Random Walks on Graphs

Pawan Goyal

CSE, IITKGP

September 2-4, 2014

The underlying data is naturally a graph

Papers linked by citation

- Papers linked by citation
- Authors linked by co-authorship

- Papers linked by citation
- Authors linked by co-authorship
- Bipartite graph of customers and products

- Papers linked by citation
- Authors linked by co-authorship
- Bipartite graph of customers and products
- Web-graph: who links to whom

- Papers linked by citation
- Authors linked by co-authorship
- Bipartite graph of customers and products
- Web-graph: who links to whom
- Friendship networks: who knows whom

- Papers linked by citation
- Authors linked by co-authorship
- Bipartite graph of customers and products
- Web-graph: who links to whom
- Friendship networks: who knows whom
- Follower-followee network

Rank nodes for a particular query

Top k matches for "Social Computing" from Citeseer

- Top k matches for "Social Computing" from Citeseer
- Who are the most likely co-authors of Manning.

- Top k matches for "Social Computing" from Citeseer
- Who are the most likely co-authors of Manning.
- Top k book recommendations from Amazon

- Top k matches for "Social Computing" from Citeseer
- Who are the most likely co-authors of Manning.
- Top k book recommendations from Amazon
- Top k websites for a query

- Top k matches for "Social Computing" from Citeseer
- Who are the most likely co-authors of Manning.
- Top k book recommendations from Amazon
- Top k websites for a query
- Top k Friend recommendation to X when he joins Facebook

Why Random Walks?

 A wide variety of interesting real world applications can be framed as ranking entities in a graph

Why Random Walks?

- A wide variety of interesting real world applications can be framed as ranking entities in a graph
- A graph-theoretic measure for ranking nodes as well as similarity: for example, two entities are similar, if lots of short paths between them.

Why Random Walks?

- A wide variety of interesting real world applications can be framed as ranking entities in a graph
- A graph-theoretic measure for ranking nodes as well as similarity: for example, two entities are similar, if lots of short paths between them.
- Random walks have proven to be a simple, but powerful mathematical tool for extracting this information.

What is Random Walk?

 Given a graph and a starting point (node), we select a neighbor of it at random, and move to this neighbor

What is Random Walk?

- Given a graph and a starting point (node), we select a neighbor of it at random, and move to this neighbor
- Then we select a neighbor of this node and move to it, and so on

What is Random Walk?

- Given a graph and a starting point (node), we select a neighbor of it at random, and move to this neighbor
- Then we select a neighbor of this node and move to it, and so on
- The (random) sequence of nodes selected this way is a random walk on the graph

Adjacency and Transition Matrix

$n \times n$ Adjacency matrix A

- A(i,j): weight on edge from i to j
- If the graph is undirected A(i,j) = A(j,i), i.e. A is symmetric

Adjacency and Transition Matrix

$n \times n$ Adjacency matrix A

- A(i,j): weight on edge from i to j
- If the graph is undirected A(i,j) = A(j,i), i.e. A is symmetric

$n \times n$ Transition matrix P

- P is row stochastic
- P(i,j) = probability of stepping on node j from node i

Adjacency and Transition Matrix

$n \times n$ Adjacency matrix A

- A(i,j): weight on edge from i to j
- If the graph is undirected A(i,j) = A(j,i), i.e. A is symmetric

$n \times n$ Transition matrix P

- P is row stochastic
- P(i,j) = probability of stepping on node j from node $i = \frac{A(i,j)}{\sum_{j}A(i,j)}$

Adjacency and Transition Matrix: Example

0	1	0
0	0	1
1	1	0

0	1	0
0	0	1
1/2	1/2	0

Adjacency matrix A

Transition matrix P

What is a random walk?

• $x_t(i)$: probability that the surfer is at node i at time t

- $x_t(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i)$:

- $x_t(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i)$: \sum_{j} (Probability of being at node j)* $Pr(j \to i) = \sum_{j} x_t(j)^* P(j,i)$

- $x_t(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i)$: \sum_{j} (Probability of being at node j)* $Pr(j \to i) = \sum_{j} x_t(j) P(j,i)$
- $x_{t+1} = x_t P = x_{t-1}^* P^* P = \dots = x_0 P^t$

- $x_t(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i)$: \sum_{j} (Probability of being at node j)* $Pr(j \to i) = \sum_{j} x_t(j)^* P(j,i)$
- $x_{t+1} = x_t P = x_{t-1}^* P^* P = \dots = x_0 P^t$
- What if the surfer keeps walking for a long time?

- $x_t(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i)$: \sum_{j} (Probability of being at node j)* $Pr(j \to i) = \sum_{j} x_t(j) P(j,i)$
- $x_{t+1} = x_t P = x_{t-1}^* P^* P = \dots = x_0 P^t$
- What if the surfer keeps walking for a long time?

Stationary Distribution

- $x_t(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i)$: \sum_{j} (Probability of being at node j)* $Pr(j \to i) = \sum_{j} x_t(j) P(j,i)$
- $x_{t+1} = x_t P = x_{t-1}^* P^* P = \dots = x_0 P^t$
- What if the surfer keeps walking for a long time?

Stationary Distribution

When the surfer keeps walking for a long time

- $x_t(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i)$: \sum_{j} (Probability of being at node j)* $Pr(j \to i) = \sum_{j} x_t(j) P(j,i)$
- $x_{t+1} = x_t P = x_{t-1}^* P^* P = \dots = x_0 P^t$
- What if the surfer keeps walking for a long time?

Stationary Distribution

- When the surfer keeps walking for a long time
- When the distribution does not change anymore, i.e. $x_{T+1} = x_T$

- $x_t(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i)$: \sum_{j} (Probability of being at node j)* $Pr(j \to i) = \sum_{j} x_t(j) P(j,i)$
- $x_{t+1} = x_t P = x_{t-1}^* P^* P = \dots = x_0 P^t$
- What if the surfer keeps walking for a long time?

Stationary Distribution

- When the surfer keeps walking for a long time
- When the distribution does not change anymore, i.e. $x_{T+1} = x_T$
- For well-behaved graphs, this does not depend on the start distribution

What is a stationary distribution?

- Stationary distribution at a node is related to the amount of time a random walker spends visiting that node
- Probability distribution at a node can be written as $x_{t+1} = x_t P$

What is a stationary distribution?

- Stationary distribution at a node is related to the amount of time a random walker spends visiting that node
- Probability distribution at a node can be written as $x_{t+1} = x_t P$
- For the stationary distribution (say v_0), we have $v_0 = v_0 P$

What is a stationary distribution?

- Stationary distribution at a node is related to the amount of time a random walker spends visiting that node
- Probability distribution at a node can be written as $x_{t+1} = x_t P$
- For the stationary distribution (say v_0), we have $v_0 = v_0 P$
- This is the left eigenvector of the transition matrix

Interesting questions

Does a stationary distribution always exist? Is it unique?

Yes, if the graph is "well-behaved"

Interesting questions

Does a stationary distribution always exist? Is it unique?

Yes, if the graph is "well-behaved"

How fast the random surfer approach this stationary distribution?

Mixing time

Irreducible

There is a path from every node to every other node.

Irreducible

There is a path from every node to every other node.

Irreducible

Not irreducible

Aperiodic

The GCD of all cycle lengths is 1. The GCD is also called period.

Aperiodic

The GCD of all cycle lengths is 1. The GCD is also called period.

Periodicity is 3

Aperiodic

Theorem Statement

Let $A = (a_{ij})$ be an $n \times n$ positive matrix: $a_{ij} > 0 \forall 1 \le i, j \le n$. Then

 There is a positive real number r, such that r is an eigenvalue of A and any other eigenvalue is strictly smaller than r in absolute value.

Theorem Statement

Let $A = (a_{ij})$ be an $n \times n$ positive matrix: $a_{ij} > 0 \forall 1 \le i, j \le n$. Then

 There is a positive real number r, such that r is an eigenvalue of A and any other eigenvalue is strictly smaller than r in absolute value.

Markov Chain: irreducible and aperiodic

- For any matrix A with eigenvalue σ , $|\sigma| \leq max_i \sum_j |A_{ij}|$.
- Since P is row stochastic, the largest eigenvalue of the transition matrix will be equal to 1 and all other eigenvalues will be strictly less than 1

Theorem Statement

Let $A = (a_{ij})$ be an $n \times n$ positive matrix: $a_{ij} > 0 \forall 1 \le i, j \le n$. Then

 There is a positive real number r, such that r is an eigenvalue of A and any other eigenvalue is strictly smaller than r in absolute value.

Markov Chain: irreducible and aperiodic

- For any matrix A with eigenvalue σ , $|\sigma| \leq max_i \sum_j |A_{ij}|$.
- Since P is row stochastic, the largest eigenvalue of the transition matrix will be equal to 1 and all other eigenvalues will be strictly less than 1
- Let the eigenvalues of P be $\{\sigma_i|i=0:n-1\}$ in non-decreasing order of σ_i
- $\sigma_0 = 1 > \sigma_1 \ge \sigma_2 \ge \dots \sigma_n$

• $v_0 = v_0 P$ (unique for a well-behaved graph)

- $v_0 = v_0 P$ (unique for a well-behaved graph)
- Let x be an arbitrary initial distribution

$$x = \sum_{i=1}^{n} a_i u_i$$

- $v_0 = v_0 P$ (unique for a well-behaved graph)
- Let x be an arbitrary initial distribution

$$x = \sum_{i=1}^{n} a_i u_i$$

$$\bullet xP = \sum_{i=1}^{n} a_i(u_i P)$$

- $v_0 = v_0 P$ (unique for a well-behaved graph)
- Let x be an arbitrary initial distribution

$$x = \sum_{i=1}^{n} a_i u_i$$

- $\bullet xP = \sum_{i=1}^{n} a_i(u_i P)$
- $\bullet = \sum_{i=1}^n a_i(\sigma_i u_i)$

- $v_0 = v_0 P$ (unique for a well-behaved graph)
- Let x be an arbitrary initial distribution

$$x = \sum_{i=1}^{n} a_i u_i$$

- $\bullet xP = \sum_{i=1}^{n} a_i(u_i P)$
- $\bullet = \sum_{i=1}^n a_i(\sigma_i u_i)$
- Similarly, $xP^k = \sum_{i=1}^n a_i(\sigma_i^k u_i)$

- $v_0 = v_0 P$ (unique for a well-behaved graph)
- Let x be an arbitrary initial distribution

$$x = \sum_{i=1}^{n} a_i u_i$$

- $\bullet xP = \sum_{i=1}^{n} a_i(u_i P)$
- $\bullet = \sum_{i=1}^n a_i(\sigma_i u_i)$
- Similarly, $xP^k = \sum_{i=1}^n a_i(\sigma_i^k u_i)$
- $xPPP...P = xP^k$ tends to v_0 as k goes to infinity.

$$xP^{k} = \sigma_{1}^{k} \left\{ a_{1}u_{1} + a_{2} \left(\frac{\sigma_{2}}{\sigma_{1}} \right)^{k} u_{2} + \ldots + a_{n} \left(\frac{\sigma_{n}}{\sigma_{1}} \right)^{k} u_{n} \right\}$$

$$xP^k = \sigma_1^k \{a_1u_1 + a_2 \left(\frac{\sigma_2}{\sigma_1}\right)^k u_2 + \ldots + a_n \left(\frac{\sigma_n}{\sigma_1}\right)^k u_n\}$$

 $u_1 = v_0$, thus xP^k approaches to v_0 as k goes to infinity with a speed in the order of σ_2/σ_1 exponentially.

$$xP^k = \sigma_1^k \{a_1u_1 + a_2\left(\frac{\sigma_2}{\sigma_1}\right)^k u_2 + \ldots + a_n\left(\frac{\sigma_n}{\sigma_1}\right)^k u_n\}$$

 $u_1 = v_0$, thus xP^k approaches to v_0 as k goes to infinity with a speed in the order of σ_2/σ_1 exponentially.

Show that $a_1 = 1$

$$xP^{k} = \sigma_1^{k} \{ a_1 u_1 + a_2 \left(\frac{\sigma_2}{\sigma_1} \right)^{k} u_2 + \ldots + a_n \left(\frac{\sigma_n}{\sigma_1} \right)^{k} u_n \}$$

 $u_1 = v_0$, thus xP^k approaches to v_0 as k goes to infinity with a speed in the order of σ_2/σ_1 exponentially.

Show that $a_1 = 1$

- $1_{n\times 1}$ is the right eigenvector of P with eigenvalue 1, since P is stochastic, i.e. $P^*1_{n\times 1}=1_{n\times 1}$
- Hence, $u_i^* 1_{n \times 1} = 1$ for i = 1, 0 otherwise (relation between left and right eigen vectors)
- Now, $1 = x^* 1_{n \times 1} = a_1 u_1^* 1_{n \times 1} = a_1$ (Why?)

Access time or hitting time (h_{ij})

 h_{ij} is the expected number of steps before node j is first visited, starting from node i

Access time or hitting time (h_{ij})

 h_{ij} is the expected number of steps before node j is first visited, starting from node i

$$h_{ij} = 1 + \sum_{k} p_{ik} h_{kj}, i \neq j$$

Access time or hitting time (h_{ij})

 h_{ij} is the expected number of steps before node j is first visited, starting from node i

$$h_{ij} = 1 + \sum_{k} p_{ik} h_{kj}, i \neq j$$

Commute time (c_{ij})

$$c_{ij} = h_{ij} + h_{ji}$$

Access time or hitting time (h_{ij})

 h_{ij} is the expected number of steps before node j is first visited, starting from node i

$$h_{ij} = 1 + \sum_{k} p_{ik} h_{kj}, i \neq j$$

Commute time (c_{ij})

$$c_{ij} = h_{ij} + h_{ji}$$

Cover Time Cov(G)

Cov(s,G): expected number of steps it takes a walk that starts at s to visit all vertices

Access time or hitting time (h_{ij})

 h_{ij} is the expected number of steps before node j is first visited, starting from node i

$$h_{ij} = 1 + \sum_{k} p_{ik} h_{kj}, i \neq j$$

Commute time (c_{ij})

$$c_{ij} = h_{ij} + h_{ji}$$

Cover Time Cov(G)

Cov(s,G): expected number of steps it takes a walk that starts at s to visit all vertices

Cov(G): maximum over s of Cov(s,G)

Access time or hitting time (h_{ij})

 h_{ij} is the expected number of steps before node j is first visited, starting from node i

$$h_{ij} = 1 + \sum_{k} p_{ik} h_{kj}, i \neq j$$

Commute time (c_{ij})

$$c_{ij} = h_{ij} + h_{ji}$$

Cover Time Cov(G)

Cov(s,G): expected number of steps it takes a walk that starts at s to visit all vertices

Cov(G): maximum over s of Cov(s,G)

 $Cov^+(G)$: Cover and return to start

Mixing Rate

- How fast the random walk converges to its limiting distribution
- Mixing rate for some graphs can be very small: O(logn)

Mixing Rate

- How fast the random walk converges to its limiting distribution
- Mixing rate for some graphs can be very small: O(logn)
- Mixing rate depends on the spectral gap: $1-\sigma_2$, where σ_2 is the second highest eigen value
- ullet Smaller the value of σ_2 , larger is the spectral gap, faster is the mixing rate

Basic Intuition

A webpage is important if other important pages point to it

Basic Intuition

A webpage is important if other important pages point to it

•
$$v(i) = \sum_{j \to i} \frac{v(j)}{deg^{out}(j)}$$

Basic Intuition

A webpage is important if other important pages point to it

•
$$v(i) = \sum_{j \to i} \frac{v(j)}{deg^{out}(j)}$$

• *v* is the stationary distribution of the Markov chain

How to guarantee this for a web graph?

How to guarantee this for a web graph?

At any time-step the random surfer

- jumps (teleport) to any other node with probability c
- ullet jumps to its direct neighbors with total probability 1-c

How to guarantee this for a web graph?

At any time-step the random surfer

- jumps (teleport) to any other node with probability c
- jumps to its direct neighbors with total probability 1-c

$$\tilde{P} = (1 - c)P + cU$$

How to guarantee this for a web graph?

At any time-step the random surfer

- jumps (teleport) to any other node with probability c
- jumps to its direct neighbors with total probability 1-c

$$\tilde{P} = (1 - c)P + cU$$

$$U_{ij} = \frac{1}{n} \forall i, j$$

Computing PageRank: The Power Method

- Start with any distribution x_0 , e.g. uniform distribution
- Algorithm: multiply x_0 by increasing powers of P until convergence
- After one step, $x_1 = x_0 P$, after k steps $x_k = x_0 P^k$
- ullet Regardless of where we start, we eventually reach the steady state v_0

Example web graph

Transition (probability) matrix

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_{o}	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
d_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00
d_3	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33

Transition matrix with teleporting

	d_o	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0.02	0.02	0.88	0.02	0.02	0.02	0.02
d_1	0.02	0.45	0.45	0.02	0.02	0.02	0.02
d_2	0.31	0.02	0.31	0.31	0.02	0.02	0.02
d_3	0.02	0.02	0.02	0.45	0.45	0.02	0.02
d_4	0.02	0.02	0.02	0.02	0.02	0.02	0.88
d_5	0.02	0.02	0.02	0.02	0.02	0.45	0.45
d_6	0.02	0.02	0.02	0.31	0.31	0.02	0.31

Power method vectors $\vec{x}P^k$

	→ X	→ xP¹	$\overset{\rightarrow}{xP^2}$	xP³	→ xP ⁴	<i>x</i> P ⁵	<i>xP</i> ⁶	<i>xP</i> ⁷	<i>xP</i> ⁸	<i>x</i> P ⁹	<i>x</i> P ¹⁰	<i>xP</i> ¹¹	$\overset{\rightarrow}{xP^{12}}$	→ xP ¹³
d_o	0.14	0.06	0.09	0.07	0.07	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05	0.05
d_1	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
d_2	0.14	0.25	0.18	0.17	0.15	0.14	0.13	0.12	0.12	0.12	0.12	0.11	0.11	0.11
d_3	0.14	0.16	0.23	0.24	0.24	0.24	0.24	0.25	0.25	0.25	0.25	0.25	0.25	0.25
d_4	0.14	0.12	0.16	0.19	0.19	0.20	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
d ₅	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
d_6	0.14	0.25	0.23	0.25	0.27	0.28	0.29	0.29	0.30	0.30	0.30	0.30	0.31	0.31

Example web graph

211

We are looking for the vector v such that

$$v = (1 - c)vP + cr$$

r is a distribution over web-pages

We are looking for the vector v such that

$$v = (1 - c)vP + cr$$

- r is a distribution over web-pages
- If r is the uniform distribution we get pagerank

We are looking for the vector v such that

$$v = (1 - c)vP + cr$$

- r is a distribution over web-pages
- If r is the uniform distribution we get pagerank
- What happens if r is non-uniform?

We are looking for the vector v such that

$$v = (1 - c)vP + cr$$

- r is a distribution over web-pages
- If r is the uniform distribution we get pagerank
- What happens if r is non-uniform? \rightarrow Pesonalization

- The only difference is that we use a non-uniform teleportation distribution, i.e. at any time step, teleport to a set of webpages.
- In other words we are looking for the vector v such that

$$v = (1 - c)vP + cr$$

- The only difference is that we use a non-uniform teleportation distribution, i.e. at any time step, teleport to a set of webpages.
- In other words we are looking for the vector v such that

$$v = (1 - c)vP + cr$$

r is a non-uniform preference vector specific to a user.

- The only difference is that we use a non-uniform teleportation distribution, i.e. at any time step, teleport to a set of webpages.
- In other words we are looking for the vector v such that

$$v = (1 - c)vP + cr$$

- r is a non-uniform preference vector specific to a user.
- *v* gives "personalized views" of the web.

• Divide the webpages into 16 broad categories

- Divide the webpages into 16 broad categories
- For each category, compute the biased personalized pagerank vector by teleporting uniformly to websites under that category.

- Divide the webpages into 16 broad categories
- For each category, compute the biased personalized pagerank vector by teleporting uniformly to websites under that category.
- At query time, the probability of query being from any of the above classes is computed

- Divide the webpages into 16 broad categories
- For each category, compute the biased personalized pagerank vector by teleporting uniformly to websites under that category.
- At query time, the probability of query being from any of the above classes is computed
- Final pageRank vector is computed by a linear combination of the biased pagerank vectors computed offline

There are two different types of web-pages for searching a broad topic:
 the authorities and the hubs

- There are two different types of web-pages for searching a broad topic:
 the authorities and the hubs
- Authorities: pages which are good sources of information about a given topic

- There are two different types of web-pages for searching a broad topic:
 the authorities and the hubs
- Authorities: pages which are good sources of information about a given topic
- Hub: provides pointers to many authorities

- There are two different types of web-pages for searching a broad topic:
 the authorities and the hubs
- Authorities: pages which are good sources of information about a given topic
- Hub: provides pointers to many authorities
- Works on a subgraph can consist of top k search results for the given query from a standard text-based engine

 Given this subgraph, the idea is to assign two numbers to a node: a hub-score and an authority score

- Given this subgraph, the idea is to assign two numbers to a node: a hub-score and an authority score
- A node is a good hub if it points to many good authorities, whereas a node is a good authority if many good hubs point to it.
- $a(i) \leftarrow \sum_{j:j \in I(i)} h(j)$
- $\bullet \ h(i) \leftarrow \sum_{j:j \in O(i)} a(j)$

- $a = A^T h, h = Aa$
- $\bullet \ h = AA^T h, \, a = A^T A a$

- $a = A^T h, h = Aa$
- $h = AA^Th$, $a = A^TAa$
- h converges to the principal eigenvector of A^TA and a converges to the principal eigenvector of A^TA

- $a = A^T h, h = Aa$
- $h = AA^Th$, $a = A^TAa$
- h converges to the principal eigenvector of A^TA and a converges to the principal eigenvector of A^TA
- $AA^{T}(i,j) = \sum_{k} A(i,k)A(j,k)$: number of nodes both i and j point to, bibliographic coupling

- $a = A^T h, h = Aa$
- $h = AA^Th$, $a = A^TAa$
- h converges to the principal eigenvector of A^TA and a converges to the principal eigenvector of A^TA
- $AA^T(i,j) = \sum_k A(i,k)A(j,k)$: number of nodes both i and j point to, bibliographic coupling
- $A^TA(i,j) = \sum_k A(k,i)A(k,j)$: number of nodes which point to both i and j, co-citation matrix

How to compute hub and authority scores

- Do a regular web search first
- Call the search result the root set
- Find all pages that are linked to or link to pages in the root set
- Call first larger set the base set
- Finally, compute hubs and authorities for the base set (which we'll view as a small web graph)

Root set and base set (1)

The base set

Example web graph

Raw matrix A for HITS

	d_o	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0	0	1	0	0	0	0
d_1	0	1	1	0	0	0	0
d_2	1	0	1	2	0	0	0
d_3	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d_6	0	0	0	2	1	0	1

Hub vectors h_0 , $\vec{h}_i = \frac{1}{d_i} A * \underline{a}_i$, $i \ge 1$

	\vec{h}_0	\vec{h}_1	\vec{h}_2	\vec{h}_3	\vec{h}_4	\vec{h}_5
d_0	0.14	0.06	0.04	0.04	0.03	0.03
d_1	0.14	0.08	0.05	0.04	0.04	0.04
d_2	0.14	0.28	0.32	0.33	0.33	0.33
d_3	0.14	0.14	0.17	0.18	0.18	0.18
d_4	0.14	0.06	0.04	0.04	0.04	0.04
d_5	0.14	0.08	0.05	0.04	0.04	0.04
d_6	0.14	0.30	0.33	0.34	0.35	0.35

Authority vector $\vec{a} = \frac{1}{c_i} A^T * \vec{h}_{i-1}$, $\underline{i} \ge 1$

	a_1	\vec{a}_2	\vec{a}_3	\vec{a}_4	\vec{a}_5	\vec{a}_6	\vec{a}_7
d_0	0.06	0.09	0.10	0.10	0.10	0.10	0.10
d_1	0.06	0.03	0.01	0.01	0.01	0.01	0.01
d_2	0.19	0.14	0.13	0.12	0.12	0.12	0.12
d_3	0.31	0.43	0.46	0.46	0.46	0.47	0.47
d_4	0.13	0.14	0.16	0.16	0.16	0.16	0.16
d_5	0.06	0.03	0.02	0.01	0.01	0.01	0.01
de	0.19	0.14	0.13	0.13	0.13	0.13	0.13

Example web graph

	а	h
d_0	0.10	0.03
d_1	0.01	0.04
d_2	0.12	0.33
d_3	0.47	0.18
d_4	0.16	0.04
d_{5}	0.01	0.04
d_6	0.13	0.35

Tightly Knit Communities Effect

- HITS ranking is sensitive to the tightly knit communities, coined as the TKC effect.
- This happens when a small tightly-knit community of nodes rank highly, although they are not most authoritative.

Tightly Knit Communities Effect

- HITS ranking is sensitive to the tightly knit communities, coined as the TKC effect.
- This happens when a small tightly-knit community of nodes rank highly, although they are not most authoritative.
- It has been shown that SALSA is less vulnerable to the TKC effect than HITS.

SALSA: The Stochastic Approach for Link-Structure Analysis

- Consider a bipartite graph G, two parts correspond to hubs and authorities
- Edge between hub r and authority s means that there is an informative link from r to s

SALSA: The Stochastic Approach for Link-Structure Analysis

- Consider a bipartite graph G, two parts correspond to hubs and authorities
- Edge between hub r and authority s means that there is an informative link from r to s
- Authorities and hubs pertaining to the dominant topic of the pages in G should be highly visible from many pages in G

SALSA: The Stochastic Approach for Link-Structure Analysis

- Consider a bipartite graph G, two parts correspond to hubs and authorities
- Edge between hub r and authority s means that there is an informative link from r to s
- Authorities and hubs pertaining to the dominant topic of the pages in G should be highly visible from many pages in G
- Two separate random walks: Hub walk and Authority walk

Two distinct random walks

- Each walk only visits nodes from one of the two sides of the graph
- Traverses paths consisting of two G-edges in each step

Two distinct random walks

- Each walk only visits nodes from one of the two sides of the graph
- Traverses paths consisting of two G-edges in each step
- Hub matrix \tilde{H} :

$$\tilde{h}_{ij} = \sum_{\{k \mid (i_h, k_a), (j_h, k_a) \in G\}} \frac{1}{deg(i_h)} \cdot \frac{1}{deg(k_a)}$$

Two distinct random walks

- Each walk only visits nodes from one of the two sides of the graph
- Traverses paths consisting of two G-edges in each step
- Hub matrix H:

$$ilde{h}_{ij} = \sum_{\{k \mid (i_h, k_a), (j_h, k_a) \in G\}} rac{1}{deg(i_h)} \cdot rac{1}{deg(k_a)}$$

• Authority matrix \tilde{A} :

$$ilde{a}_{ij} = \sum_{\{k \mid (k_h, i_a), (k_h, j_a) \in G\}} rac{1}{deg(i_a)} \cdot rac{1}{deg(k_h)}$$

Two distinct random walks

- Each walk only visits nodes from one of the two sides of the graph
- Traverses paths consisting of two G-edges in each step
- Hub matrix H:

$$ilde{h}_{ij} = \sum_{\{k \mid (i_h, k_a), (j_h, k_a) \in G\}} rac{1}{deg(i_h)} \cdot rac{1}{deg(k_a)}$$

• Authority matrix \tilde{A} :

$$\tilde{a}_{ij} = \sum_{\{k \mid (k_h, i_a), (k_h, j_a) \in G\}} \frac{1}{deg(i_a)} \cdot \frac{1}{deg(k_h)}$$

• $\tilde{a}_{i,j}>0$ implies that a certain page k links to both pages i and j, thus j is reachable from i by two steps: retracting along $k\to i$ and following $k\to j$

• A: adjacency matrix of the directed graph defined by its link structure

- A: adjacency matrix of the directed graph defined by its link structure
- A_r: Row normalized version, obtained by dividing each nonzero entry of A
 by the sum of entries in its row
- A_c: Column normalized version

- A: adjacency matrix of the directed graph defined by its link structure
- A_r: Row normalized version, obtained by dividing each nonzero entry of A
 by the sum of entries in its row
- A_c: Column normalized version
- It can be shown that \tilde{H} consists of the nonzero rows and columns of $A_r A_c{}^T$

- A: adjacency matrix of the directed graph defined by its link structure
- A_r : Row normalized version, obtained by dividing each nonzero entry of A by the sum of entries in its row
- A_c: Column normalized version
- It can be shown that \tilde{H} consists of the nonzero rows and columns of $A_r A_c{}^T$
- ullet Similarly, \tilde{A} consists of the nonzero rows and columns of ${A_c}^T\!A_r$