# Social Recommendation, Predicting Reciprocity

Pawan Goyal

CSE, IITKGP

November 17, 2014

### Recommendation in Social Networks



# Effects in Social Networks

#### Social Influence

Ratings are influenced by ratings of friends, i.e. friends are more likely to have similar ratings than strangers

# Effects in Social Networks

#### Social Influence

Ratings are influenced by ratings of friends, i.e. friends are more likely to have similar ratings than strangers

### Benefits

- Can deal with cold-start users, as long as they are connected to the social network
- Exploit social influence, correlational influence, transitivity
- Are more robust to fraud, in particular to profile attacks

# Memory Based Approaches

- Explore the network to find raters in the neighborhood of the target user
- Aggregate the ratings of these raters to predict the rating of the target user
- Different methods to calculate the "trusted neighborhood" of users

# TidalTrust; Goldbeck (2005)

- Modified breadth-first search in the network
- Consider all raters v at the shortest distance from the target user u
- Trust between u and v:

$$t_{u,v} = \frac{\displaystyle\sum_{w \in N_u} t_{u,w} t_{w,v}}{\displaystyle\sum_{w \in N_u} t_{u,w}}$$

where  $N_u$  denotes the set of (direct) neighbors (friends) of u

Trust depends on all connecting paths

# TidalTrust; Goldbeck (2005)

- Modified breadth-first search in the network
- Consider all raters v at the shortest distance from the target user u
- Trust between *u* and *v*:

$$t_{u,v} = \frac{\displaystyle\sum_{w \in N_u} t_{u,w} t_{w,v}}{\displaystyle\sum_{w \in N_u} t_{u,w}}$$

where  $N_u$  denotes the set of (direct) neighbors (friends) of u

Trust depends on all connecting paths

### Trust between direct neighbors

Can be based on profile similarity or a value provided by the users themselves.

### **TidalTrust**

### Predicted Rating

$$\hat{r_{u,i}} = \frac{\sum_{v \in raters} t_{u,v} r_{v,i}}{\sum_{v \in raters} t_{u,v}}$$

 $r_{v,i}$  denotes rating of user v for item i

### **TidalTrust**

### Predicted Rating

$$\hat{r_{u,i}} = \frac{\sum\limits_{v \in raters} t_{u,v} r_{v,i}}{\sum\limits_{v \in raters} t_{u,v}}$$

 $r_{v,i}$  denotes rating of user v for item i

#### Shortest distance?

- Efficient
- Taking a short distance gives high precision and low recall
- One can consider raters up to a maximum-depth d, a trade-off between precision (and efficiency) and recall

#### **TrustWalker**

- How far to explore the network?: trade-off between precision and coverage
- Instead of far neighbors who have rated the target item, use near neighbors who have rated similar items



# Random Walk Starting from a Target User u<sub>0</sub>



### At step k, at node u

- If u has rated i, return  $r_{u,i}$ , otherwise
- With probability  $\phi_{u,i,k}$ , stop random walk, randomly select item j rated by u and return  $r_{u,j}$
- With probability  $1 \phi_{u,i,k}$ , continue the random walk to a direct neighbor of u

# *Selecting* $\phi_{u,i,k}$

- $\phi_{u,i,k}$  gives the probability of staying at u to select one of its items at step k, while we are looking for a prediction on target item i
- This probability should be related to the similarities of the items rated by u
  and the target item i, consider the maximum similarity
- The deeper we go into the network, the probability of continuing random walk should decrease, so  $\phi_{u,i,k}$  should increase with k

$$\phi_{u,i,k} = \max_{j \in RI_u} sim(i,j) \times \frac{1}{1 + e^{-\frac{k}{2}}}$$

where  $RI_u$  denotes the set of items rated by user u

# *Selecting* $\phi_{u,i,k}$

### Selecting sim(i,j)

Let  $UC_{i,j}$  be the set of common users, who have rated both items i and j, we can define the correlation between items i and j as:

$$corr(i,j) = \frac{\sum_{u \in UC_{i,j}} (r_{u,i} - \overline{r_u})(r_{u,j} - \overline{r_u})}{\sqrt{\sum_{u \in UC_{i,j}} (r_{u,i} - \overline{r_u})^2} \sqrt{\sum_{u \in UC_{i,j}} (r_{u,j} - \overline{r_u})^2}}$$

# *Selecting* $\phi_{u,i,k}$

### Selecting sim(i,j)

Let  $UC_{i,j}$  be the set of common users, who have rated both items i and j, we can define the correlation between items i and j as:

$$corr(i,j) = \frac{\sum_{u \in UC_{i,j}} (r_{u,i} - \overline{r_u})(r_{u,j} - \overline{r_u})}{\sqrt{\sum_{u \in UC_{i,j}} (r_{u,i} - \overline{r_u})^2} \sqrt{\sum_{u \in UC_{i,j}} (r_{u,j} - \overline{r_u})^2}}$$

### Taking the effect of common users

The size of the common users is also important. For the same value of corr(i,j), if number of common users,  $|UC_{i,j}|$ , is higher, the similarity should be higher

$$sim(i,j) = \frac{1}{1 + e^{-\frac{|UC_{i,j}|}{2}}} \times corr(i,j)$$

### When does a random walk terminate?

#### Three alternatives

- Reaching a node which has expressed a rating on the target item i
- At some user node u, decide to stay at the node and select one of the items rated by u and return the rating for that item as result of the random walk
- The random walk might continue forever, so terminate when it is very far (k > max depth). What value of k?

### When does a random walk terminate?

#### Three alternatives

- Reaching a node which has expressed a rating on the target item i
- At some user node u, decide to stay at the node and select one of the items rated by u and return the rating for that item as result of the random walk
- The random walk might continue forever, so terminate when it is very far (k > max depth). What value of k?
- "six-degrees of separation"

# How to recommend a rating?

Perform several random walks, as described before and the aggregation of all ratings returned by different random walks are considered as the predicted rating  $r_{u_0,i}$ .

# How to recommend a rating?

Perform several random walks, as described before and the aggregation of all ratings returned by different random walks are considered as the predicted rating  $r_{\hat{u_0},i}$ .

Estimated rating for source user u on target item i:

$$\hat{r_{u_0,i}} = \sum_{\{(v,j)|R_{v,j}} P(XY_{u,i} = (v,j))r_{v,j}$$

•  $XY_{u,i}$  is the random variable for stopping the random walk at node v and selecting item j rated by v

#### Intuition

Can we incorporate the Social information in the matrix factorization methods?

#### Intuition

Can we incorporate the Social information in the matrix factorization methods?

### Recollect the Matrix factorization problem

$$min_{p^*,q^*} \sum_{(u,i)\in K} (r_{ui} - \hat{r_{ui}})^2 + \lambda(||q_i||^2 + ||p_u||^2)$$

where  $r_{ui}$  is the actual rating given by user u to item i,  $\hat{r_{ui}}$  approximates user u's rating of item i, simplest of the expression being  $q_i^T p_u$ , though other biases can also be incorporated.

#### Basic Idea

Neighbors in the social network may have similar interests.

#### Basic Idea

Neighbors in the social network may have similar interests.

### Incorporating social factors

- Let the social network information be represented by a matrix  $S \in R^{u_0 \times u_0}$ , where  $u_0$  is the number of users.
- $S_{u,v} \in (0,1]$  denotes the directed and weighted social relationship of user u with use v
- Each of the rows of the social matrix S is normalized to 1, resulting in the new matrix  $S^*$ , such that  $\sum_{\nu} S^*_{u,\nu} = 1$  for each user u

#### Basic Idea

Neighbors in the social network may have similar interests.

### Incorporating social factors

- Let the social network information be represented by a matrix  $S \in R^{u_0 \times u_0}$ , where  $u_0$  is the number of users.
- $S_{u,v} \in (0,1]$  denotes the directed and weighted social relationship of user u with use v
- Each of the rows of the social matrix S is normalized to 1, resulting in the new matrix  $S^*$ , such that  $\sum_{\nu} S^*_{u,\nu} = 1$  for each user u

### Modified objective function

$$\begin{aligned} \min_{p^*,q^*} \sum_{(u,i) \in K} (r_{ui} - \hat{r_{ui}})^2 + \beta \sum_{\text{all } u} ((q_u - \sum_v S^*_{u,v} q_v) (q_u - \sum_v S^*_{u,v} q_v)^T) \\ + \lambda (||q_i||^2 + ||p_u||^2) \end{aligned}$$

#### Basic Idea

A user may trust different subsets of friends regarding different domains.

#### Basic Idea

A user may trust different subsets of friends regarding different domains.

### Inferring circles based on categories



#### Basic Idea

A user may trust different subsets of friends regarding different domains.

### Inferring circles based on categories



v is in inferred circle c of u iff u connects to v and both are interested in the category c.

v is in inferred circle c of u iff u connects to v and both are interested in the category c.

### **Example Categories**

- Videos and DVDs
- Books
- Music
- Toys
- Software
- Cars
- ...

Using the nomalized trust matrix  $S^{(c)*}$ , a separate matrix mactorization model is trained for each category c.

Using the nomalized trust matrix  $S^{(c)*}$ , a separate matrix mactorization model is trained for each category c.

### Modified Objective function

$$\begin{split} L^{(c)}(r^{(c)}, q^{(c)}, p^{(c)}, S^{(c)}) &= \min_{p^*, q^*} \sum_{(u, i) \in K} (r^{(c)}_{ui} - \hat{r_{ui}}^{(c)})^2 \\ &+ \beta \sum_{\text{all } u} ((q_u^{(c)} - \sum_v S^{(c)*}_{u, v} q^{(c)}_v) (q_u^{(c)} - \sum_v S^{(c)*}_{u, v} q^{(c)}_v)^T) \\ &+ \lambda (||q^{(c)}_i||^2 + ||p^{(c)}_u||^2) \end{split}$$

## Reciprocity and Triadic Closure

How to tackle the problem of reciprocity prediction?



## Reciprocity and Triadic Closure

How to tackle the problem of reciprocity prediction?





# Predicting Reciprocity and Triadic Closure



# Predicting Reciprocity and Triadic Closure



### Reciprocity and Triadic Closure

- (a) A following network, where the blue arrows indicate new following relationship created at time t
- (b) Network with follow-back relations, green dash arrows indicate the follow back relationships developed at time (t+1)
- (c) is the network with a closure triad, where a new follow relationship denoted as a red dash arrow is created at time (t+2), forming a directed closure triad.

## Interesting Observations

#### Elite users tend to follow each other

The likelihood of an elite user following back another elite user is nearly 8 times higher than that of two ordinary users and 30 times that of an elite user and an ordinary user.

# Interesting Observations

#### Elite users tend to follow each other

The likelihood of an elite user following back another elite user is nearly 8 times higher than that of two ordinary users and 30 times that of an elite user and an ordinary user.

### Effect of location

The number of reciprocal relationships between users within the same time zone is 20 times higher than the number of users from different time zones

# Problem Definition

### Modeing Twitter Network as a directed graph G = (V, E)

- $V = \{v_1, \dots, v_n\}$  be the set of users
- $E \subseteq V \times V$  be the set of directed links between users
- Each directed link  $e_i \in E$  can be written with its two end-users  $v_i^s$  and  $v_i^u$  such that  $v_i^s$  follows  $v_i^u$
- $v_i^s$  is called the follower of  $v_i^u$  and  $v_i^u$  is the followee.

# Problem Definition

### Modeing Twitter Network as a directed graph G = (V, E)

- $V = \{v_1, \dots, v_n\}$  be the set of users
- $E \subseteq V \times V$  be the set of directed links between users
- Each directed link  $e_i \in E$  can be written with its two end-users  $v_i^s$  and  $v_i^u$  such that  $v_i^s$  follows  $v_i^u$
- $v_i^s$  is called the follower of  $v_i^u$  and  $v_i^u$  is the followee.
- A new link results when a user performs a behavior of following another user in Twitter (95% of the changes to link are adding new links)

### New Follow and Follow Back

- Suppose at time t, user  $v_i$  creates a link to  $v_j$ , who has no previous link to  $v_i$ , then  $v_i$  performs a **new-follow** behavior on  $v_i$ .
- When user  $v_i$  creates a link to  $v_j$  at time t, who already has a link to  $v_i$  at time t, then  $v_i$  performs a **follow-back** behavior on  $v_i$
- New-follow behavior corresponds to the one-way (parasocial) relationship
- Follow-back behavior corresponds to two-way (reciprocal) relationship

### Follow Back Prediction

- Let  $y_i^t = 1$  denote that user  $v_i^s$  follows back  $v_i^u$  at time t and
- $y_i^t = 0$  denote that user  $v_i^s$  does not follow back.

#### **Prediction Problem**

- Let < 1, ..., t > be a sequence of timesstamps with a particular time granularity (e.g., day, week, etc.)
- Given Twitter networks from time 1 to t,  $\{G^t = (V^t, E^t, Y^t)\}$ , where  $Y^t$  is the set of follow-back behaviors at time t, the task is to find a predictive function

$$f:(\{G^1,\ldots,G^t\})\to Y^{(t+1)}$$

# Geographic distance correlation





# Effect of Homophily

### Principle of homophily

Users with similar characteristics (e.g., social status, age) tend to associate with each other

# Effect of Homophily

### Principle of homophily

Users with similar characteristics (e.g., social status, age) tend to associate with each other

### Link Homophily: Common Neighbors



# Effect of Homophily: ordinary and elite

#### Eliteness based on

- Top 1% users having the highest pageRank
- Top 1% users with the highest number of indegree
- $(\alpha, \beta)$ : users selected in the core community C of size 200 (every vertex in C connected to at-least  $\beta$  vertices of C and every vertex outside C is connected to atmost  $\alpha$  vertices inside C).



# Effect of retweet (reply)

- User A mentioning user B in his tweet, @B, is called a reply link
- User A forwarding user B's tweet, is called a retweet link

# Effect of retweet (reply)

- User A mentioning user B in his tweet, @B, is called a reply link
- User A forwarding user B's tweet, is called a retweet link

### Probability that B follows A back



### Structural balance

### Structural Balance Property

For every group of three users (triad), balance property implies that

- · Either all three of the users are friends, or
- Only one pair of them are friends

### Structural balance

#### Structural Balance Property

For every group of three users (triad), balance property implies that

- Either all three of the users are friends, or
- Only one pair of them are friends



### Structural balance

#### Structural Balance Property

For every group of three users (triad), balance property implies that

- Either all three of the users are friends, or
- Only one pair of them are friends



A and B are balanced, while C and D are not.

## Verifying Structural balance theory for Twitter

Either reciprocal or parasocial relations can be mapped on the friendship

### Verifying Structural balance theory for Twitter

Either reciprocal or parasocial relations can be mapped on the friendship



## Verifying Structural balance theory for Twitter

Either reciprocal or parasocial relations can be mapped on the friendship



### Why so unbalanced for parasocial?

Two users may not know each other but may follow a same movie star with a high probability, which results in a unbalanced triad

#### Model Framework

• For an edge  $e_i \in E$ , if user  $v_i^s$  follows  $v_i^u$  at time t, our task is to predict whether user  $v_i^u$  will follow  $v_i^s$  back at time (t+1).

### Model Framework

- For an edge  $e_i \in E$ , if user  $v_i^s$  follows  $v_i^u$  at time t, our task is to predict whether user  $v_i^u$  will follow  $v_i^s$  back at time (t+1).
- Each edge can be described using various attributes, denoted as  $x_i$
- If d is the number of attributes, the  $|E| \times d$  attribute matrix X describes edge-specific characteristics
- Example attributes: whether the two end-users are from the same time zone

# Triad Factor Graph (TriFG)

- We need the posterior probability of P(Y|X,G)
- Using Bayes' theorem,  $P(Y|X,G) \propto P(X|Y)P(Y|G)$
- Assuming the generative probability of attributes given the label of each edge is conditionally independent, we get

$$P(Y|X,G) \propto P(Y|G) \prod_{i} P(x_i|y_i)$$

•  $P(x_i|y_i)$  and P(Y|G) can be instantiated using a Markov random field

# Instantiating the two probabilities

$$egin{align} P(\mathbf{x}_i|y_i) &= rac{1}{Z_1} \exp\left\{\sum_{j=1}^d lpha_j f_j(x_{ij},y_i)
ight\} \ P(Y|G) &= rac{1}{Z_2} \exp\left\{\sum_c \sum_k \mu_k h_k(Y_c)
ight\} \ \end{aligned}$$

# Instantiating the two probabilities

$$egin{align} P(\mathbf{x}_i|y_i) &= rac{1}{Z_1} \exp\left\{\sum_{j=1}^d lpha_j f_j(x_{ij},y_i)
ight\} \ P(Y|G) &= rac{1}{Z_2} \exp\left\{\sum_c \sum_k \mu_k h_k(Y_c)
ight\} \ \end{aligned}$$

- $f_j(x_{ij}, y_i)$  is a feature function, defined for each attribute  $x_{ij}$  associated with edge  $e_i$
- $\alpha_j$  is the weight of the  $j^{th}$  attribute
- A set of correlation feature functions  $\{h_k(Y_c)\}_k$  is defined over each triad  $Y_c$  in the network
- ullet  $\mu_k$  is the weight of the  $k^{th}$  correlation feature function



# Model Learning

### Log-likelihood objective function

$$O(\theta) = log P_{\theta}(Y|X,g)$$

$$\mathcal{O}(\theta) = \sum_{i=1}^{|E|} \sum_{j=1}^{d} \alpha_j f_j(x_{ij}, y_i) + \sum_c \sum_k \mu_k h_k(Y_c) - \log Z$$

# Model Learning

### Log-likelihood objective function

$$O(\theta) = log P_{\theta}(Y|X,g)$$

$$\mathcal{O}( heta) = \sum_{i=1}^{|E|} \sum_{j=1}^d lpha_j f_j(x_{ij}, y_i) + \sum_c \sum_k \mu_k h_k(Y_c) - \log Z$$

• Learning the TriFG model is to estimate a parameter configuration  $\theta = (\{\alpha\}, \{\mu\})$  to maximize  $O(\theta)$ , i.e.  $\theta^* = \arg\max O(\theta)$ 

# Model Learning

### Log-likelihood objective function

$$O(\theta) = log P_{\theta}(Y|X,g)$$

$$\mathcal{O}( heta) = \sum_{i=1}^{|E|} \sum_{j=1}^d lpha_j f_j(x_{ij}, y_i) + \sum_c \sum_k \mu_k h_k(Y_c) - \log Z$$

- Learning the TriFG model is to estimate a parameter configuration  $\theta = (\{\alpha\}, \{\mu\})$  to maximize  $O(\theta)$ , i.e.  $\theta^* = \arg\max O(\theta)$
- A gradient descent method can be used to solve this objective function

