NLP for Social Media Lecture 2: Text Normalization

Monojit Choudhury

Microsoft Research Lab, <u>monojitc@microsoft.com</u>

• Systems/techniques specifically built for SMD.

- What does "normalization" entail?
- Unintentional Spelling changes & Edit Distance
- Intentional spelling changes
- Patterns of intentional spelling changes

- What does "normalization" entail?
- Unintentional Spelling changes & Edit Distance
- Intentional spelling changes
- Patterns of intentional spelling changes

Anything that is needed to convert the non-standard text to an *equivalent* standard text which is processable by a standard language NLP system.

Classifying non-standard usage

Classifying non-standard usage

Non-standard spellings	2mrw → tomorrow	Spelling Normalization & 3
Non-standard grammar	even i want to → Even I want to do this.	Grammar correction
Language mixing	Kothakar\B Master\E chef\E contest\E ?	Language Detection
Transliteration	Kothakar -> কোথাকার	Machine Transliteration
Emoticons, Tags, mentions, slangs	abae \rightarrow ?, :P \rightarrow ?, @Mallar \rightarrow ?, ??? \rightarrow ?	Special Treatment

Old wine in new bottle

- Speech processing (ASR & TTS) requires normalization:
 - 2nd = second, 5.24% = five point two four percent, dr. = doctor
 - Rule based generation, with some rule-based or statistical disambiguation
 - (Sproat et al., 2001)
- Spelling and grammar correction
 - Spell checking (Kukich, 1992)
 - L2 error modeling and correction (Rozovskaya and Roth, 2011)
- SMS Normalization
 - (Aw et al., 2006)
 - (Choudhury et al., 2007)

- What does "normalization" entail?
- Unintentional Spelling changes & Edit Distance
- Intentional spelling changes
- Patterns of intentional spelling changes

Spelling Errors

Types of Unintentional Spelling Errors

TOMORROW

Double letter omission

Doubling of wrong letter

Phonetic/Cognitive Errors

Substitution: $o \rightarrow p$

Doubling of letter

Metathesis: or \rightarrow ro

Deletion: $o \rightarrow \varepsilon$

Insertion: $\epsilon \rightarrow n$

Typos or "slip of finger" errors

- What does "normalization" entail?
- Unintentional Spelling changes & Edit Distance
- Intentional spelling changes
- Patterns of intentional spelling changes

Edit Distance

- Cost of Edit Operations:
 - Insertion($\varepsilon \rightarrow c$): 1
 - Deletion ($c \rightarrow \varepsilon$): 1
 - Substitution: ($c \rightarrow c'$): 1 or 2

Metathesis $(cc' \rightarrow c'c)$ is either modeled as a single edit operation (cost = 1) or as a deletion-insertion pair ($cc' \rightarrow \varepsilon c' \rightarrow c'c$), and therefore cost of 2.

- Edit Distance between two strings s:c₁c₂c₃...c_n and s':c'₁c'₂c'₃...c'_n is defined as the minimum value of the sum of the cost of a sequence of edit operations required to convert s to s'.
 - engine & begin, elevator & evaluator, east & csar
- Dynamic Programming Algorithm

- What does "normalization" entail?
- Unintentional Spelling changes & Edit Distance
- Intentional spelling changes
- Patterns of intentional spelling changes

What about spelling errors in Social Media?

39

This is an example for Texting language

Other factors: Coolness, group-membership, accommodating

Tomorrow never dies!!!

- 2moro (9)
- tomoz (25)
- tomoro (12)
- tomrw (5)
- tom (2)
- tomra (2)
- tomorrow (24)
- tomora (4)

- tomm (1)
- tomo (3)
- tomorow (3)
- 2mro (2)
- morrow (1)
- tomor (2)
- tmorro (1)
- moro (1)

Spell-checkers, such as Aspell, perform very poorly on such data (<22%)

Patterns or Compression Operators

- Phonetic substitution (phoneme)
 - psycho \rightarrow syco, then \rightarrow den
- Phonetic substitution (syllable)
 - today \rightarrow 2day , see \rightarrow c
- Deletion of vowels
 - message \rightarrow mssg, about \rightarrow abt
- Deletion of repeated characters
 - tomorrow \rightarrow tomorow

Patterns or Compression Operators

- Truncation (deletion of tails)
 - introduction \rightarrow intro, evaluation \rightarrow eval
- Common Abbreviations
 - Kharagpur \rightarrow kgp, text back \rightarrow tb
- Informal pronunciation
 - going to \rightarrow gonna
- Emphasis by repetition:
 - Funny \rightarrow fuuunnnnyyyyyy

Successive Application of Operators

- Because → cause (informal usage)
- cause \rightarrow cauz (phonetic substitution)
- cauz \rightarrow cuz (vowel deletion)

Summary

- Normalization involves transforming the non-standard input text to the standard forms (which then makes it possible to apply the standard NLP tools on the text).
- Normalization for Social Media text includes: orthographic normalization, grammar correction, language detection, transliteration, and handling of emoticons/hashtags etc.
- Unintentional spelling changes or errors are either because the user doesn't know the correct spelling or due to "slip of fingers".
- Orthographic Edit Distance is an efficient way to model and correct unintentional spelling errors.
- Motivation behind intentional spelling changes could be to type faster, emphasis, group identity and accommodation.
- Most of the changes are phonetically governed.

Suggested Readings

For Orthographic Patterns in Computer Mediated Communication:

Choudhury, Monojit, et al. "Investigation and modeling of the structure of texting language." *International Journal of Document Analysis and Recognition (IJDAR)* 10.3-4 (2007): 157-174.

For Spelling Correction Techniques and Algorithms:

Kukich, Karen. "Techniques for automatically correcting words in text." *ACM Computing Surveys (CSUR)* 24.4 (1992): 377-439.

References

- Sproat, Richard, et al. "Normalization of non-standard words." *Computer Speech & Language* 15.3 (2001): 287-333.
- Rozovskaya, Alla, and Dan Roth. "Algorithm selection and model adaptation for ESL correction tasks." *ACL*, 2011.
- Kukich, Karen. "Techniques for automatically correcting words in text." ACM Computing Surveys (CSUR) 24.4 (1992): 377-439.
- Choudhury, Monojit, et al. "Investigation and modeling of the structure of texting language." *International Journal of Document Analysis and Recognition (IJDAR)* 10.3-4 (2007): 157-174.
- Aspell: <u>http://aspell.net/</u>