
Induction on Strings

7 Jan 2019

Instruction : Write the answers to the problems neatly in loose sheets with
your name and roll number. Submit to the TA at the end of the class.

1. A palindrome can be defined as a string that reads the same forward and
backward, or by the following definition.

(a) ε is a palindrome.

(b) If a is any symbol, then the string a is a palindrome.

(c) If a is any symbol and x is a palindrome, then axa is a palindrome.

(d) Nothing is a palindrome unless it follows from (a) through (c).

Prove by induction that the two definitions are equivalent.

Solution : Let the definition provided here be called def1 while the usual
definition of palindromes be termed as def2. Usual definition means that
the string reads the same both forward and backward. Both definitions
are equivalent implies, both definitions capture exactly the same subset of
Σ∗. We prove this by induction on string length, the base case being the
empty string.

For ε, it is part of def1 (clause 1) while it trivially satisfies def2. Similar
argument holds for strings of unit length (clause 2 in def1). For length
2 palindromes, they satisfy def1 being of the type aa with x = ε (clause
3). Strings of type aa also satisfy def2 being the same symbol repeated
twice. Now let us assume both definitions to be equivalent upto strings of
length n > 2 in Σ∗.

Consider a string σ with |σ| = n + 1 which is palindrome as per def2.
That implies σ = σR (applying def2). Hence it must be the case that
σ starts and ends with same symbol. Hence ∃σ′ ∈ Σ∗, a ∈ Σ such that
σ = aσ′a. Also, σ = σR ⇒ aσ′a = (aσ′a)R ⇒ aσ′a = aσ′

R
a⇒ σ′ = σ′

R
.

Thus σ′ is palindrome as per def2. Since |σ′| = n − 1 and def1, def2
are equivalent for string length upto n, we have σ′ as palindrome also for
def1. Now, applying clause 3 of def1, we have σ = aσ′a as palindrome
(as per def1).

Consider a string σ with |σ| = n + 1 which is palindrome as per def1.
Since n > 2, we must have a palindrome x such that |x| = n − 1 and
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axa = σ for some symbol a. x should satisfy def2 and hence x = xR. So,
σR = (axa)R = axRa = axa = σ. This σ is also palindrome as per def2.

2. The strings of balanced parenthesis can be defined in at least two ways.

(a) A string w over alphabet {(, )} is balanced if and only if:

i. w has an equal number of (’s as )’s, and

ii. any prefix of w has at least as many (’s as )’s.

(b) i. ε is balanced.

ii. If w is a balanced string, then (w) is balanced.

iii. If w and x are balanced strings, then so is wx.

iv. Nothing else is a balanced string.

Prove by induction on the length of a string that definitions (a) and (b)
define the same class of strings.

Solution : Let Pn
Σ be the set of balanced parenthesis upto length 2n.

P 0
Σ = {ε} which is trivially satisfying def1 and def2. Let def1 and def2

agree upto Pn
Σ . Now Pn+1

Σ = Pn
Σ ∪ X with X being the set of balanced

parenthesis of length exactly 2n+ 2.

Let x ∈ X be a balanced parenthesis satisfying def1. Consider the prefix
of x of length 1. As per condition 2 of def1, it has to be ‘(’. (If the first
symbol is ‘)’, condition 2 is not satisfied.) As per condition 1 of def1, x
has n+ 1 ‘(’ and n+ 1 ‘)’. We now argue that the last symbol of x has to
be ‘)’. Otherwise, if x = x1(, then x1 is a prefix with n + 1 ‘)’ and n ‘(’
(violates condition 2). Hence, as per def1 x = (w) (has to start and end
with ‘(’ and ‘)’ respectively). There are two options now.

(a) w is a balanced string of length 2n as per def1. Then w is a balanced
string also as per def2 (the definitions agree upto length 2n). Then
x satisfies def2 (clause2).

(b) w is not a balanced string as per def1. This can only happen if
clause 2 of def1 is violated by w (clause 1 is satisfied). Let w1 be
the smallest such prefix of w with less ‘(’ than ‘)’. Note that ‘(w1’
manages to be a prefix with at least as many ‘(’ as ‘)’. Hence, in
w1 there is exactly one ‘(’ less. Thus ‘(w1’ satisfies both conditions
of def1 (condition 2 is guaranteed by w1 being the smallest possible
violator). Thus (w1 is a balanced string as per def1 (and hence def2).
With x = (w) = (w1w2), what about w2 ? Since condition 1 and 2 of
def1 are satisfied by both (w1 and w, they are also satisfied by w2).
Still let us show that. Surely, w2) has same number of ‘(’ and ‘)’
since both (w) and (w1 are balanced. Consider any prefix σ of w2).
Note, (w1σ has at least as many ‘(’ as ‘)’. (w1 has same number of
‘(’ and ‘)’. Hence σ has at least as many ‘(’ as ‘)’.

Both (w1 and w2) are balanced as per both defs. Hence x = (w) is
balanced also as per def2 (clause3).
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Assume def2 and prove the reverse now.

3. Prove that any equivalence relation R on a set S partitions S into disjoint
equivalence classes.

Solution :
Let, x, y ∈ S and [[x]]R ∩ [[y]]R 6= φ and suppose z ∈ [[x]]R , z ∈ [[y]]R
Hence by definition of Equivalence Class, (x, z) ∈ R , (y, z) ∈ R
Let c ∈ [[x]]R i.e. (x, c) ∈ R
By definition of Equivalence relation, R is symmetric. So, (z, x) ∈ R
By definition of equivalence relation, R is transitive. So,
(z, x) ∈ R∧(x, c) ∈ R⇒ (z, c) ∈ R and (y, z) ∈ R∧(z, c) ∈ R⇒ (y, c) ∈ R
This gives c ∈ [[y]]R and hence, [[x]]R ⊆ [[y]]R

Considering c ∈ [[y]]R , it can be proved that [[y]]R ⊆ [[x]]R in similar way.
[[x]]R ⊆ [[y]]R ∧ [[y]]R ⊆ [[x]]R ⇒ [[x]]R = [[y]]R
Thus, [[x]]R ∩ [[y]]R 6= φ⇒ [[x]]R = [[y]]R.
Following the above results, we can say, equivalence classes are either same
or disjoint. Hence any equivalence relation R on a set S partitions S into
disjoint equivalence classes.

4. Show that the following are equivalence relations and give their equivalence
classes.

(a) R1 on integers → iR1j iff i = j.

(b) R2 on people→ pR2q iff p and q were born on the same hour of same
day of some year.

(c) In (b) replace ”some year” with ”same year”.

Solution :

(a) R1 is a relation on set of integers Z such that iR1j =⇒ i = j

i. Proof of Reflexivity: Let, a ∈ Z
As we can say a = a =⇒ aR1a

ii. Proof of Symmetry: Let, a, b ∈ Z such that a = b =⇒ aR1b
From a = b we can say b = a =⇒ bR1a

iii. Proof of Transitivity: Let, a, b, c ∈ Z such that a = b, b =
c =⇒ aR1b, bR1c
As we can say a = c =⇒ aR1c

Clearly this R1 will divide Z into as many equivalent classes as many
integers are present in Integer set.

(b) R2 is a relation on set of people P such that pR2q =⇒ p and q were
born on the same hour of same day of some year.

i. Proof of Reflexivity: Let, p ∈ P
Then we can say p and p were born on the same hour of same
day of some year. =⇒ pR1p
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ii. Proof of Symmetry: Let, p, q ∈ P and pR2q
Then we can say q and p were born on the same hour of same
day of some year. =⇒ qR1p

iii. Proof of Transitivity: Let, p, q, r ∈ P and pR2q, qR2r
As pR2q =⇒ p and q were born on the same hour of same day
of some year and qR2r =⇒ q and r were born on the same hour
of same day of some year.then we can clearly say, p and r were
born on the same hour of same day of some year. =⇒ pR1r

Clearly this R2 will divide P into 365*24 (366*24, for leap years)
equivalence classes i.e. the number of hours in any year.
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