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ormation Diffusion?

Online Information Diffusion

Understanding the tendency for people to engage in activities such as
forwarding messages, linking to articles, joining groups, purchasing products,
or becoming fans of pages after some number of their friends have.
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What is Information Diffusion?

Online Information Diffusion

Understanding the tendency for people to engage in activities such as

forwarding messages, linking to articles, joining groups, purchasing products,

or becoming fans of pages after some number of their friends have.

Objectives of this research

o Widespread belief that different kinds of information spread differently
online.
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What is Information Diffusion?

Online Information Diffusion

Understanding the tendency for people to engage in activities such as
forwarding messages, linking to articles, joining groups, purchasing products,
or becoming fans of pages after some number of their friends have.

Objectives of this research

o Widespread belief that different kinds of information spread differently
online.

@ To study this issue on Twitter, analyzing the ways in which Hashtags
spread on a network defined by interactions among Twitter users.
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Twitter Data and Graph Construction

o Twitter data crawled from August 2009 until January 2010.
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Twitter Data and Graph Construction

o Twitter data crawled from August 2009 until January 2010.
@ Collected over 3 billion messages from more than 60 million users.

@ Graph construction via @-messages: X — Y if X directed at least 3
@-messages to Y.

o Graph size: 8.5 million non-isolated nodes, 50 million links
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Twitter Data and Graph Construction

o Twitter data crawled from August 2009 until January 2010.
@ Collected over 3 billion messages from more than 60 million users.

@ Graph construction via @-messages: X — Y if X directed at least 3
@-messages to Y.

o Graph size: 8.5 million non-isolated nodes, 50 million links
o Studies 500 most used hashtags
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Hashtag Categories

@ Manually identified 8
broad categories with

atleast 20 HTs in each Catcgory | Bxamples _

Celebrity mj, brazilwantsjb, regis, iwantpeterfacinelli
° AUthOI’S and 3 Music thisiswar, mj, musicmonday, pandora

Games mafiawars, spymaster, mw2, zyngapirates

volunteers Political tcot, glennbeck, obama, her

. Idiom cantlivewithout, dontyouhate, musicmonday

Independently Sports golf, yankees, nhl, cricket

annotated each Movies/TV || lost, glennbeck, bones, newmoon
Technology digg, iphone, jquery, photoshop

hashtag.

o Levels of agreement
was high
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Exposure Curve: Defining p(k)

Neighbor Set of X
For a given user X, the set of other users to whom X has an edge. J
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Neighbor Set of X

For a given user X, the set of other users to whom X has an edge.

When does X start mentioning a hashtag H?

How do successive exposures to H affect the probability that X will begin
mentioning it?
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Exposure Curve: Defining p(k)

Neighbor Set of X

For a given user X, the set of other users to whom X has an edge.

When does X start mentioning a hashtag H?

How do successive exposures to H affect the probability that X will begin
mentioning it?

@ Look at all users X who have not mentioned H, but for whom k neighbors
have

o p(k): fraction of users who adopt the hashtag direct after their k"
exposure, given that they hadn’t yet adopted it.
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Average Exposure Curve for 500 most-mentioned hashtags
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Average Exposure Curve for 500 most-mentioned hashtags
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@ A ramp-up to the peak value, reached relatively early (k = 2,3,4)

@ Decline for larger values of k
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Persistence and Stickiness

Stickiness

The maximum value of p(k)
0025 (probability of usage at the most
0.02 effective exposure)

0.015]

0.01

0.005]
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Persistence and Stickiness

Stickiness
The maximum value of p(k)

0025 (probability of usage at the most
0.02 effective exposure)
0.015]
a Persistence
0.01

A measure of the decay of
exposure curves.

0.005]
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Persistence and Stickiness

Stickiness
The maximum value of p(k)

0025 (probability of usage at the most
0.02 effective exposure)
0.015]

a Persistence

0.01

A measure of the decay of
exposure curves.

B R U ) The ratio of the area under the
curve P and the area of the
rectangle of length max(P) and
width max(D(P)).

0.005]

Pawan Goyal (IIT Kharagpur) Hashtags on Twitter July 31, 2015 8/16



Approximating Exposure Curves via Stickiness and Persistence

@ Are Persistence and Stickiness the adequate pair of parameters for
discussing the curves’ overall approximate shapes? Yes.

@ Given the stickiness M(P) and the persistence F(P) of exposure curve P,
we find an approximation P to P in the following way:

Q Let P(0) =0

@ Let P(2) = M(P)

© Now we will let }V’(K ) be such Zi‘: e nctnl Aoprmaton
that F(P) = F(P). This value o
turns out to be = oo
}3( K) = % & oo

Q Make 2 piecewise linear with one Z::
line connecting the points (0. 0) o . . . . .
and (2, M(P)), and another line k

connecting the points (2, M(P))
and (K, P(K)).
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Comparison of Hashtags based on Stickiness
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arison of Hashtags based on Stickiness
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@ Technology and Movies have lower stickiness than a random subset
@ Music has higher stickiness than a random subset
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Comparison of Hashtags based on Persistence
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Comparison of Hashtags based on Persistence

>

>

06 1 1 1 1 1 1 L L
Political  Idioms Music Technology Movies  Sports  Games Celebrity

@ Idioms and Music have lower persistence than a random subset of
hashtags of the same size
@ Politics and Sports have higher persistence than a random subset
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Persistence vs. Stickiness
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Persistence vs. Stickiness
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Idioms and Politics: Same stickiness but opposite persistence
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Persistence vs. Stickiness
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@ Idioms and Politics: Same stickiness but opposite persistence
@ Music has high stickiness but low persistence
@ Stickiness does not explain the diffusion well by itself
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Sample curves for #cant
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Type Mentions | Users | Mentions/User
All HTS 93,056 15,418 6.59
Political 132,180 | 13,739 10.17

Sports 98,234 11,329 9.97

Idioms 99,317 | 26,319 3.54
Movies 90,425 15,957 6.57
Celebrity 87,653 5,351 17.68
Technology | 90,462 | 24,648 5.08
Games 123,508 | 15,325 6.61
Music 87,985 7,976 10.39

Table: Median Values

Pawan Goyal (IIT Kharagpur)

Hashtags on Twitter

Comparison of Hashtag by Mention and User Counts

July 31, 2015

14716




Comparison of Hashtag by Mention and User Counts

Type Mentions | Users | Mentions/User
All HTS 93,056 15,418 6.59
Political 132,180 | 13,739 10.17

Sports 98,234 11,329 9.97

Idioms 99,317 | 26,319 3.54
Movies 90,425 15,957 6.57
Celebrity 87,653 5,351 17.68
Technology | 90,462 | 24,648 5.08
Games 123,508 | 15,325 6.61
Music 87,985 7,976 10.39

Table: Median Values

Political and Idioms are among the most mentioned, but Idioms are used by
twice the number of people that use Politics
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The Structure of Initial Sets

o Let G, be the subgraph induced
by the first m users of a given
hashtag.

o Let the border of G, be the set of
nodes not in G,, with at least one
edge to a node in Gy,.

o Let the internal degree of a node
in G, be the number of neighbors
it has in G,,,.

o Let the entering degree of a node
in the border of G,, be the
number of neighbors it has in Gy,
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Structure Comparison for Political Hashtags (Gsgo)

Type Internal Degree | Triangle Num | Entering Deg. | Border Nodes
AITHTS 1.41 384 1.24 13425
Political 2.55 935 1.41 12879

Upper Error Bar 1.82 653 1.32 15838
Lower Error Bar 1.00 112 1.16 11016
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Structure Comparison for Political Hashtags (Gsgo)

Type Internal Degree | Triangle Num | Entering Deg. | Border Nodes
AITHTS 1.41 384 1.24 13425
Political 2.55 935 1.41 12879

Upper Error Bar 1.82 653 1.32 15838
Lower Error Bar 1.00 112 1.16 11016

@ The early adopters of a political hashtag message more with each other,
create more triangles, and have a border of people with more links into
the early adopter set.
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