NLP for Social Media Lecture 3: Normalization with the Noisy Channel

Monojit Choudhury

Microsoft Research Lab, monojitc@microsoft.com

What will we learn?

- Noisy-channel approach to normalization
- Language Modeling
- Channel Modeling

Spell-checking or edit-distance based approaches does not work well for orthographic normalization of SM data. What model or approach might work?

The Translation Metaphor

Intuition behind the NC model

T: 2day I lost my fne

Use the channel model to find the set of possible Standard language words $\{S_1, S_2, S_3...\}$ such that Pr(T|S) > p

TL token (SL token)	Decoder output $(-\log(P(w t)))$		
2day (today)	today (3.02), stay (11.46), away (13.13), play (13.14), clay (13.14)		
fne (phone)	fine (3.52), phone (5.13), funny (6.26), fined (6.51), fines (6.72)		

Intuition behind the NC model

T: 2day I lost my fne

Generate candidates:

- *S1: today I lost my fine*
- S2: today I lost my phone
- S3: stay I lost my fine
- S4: stay I lost my phone

Compute and rank by P(T|S)P(S)

TL token (SL token)	Decoder output $(-\log(P(w t)))$
2day (today)	today (3.02), stay (11.46), away (13.13), play (13.14), clay (13.14)
fne (phone)	fine (3.52), phone (5.13), funny (6.26), fined (6.51), fines (6.72)

Some commonly made assumptions

Noisy Channel Model is extensively used in

- Speech Recognition
- Machine Translation
- Transliteration
- Paraphrasing
- Parts-of-speech Tagging

(and a variety of sequence labeling problems)

What will we learn?

- Noisy-channel approach to normalization
- Language Modeling
- Channel Modeling

N-gram Language Model

$$S^* = argmax \prod_{i=1}^{n} [P(t_i | s_i) P(s_i | s_{i-1} s_{i-2})]$$

Please finish this task at your earliest convenience

How do you learn the n-gram probabilities?

Estimating N-gram Probabilities

$$S^* = argmax \prod_{i=1}^{n} [P(t_i | s_i) P(s_i | s_{i-1} s_{i-2})]$$

- From text corpus (of *S*) that closely resembles the language usage of the application domain.
- Larger the N, better the LM, provided we have an appropriately large corpus to estimate the probabilities.
- Estimating probabilities for unseen N-grams:
 - Fallback to lower N-grams, till unigram.
 - Smoothing

Smoothing

$$S^* = argmax \prod_{i=1}^{n} [P(t_i | s_i) P(s_i | s_{i-1} s_{i-2})]$$

- Zero probabilities are dangerous
- Smoothing is the process of estimating the probabilities of unseen events, based on the distribution of seen events. It eliminates zero probabilities.

$$P(s_i|s_{i-1}s_{i-2}) = \frac{count(s_{i-2}s_{i-1}s_i)}{count(s_{i-2}s_{i-1})}$$

d is the number of unique trigrams seen that begin with $s_{i-2}s_{i-1}$

This is called Add-one Smoothing (and more generally Additive Smoothing)

Evaluating Language Models

- Task completion: Good models yield good performance for the endapplication
 - Speech Recognition
 - Machine Translation
 - Dialogue Modeling
 - Text Prediction, etc.
- **Perplexity**: A measure of how well a LM learnt from the training corpus C1 is able to predict the distribution of the words (or n-grams) observed in the test corpus C2.

Perplexity of Language Model

• Entropy of a probability distribution:

$$H(p) = \sum_{\substack{all \ events \\ in \ p}} -p_i \log_2(p_i)$$

• Perplexity of a distribution:

$$Perp(p) = 2^{H(p)}$$

Perplexity of LM (or probability model):

Higher the entropy or perplexity, higher the unpredictability

Procuring Corpora for LM

$$S^* = argmax \prod_{i=1}^{n} [P(t_i | s_i) P(s_i | s_{i-1} s_{i-2})]$$

• LM should be estimated from text corpus (of *S*) that closely resembles the language usage of the application domain.

How to get Standard Language Corpora corresponding to the Social Media Domain?

- Create by Manual normalization: requires time and effort
- Scrape from Social Media: no human annotation, but non-trivial
- Domain Adaptation: Interpolate between a domain specific and standard language domain.

What will we learn?

- Noisy-channel approach to normalization
- Language Modeling
- Channel Modeling

The Channel Model

$$S^{*} = \operatorname{argmax} \prod_{i=1}^{n} [P(t_{i} | s_{i}) P(s_{i} | s_{i-1} s_{i-2})]$$
$$P(t|s) = \prod_{j=1}^{k} P(\tau_{j} | \sigma_{j}),$$
where $t = \tau_{1} \tau_{2} \dots \tau_{k, s} = \sigma_{1} \sigma_{2} \dots \sigma_{k}$

- Problem: The characters of *t* and *s* may not have one-to-one correspondence.
- Solution: τ and σ could be defined as group of letters, rather than single letters
- How do you discover and split the words into meaningful segments of letters (aka character n-grams)?

Let's work out *tomorrow*

t	$ au_1 au_2 \dots au_k$	$\sigma_1 \sigma_2 \dots \sigma_k$	t	$ au_1 au_2 \dots au_k$	$\sigma_1 \sigma_2 \dots \sigma_k$
2moro			tomm		
tomoz			tomo		
tomoro			tomorow		
tomrw			2mro		
tom			morrow		
tomra			tomor		
tomorrow			tmorro		
tomora			moro		

Let's work out *tomorrow*

t	$ au_1 au_2 \dots au_k$	$\sigma_1 \sigma_2 \dots \sigma_k$	t	$ au_1 au_2 \dots au_k$	$\sigma_1 \sigma_2 \dots \sigma_k$
2moro	2 m o r o	to m o rr ow	tomm	t o mm \$	t o m orrow
tomoz	t o m o z	t o m o rrow	tomo	t o m o \$	t o m o rrow
tomoro	t o m o r o	t o m o rr ow	tomorow	tomorow	tomorrow
tomrw	t o m r w	t o mo rro w	2mro	2 m r o	to mo rr ow
tom	t o m \$	t o m orrow	morrow	\$ m o r r o w	to m o r r o w
tomra	t o m r a	t o mo rr ow	tomor	t o m o r	t o m o rrow
tomorrow	tomorrow	tomorrow	tmorro	t m o r r o	to m o r r ow
tomora	t o m o r a	t o m o rr ow	moro	\$ m o r o	to m o rr ow

Compute $P(\tau_j = "o" | \sigma_j = "ow")$

t	$ au_1 au_2 \dots au_k$	$\sigma_1 \sigma_2 \dots \sigma_k$	t	$ au_1 au_2 \dots au_k$	$\sigma_1 \sigma_2 \dots \sigma_k$
2moro	2 m o r o	to m o rr ow	tomm	t o mm \$	t o m orrow
tomoz	t o m o z	t o m o rrow	tomo	t o m o \$	t o m o rrow
tomoro	t o m o r o	t o m o rr ow	tomorow	tomorow	tomorrow
tomrw	t o m r w	t o mo rro w	2mro	2 m r o	to mo rr ow
tom	t o m \$	t o m orrow	morrow	\$ m o r r o w	to m o r r o w
tomra	t o m r a	t o mo rr ow	tomor	t o m o r	t o m o rrow
tomorrow	tomorrow	tomorrow	tmorro	t m o r r o	to m o r r ow
tomora	t o m o r a	t o m o rr ow	moro	\$ m o r o	to m o rr ow

Compute $P(\tau_j = "o" | \sigma_j = "ow")$

t	$ au_1 au_2 \dots au_k$	$\sigma_1 \sigma_2 \dots \sigma_k$	t	$ au_1 au_2 \dots au_k$	$\sigma_1 \sigma_2 \dots \sigma_k$
2moro	2 m o r o	to m o rr ow	tomm	t o mm \$	t o m orrow
tomoz	t o m o z	t o m o rrow	tomo	t o m o \$	t o m o rrow
tomoro	t o m o r o	t o m o rr ow	tomorow	tomorow	tomorrow
tomrw	t o m r w	t o mo rro w	2mro	2 m r o	to mo rr ow
tom	t o m \$	t o m orrow	morrow	\$ m o r r o w	to m o r r o w
tomra	t o m r a	t o mo rr ow	tomor	t o m o r	t o m o rrow
tomorrow	tomorrow	tomorrow	tmorro	t m o r r o	to m o r r ow
tomora	t o m o r a	t o m o rr ow	moro	\$ m o r o	to m o rr ow

Estimating the channel model

 $S^* = argmax \prod_{i=1}^{n} [P(t_i | s_i) P(s_i | s_{i-1} s_{i-2})]$

Bayesian Approach:

Maximum Likelihood/frequentist Approach: $P(t|s) = \max_{\substack{all \ possible \\ segmentations}} \prod_{j=1}^{k} P(\tau_j | \sigma_j)$ Depending on which approach one chooses, one can accordingly estimate the probabilities from the data.

Data for Learning the Channel Model

- A corpus of Social Media text, and the corresponding standard language forms (normalized forms)
 - It is sufficient to have only word pairs (with frequency of occurrence).
- Corpus creation
 - Is usually a manual effort
 - Either controlled (more expensive but accurate) or crowdsourcing (cheap and fast, but noisy)
 - Can you scrape <*t*,*s*> pairs from social media text?
- Can you estimate the channel model without any word-pair data?

Different Avatars of the Noisy Channel Model

- Hidden-Markov Models to combine linguistic information with the NC model [Choudhury et al., 2007]
- Conditional Random Fields [Liu et al., 2012]

Handling data scarcity:

- Semi-supervised and unsupervised techniques
- Automatic extraction of training data [Hassan & Menzes, 2014]

Summary

• The translation metaphor, modeled as the Noisy Channel, provides a useful and potent approach for normalization.

 $S^* = argmax \prod_{i=1}^{n} [P(t_i | s_i) P(s_i | s_{i-1} s_{i-2})]$

- Language Model predicts the probability of a sequence of words (or other linguistic units) and can be estimated and interpolated from appropriate datasets.
- Word n-gram language models are simple, yet very useful.
- There are several ways to model and learn the channel characteristics: character n-gram based, HMMs, CRFs, etc.

Suggested Readings & References

For Language Modeling:

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. 2009 http://www.cs.colorado.edu/~martin/slp.html (Ch 4: N-grams)

For Noisy Channel Model based Normalization:

AiTi Aw , Min Zhang , Juan Xiao and Jian Su. "A phrase-based statistical model for SMS text normalization", COLING/ACL 2006

Choudhury, Monojit, et al. "Investigation and modeling of the structure of texting language." International Journal of Document Analysis and Recognition (IJDAR) 10.3-4 (2007): 157-174. Kaufmann, Max, and Jugal Kalita. "Syntactic normalization of twitter messages." ICON, 2010. Liu, Fei, Fuliang Weng, and Xiao Jiang. "A broad-coverage normalization system for social media language." ACL 2012.