Supervised Random Walks

Pawan Goyal

CSE, IITKGP

September 8, 2014
Problem definition

Estimate the importance/affinity of node “B” with respect to another node “A” in the graph.
Correlation Discovery by random walk

Problem definition

Estimate the importance/affinity of node “B” with respect to another node “A” in the graph.

Framework: Random walk with restarts

- **Goal:** Compute the importance of node “B” for node “A”
Problem definition

Estimate the importance/affinity of node “B” with respect to another node “A” in the graph.

Framework: Random walk with restarts

- **Goal:** Compute the importance of node “B” for node “A”
- Consider a random walker that starts from node “A”, choosing among the available edges every time
Problem definition

Estimate the importance/affinity of node “B” with respect to another node “A” in the graph.

Framework: Random walk with restarts

- **Goal:** Compute the importance of node “B” for node “A”
- Consider a random walker that starts from node “A”, choosing among the available edges every time
- Except that, before he makes a choice, with probability c, he goes back to node “A” (restart)
Let $u_A(B)$ denote the steady state probability that the random walker will find himself at node “B”.

\[u_A(B) = (u_A(1), \ldots, u_A(N)) \]

Steady-state vector: $u_A = (1 - c)Au + cv_A$

A: transition matrix, c: restart probability, v_A: restart vector with all its N elements zero except for the entry corresponding to node A.
Random walk with restarts

- Let $u_A(B)$ denote the steady state probability that the random walker will find himself at node “B”.
- $u_A(B)$ is what we want, the importance of “B” with respect to “A”.

Steady-state vector: $u_A = (u_A(1), \ldots, u_A(N))$

A: transition matrix, c: restart probability, v_A: restart vector with all its N elements zero except for the entry corresponding to node A.
Random walk with restarts

- Let $u_A(B)$ denote the steady state probability that the random walker will find himself at node “B”.
- $u_A(B)$ is what we want, the importance of “B” with respect to “A”.
- $u_A = (u_A(1), \ldots, u_A(N))$
Let $u_A(B)$ denote the steady state probability that the random walker will find himself at node “B”.

$u_A(B)$ is what we want, the importance of “B” with respect to “A”.

$u_A = (u_A(1), \ldots, u_A(N))$

Steady-state vector: $u_A = (1 - c)Au_A + cv_A$
Random walk with restarts

- Let $u_A(B)$ denote the steady state probability that the random walker will find himself at node “B”.
- $u_A(B)$ is what we want, the importance of “B” with respect to “A”.
- $u_A = (u_A(1), \ldots, u_A(N))$
- Steady-state vector: $u_A = (1 - c)Au_A + cv_A$
- A: transition matrix, c: restart probability, v_A: restart vector with all its N elements zero except for the entry corresponding to node A.
The problem of link prediction and recommendation

Link Prediction
We are given a snapshot of a social network at time t. We seek to predict the edges that will be added to the network during the interval from time t to a future time t'.

E.g., we are given a large network, say Facebook, at time t and for each user we would like to predict what new edges (friendships) that particular user will create between t and t'.

Link Recommendation Problem
The same problem can also be viewed as a link recommendation problem, where we aim to suggest to each user a list of people that the user is likely to create new connections to.
The problem of link prediction and recommendation

Link Prediction

- We are given a snapshot of a social network at time t
The problem of link prediction and recommendation

Link Prediction

- We are given a snapshot of a social network at time t
- We seek to predict the edges that will be added to the network during the interval from time t to a future time t'
The problem of link prediction and recommendation

Link Prediction

- We are given a snapshot of a social network at time t
- We seek to predict the edges that will be added to the network during the interval from time t to a future time t'

E.g. we are given a large network, say Facebook, at time t and for each user we would like to predict what new edges (friendships) that particular user will create between t and t'
The problem of link prediction and recommendation

Link Prediction
- We are given a snapshot of a social network at time t
- We seek to predict the edges that will be added to the network during the interval from time t to a future time t'

Example: we are given a large network, say Facebook, at time t and for each user we would like to predict what new edges (friendships) that particular user will create between t and t'

Link Recommendation Problem
The same problem can also be viewed as a *link recommendation problem*, where we aim to suggest to each user a list of people that the user is likely to create new connections to.
Challenges Involved

Sparsity

Real networks are really sparse, in Facebook, a typical user is connected to about 100-200 out of more than 500 million nodes.
Challenges Involved

Sparsity
Real networks are really sparse, in Facebook, a typical user is connected to about 100-200 out of more than 500 million nodes

Can it be modeled using network features only?
New edges in Facebook social network
Creation of New Links: Important questions

How do network and node features interact?

- How important it is to have common interests and characteristics?
How do network and node features interact?

- How important it is to have common interests and characteristics?
- How important it is to be in the same social circle and be “close” in the network in order to eventually connect.
Creation of New Links: Important questions

How do network and node features interact?

- How important it is to have common interests and characteristics?
- How important it is to be in the same social circle and be “close” in the network in order to eventually connect.
- *Develop a method that combines the features of nodes (user profile) and edges (interaction) with the network structure*
Basic Idea

In a *supervised way*, learn how to bias a PageRank-like random walk on the network so that it visits given nodes (positive training examples) more often than the others.
Basic Idea

In a *supervised way*, learn how to bias a PageRank-like random walk on the network so that it visits given nodes (positive training examples) more often than the others.

- Use node and edge features to learn *edge strengths*.
- Random walk on such a weighted network will be more likely to visit “positive” than “negative” nodes.
- Link Prediction: ‘*positive*’: nodes to which new edges will be created in the future, *negative*: all other nodes.
- Link recommendation: ‘*positive*’: nodes to which user clicks on
Learning Task

Training data

A source node s is given, along with the training examples to which s will create links in the future.
Learning Task

Training data
A source node s is given, along with the training examples to which s will create links in the future.

Goal
Learn a function that assigns a strength (random walk probability) to each edge.
Link Prediction: Baseline Approaches

Link Prediction as a classification task

- Take nodes to which \(s \) has created edges as positive training examples, all other nodes as negative training examples.
- Learn a classifier that predicts where node \(s \) is going to create links.
Link Prediction: Baseline Approaches

Link Prediction as a classification task
- Take nodes to which s has created edges as positive training examples, all other nodes as negative training examples
- Learn a classifier that predicts where node s is going to create links

Random walk with restarts
Start a random walk at node s and compute the proximity of each other node to node s.
Relation to personalized PageRank

- We are given a source node s and a set of destination nodes $d_1, \ldots, d_k \in D$ to which s will create edges in the future.
Relation to personalized PageRank

- We are given a source node s and a set of destination nodes $d_1, \ldots, d_k \in D$ to which s will create edges in the future.
- Aim is to bias the random walk such that it will visit nodes d_i more often than the other nodes in the network.
Relation to personalized PageRank

- We are given a source node s and a set of destination nodes $d_1, \ldots, d_k \in D$ to which s will create edges in the future.
- Aim is to bias the random walk such that it will visit nodes d_i more often than the other nodes in the network.
- Can we directly set an arbitrary transition probability to each edge?

Would result in drastic over-fitting.
Instead, we assign the transition probability for each edge (u, v) based on features of nodes u and v, as well as features of edge (u, v).
We are given a source node s and a set of destination nodes $d_1, \ldots, d_k \in D$ to which s will create edges in the future.

Aim is to bias the random walk such that it will visit nodes d_i more often than the other nodes in the network.

Can we directly set an arbitrary transition probability to each edge?

Would result in drastic over-fitting.
Relation to personalized PageRank

- We are given a source node s and a set of destination nodes $d_1, \ldots, d_k \in D$ to which s will create edges in the future.
- Aim is to bias the random walk such that it will visit nodes d_i more often than the other nodes in the network.
- Can we directly set an arbitrary transition probability to each edge?
- Would result in drastic over-fitting.
- Instead, we assign the transition probability for each edge (u, v) based on features of nodes u and v, as well as features of edge (u, v).
Problem Formulation

- Directed graph $G(V, E)$
- Node s, destination nodes $D = \{d_1, \ldots, d_k\}$ and no-link nodes $L = \{l_1, \ldots, l_n\}$
Problem Formulation

- Directed graph $G(V, E)$
- Node s, destination nodes $D = \{d_1, \ldots, d_k\}$ and no-link nodes $L = \{l_1, \ldots, l_n\}$
- Each edge (u, v) has a feature vector $\psi(u, v)$ that describes the nodes u and v (e.g., gender, age, hometown) and the interaction attributes (e.g., time of edge creation, messages exchanges, photos appeared together in)
Problem Formulation

- Directed graph $G(V, E)$
- Node s, destination nodes $D = \{d_1, \ldots, d_k\}$ and no-link nodes $L = \{l_1, \ldots, l_n\}$
- Each edge (u, v) has a feature vector $\psi(u, v)$ that describes the nodes u and v (e.g., gender, age, hometown) and the interaction attributes (e.g., time of edge creation, messages exchanges, photos appeared together in)
- Compute the strength $a_{uv} = f_w(\psi_{uv})$ for edge (u, v).
- We want to learn the function $f_w(\psi)$ in the training phase of the algorithm
Edge strengths of all edges are calculated using f_w

Random walk with restarts is run from s

Stationary distribution p of the random walk assigns each node u a probability p_u

Top ranked nodes are predicted as destinations of future links of s
Using edge weights

- Function $f_w(\psi_{uv})$ combines the attributes ψ_{uv} and the parameter vector w to output a non-negative weight a_{uv} for each edge.
- We use this to build the random walk stochastic transition matrix Q' such that

$$Q'_{uv} = \frac{a_{uv}}{\sum_w a_{uw}}, (u, v) \in E$$
Using edge weights

- Function $f_w(\psi_{uv})$ combines the attributes ψ_{uv} and the parameter vector w to output a non-negative weight a_{uv} for each edge.
- We use this to build the random walk stochastic transition matrix Q' such that
 \[Q'_{uv} = \frac{a_{uv}}{\sum_w a_{uw}}, \quad (u, v) \in E \]
- Corresponding matrix for random walk with restart:
 \[Q_{uv} = (1 - c)Q'_{uv} + c1(v = s) \]
Using edge weights

- Function $f_w(\psi_{uv})$ combines the attributes ψ_{uv} and the parameter vector w to output a non-negative weight a_{uv} for each edge.
- We use this to build the random walk stochastic transition matrix Q' such that

$$Q'_{uv} = \frac{a_{uv}}{\sum_w a_{uw}}, (u, v) \in E$$

- Corresponding matrix for random walk with restart:

$$Q_{uv} = (1 - c)Q'_{uv} + c1(v = s)$$

- Verify that Q is row stochastic
Using edge weights

- Function $f_w(\psi_{uv})$ combines the attributes ψ_{uv} and the parameter vector w to output a non-negative weight a_{uv} for each edge.
- We use this to build the random walk stochastic transition matrix Q' such that

 $$Q'_{uv} = \frac{a_{uv}}{\sum_w a_{uw}}, (u, v) \in E$$

- Corresponding matrix for random walk with restart:

 $$Q_{uv} = (1 - c)Q'_{uv} + c1(v = s)$$

- Verify that Q is row stochastic.
- $P_{1 \times n}$ is the stationary distribution of the Random walk with restarts, and is the solution of the following equation:

 $$P = PQ$$
Optimization Problem

- Aim: Learn the parameters w of function $f_w(\psi_{uv})$ that assigns each edge a strength of a_{uv}
- Criterion: Assign the weights such that the random walk is more likely to visit nodes in D than L, i.e., $p_l < p_d$, for each $d \in D$ and $l \in L$
Optimization Problem

- **Aim**: Learn the parameters w of function $f_w(\psi_{uv})$ that assigns each edge a strength of a_{uv}
- **Criterion**: Assign the weights such that the random walk is more likely to visit nodes in D than L, i.e., $p_l < p_d$, for each $d \in D$ and $l \in L$

Optimization function

$$\min_w F(w) = \|w\|^2$$ such that $\forall d \in D, l \in L : p_l < p_d$

p_is are the pageRank scores

A smaller w is preferred simply for regularization
Optimization function: Softer version

$$\min_w F(w) = ||w||^2 + \lambda \sum_{d \in D, l \in L} h(p_l - p_d)$$

$h(.)$: loss function such that $h(.) = 0$ as $p_l < p_d$ and $h(.) > 0$ for $p_l - p_d > 0$
Features used for the Facebook Network

For each edge \((i,j)\),
Features used for the Facebook Network

For each edge \((i,j)\),
- The number of common friends between the two nodes
For each edge \((i,j)\),

- The number of common friends between the two nodes
- Communication and observation features: probability of communication and profile observation in one week period
Features used for the Facebook Network

For each edge \((i,j)\),

- The number of common friends between the two nodes
- Communication and observation features: probability of communication and profile observation in one week period
- Edge initiator: Individual making the friend request is encoded as +1 or -1
Features used for the Facebook Network

For each edge \((i,j)\),

- The number of common friends between the two nodes
- Communication and observation features: probability of communication and profile observation in one week period
- Edge initiator: Individual making the friend request is encoded as +1 or -1
- Edge age
References
