criterion: Assign the weights such that the random walk is more likely to visit nodes in D than L, i.e., $p_l < p_d$, for each $d \in D$ and $l \in L$
Optimization Problem

- **Aim**: Learn the parameters \(w \) of function \(f_w(\psi_{uv}) \) that assigns each edge a strength of \(a_{uv} \)
- **Criterion**: Assign the weights such that the random walk is more likely to visit nodes in \(D \) than \(L \), i.e., \(p_l < p_d \), for each \(d \in D \) and \(l \in L \)

Optimization function

\[
\min_w F(w) = \|w\|^2 \text{ such that } \forall d \in D, l \in L : p_l < p_d
\]

\(p_i \)s are the pageRank scores
A smaller \(w \) is preferred simply for regularization
\[
\min_w F(w) = \|w\|^2 + \lambda \sum_{d \in D, l \in L} h(p_l - p_d)
\]

\[h(.) : \text{loss function such that } h(.) = 0 \text{ as } p_l < p_d \text{ and } h(.) > 0 \text{ for } p_l - p_d > 0\]