CS21004 - Tutorial 10

Solution Sketch

Instructions: For the problems with 'to submit', please write the answers neatly in loose sheets and submit to the TA before the end of the tutorial.

1. Let $max(L) = \{w | w \in L \text{ but for no string } wx(x \neq \epsilon) \text{ is in } L\}$. Are the CFL's closed under the max operation?

Solution: No.

Take $L = \{a^i b^j c^k | i \ge k \text{ or } j \ge k, i, j, k > 0\}$. L is a CFL.

 $Max(L) = \{a^i b^j c^k | k = max(i, j), i, j, k > 0\}$. We can prove that this is not a CFL using Pumping Lemma.

2. Prove or disprove. Let C be a context-free language and R be a regular language. Then C - R is necessarily context-free, and so is R - C. (To submit)

Solution: $C - R = C \cap \overline{R}$. Since regular languages are closed under intersection, and context free languages are closed under intersection with regular languages C - R is necessarily context-free.

However, R - C need not be context-free. For a counter example, take $R = \Sigma^*$, we know that context free languages are not closed under complement. E.g., take C to be complement of ww.

3. Let $half(L) = \{w | \text{ for some } x \text{ such that } |x| = |w|, wx \in L\}$. Notice that oddlength words in L do not contribute to half(L). Are the CFLs closed under half operation? (To submit)

Solution: No. Take $L = \{a^n b^n c^m d^{3m} | m, n > 0\}$. Clearly, this is CFL. Now, take $half(L) \cup a^* b^* c^+$, this will give only the cases where 3m < 2n + m, i.e., m < n.

Now, take $L' = \{a^n b^n c^j | j < n\}$. Clearly, this is not CFL (can prove using pumping lemma).

4. A shuffle of two strings α and β is a string γ of length $|\alpha| + |\beta|$, in which α and β are non-overlapping subsequences (not neccessarily substrings). For example, all shuffles of *ab* and *cd* are *abcd*, *cabd*, *cdab*, *acbd*, *acdb* and *cadb*. For two languages A and B, we define *shuffle*(A, B) as the language consisting of all shuffles of $\alpha \in A$ and all $\beta \in B$. Prove or disprove the following statements.

(a) If L is a CFL and R is a regular language then shuffle(L, R) is a CFL. Solution: Yes, we can construct a PDA for shuffle(L, R). On each read of the input tape, the machine guesses whether the input came from L or R, and transitions accordingly.

 $Q = Q_L \times Q_R$ ($\delta([p q], a, \beta)$ contains {($[r q], \gamma$), ($[p t], \beta$)} if $\delta_L(p, a, \beta)$ contains (r, γ) and $\delta_R(q, a) = t$. We accept if one of the branches ends in a final state for L and a final state for R.

(b) If L_1 and L_2 are CFLs then $shuffle(L_1, L_2)$ is a CFL. Solution: No.

Take $L_1 = \{a^n b^n | n > 0\}$ and $L_2 = \{c^m d^m | m > 0\}$. Now, $shuffle(L_1, L_2) \cap a^* c^* b^* d^*$ will give us all the strings of the form $\{a^n c^m b^n d^m | m, n > 0\}$, which is clearly not a CFL.

(c) Consider $L = \{a^n b^n c^n | n \ge 0\}$. Is \overline{L} a CFL? (Home) Solution: Yes. $\overline{L} = \overline{a^* b^* c^*} \cup \{a^i b^j c^k | i \ne j \text{ or } j \ne k \text{ or } i \ne k\}$

The first is a regular language, and second is a union of three context free languages, hence context free. The intersection of context free language with regular language is closed.