
Discrete Structures 2024

Sets, Relation, Function - Practice Problems

September 2024

1. Let A, B, C ✓ U . Prove that (A�B) ✓ C if and only if (A� C) ✓ B.

Solution:

We need to prove the statement:

(A�B) ✓ C () (A� C) ✓ B

This is an “if and only if” statement, so we will prove both directions:

(a). (A�B) ✓ C =) (A� C) ✓ B

Assume that (A�B) ✓ C. We want to show that (A� C) ✓ B.

Let x 2 (A� C). By the definition of set di↵erence:

x 2 A and x /2 C

Since x 2 A and x /2 C, it remains to show that x 2 B.

Assume for contradiction that x /2 B. This implies x 2 A and x /2 B, so x 2 (A � B). But we
are given that (A�B) ✓ C, so x 2 C, which contradicts x /2 C.

Thus, x 2 B, and we conclude that (A� C) ✓ B.

(b). (A� C) ✓ B =) (A�B) ✓ C

Now assume that (A� C) ✓ B. We want to show that (A�B) ✓ C.

Let x 2 (A�B). By the definition of set di↵erence:

x 2 A and x /2 B

Since x 2 A and x /2 B, it remains to show that x 2 C.

Assume for contradiction that x /2 C. This implies x 2 A and x /2 C, so x 2 (A � C). But we
are given that (A� C) ✓ B, so x 2 B, which contradicts x /2 B.

Thus, x 2 C, and we conclude that (A�B) ✓ C.

Conclusion:

Since both directions have been proven, we have shown that:

(A�B) ✓ C () (A� C) ✓ B

2. Let A,B ✓ R, where

A = {x | x2 � 7x  �12} and B = {x | x2 � x  6}.

Determine A [B and A \B.

Solution:

x2 � 7x  �12 =) x2 � 7x+ 12  0 =) (x� 3)(x� 4)  0

[(x� 3)  0 and (x� 4) � 0] or [(x� 3) � 0 and (x� 4)  0]

1



=) [x  3 and x � 4] or [x � 3 and x  4] =) 3  x  4,

so A = {x | 3  x  4} = [3, 4].

x2 � x  6 =) x2 � x� 6  0 =) (x� 3)(x+ 2)  0

[(x� 3)  0 and (x+ 2) � 0] or [(x� 3) � 0 and (x+ 2)  0]

=) [x  3 and x � �2] or [x � 3 and x  �2] =) �2  x  3,

so B = {x | �2  x  3} = [�2, 3].

Consequently,
A \B = {3} and A [B = [�2, 4].

3. Define a relation ⇢ on N as a ⇢ b if and only if a has the same set of prime divisors as b. For
example, 5 is related to 25 = 52, 12 = 22 ⇥ 3 is related to 54 = 2⇥ 33, but 12 is not related to
16 = 24, nor to 180 = 22 ⇥ 32 ⇥ 5.

(a) Prove that ⇢ is an equivalence relation on N.
(b) Find a unique representative from each equivalence class of ⇢.

Solution:

(a) Proving that ⇢ is an equivalence relation on N.
To show that ⇢ is an equivalence relation, we need to check the following three properties:
reflexivity, symmetry, and transitivity.

1. Reflexivity: We need to show that for all a 2 N, a ⇢ a. This means that a has the same set
of prime divisors as itself. Since the prime divisors of a number are the same as its own prime
divisors, reflexivity holds.

2. Symmetry: We need to show that if a ⇢ b, then b ⇢ a. By definition, a ⇢ b means that a and
b have the same set of prime divisors. Clearly, if a and b have the same set of prime divisors,
then b and a also have the same set of prime divisors, so symmetry holds.

3. Transitivity: We need to show that if a ⇢ b and b ⇢ c, then a ⇢ c. If a ⇢ b, this means a and
b have the same set of prime divisors. Similarly, if b ⇢ c, then b and c have the same set of
prime divisors. Therefore, a and c must have the same set of prime divisors, which implies a ⇢ c.
Hence, transitivity holds.

Since reflexivity, symmetry, and transitivity all hold, ⇢ is an equivalence relation on N.
(b) Finding a unique representative from each equivalence class of ⇢.

A non-zero integer is called square-free if it is not divisible by the square of a prime number.
Each equivalence class of ⇢ contains a unique square-free integer, and these unique square-free
integers are di↵erent in distinct equivalence classes. To see why, let a 2 N have the prime
factorization a = pe11 · . . . · pett with t > 0, with pairwise distinct primes p1, . . . , pt, and with
each ei > 0. But then [a] = [p1 · . . . · pt]. Moreover, two di↵erent square-free integers have
di↵erent sets of prime divisors. So we can take square-free integers as the representatives of the
equivalence classes.

4. Let f : Z� {0} ! N be defined by

f(x) = 2x� 1 if x > 0, and f(x) = �2x for x < 0.

(a) Prove that f is one-to-one and onto.

(b) Determine f�1.

Solution:
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(a) To prove that f is one-to-one and onto:

One-to-one (Injective): Suppose that x1, x2 2 Z and f(x1) = f(x2). Then either
f(x1), f(x2) are both even or they are both odd.

If they are both even, then f(x1) = f(x2) ) �2x1 = �2x2 ) x1 = x2.

Otherwise, f(x1), f(x2) are both odd and f(x1) = f(x2) ) 2x1 � 1 = 2x2 � 1 ) 2x1 =
2x2 ) x1 = x2.

Consequently, the function f is one-to-one.

Onto (Surjective): In order to prove that f is an onto function, let n 2 N.
If n is even, then (�n/2) 2 Z and (�n/2) < 0, and f(�n/2) = �2(�n/2) = n.

For the case where n is odd, we find that (n+1)/2 2 Z and (n+1)/2 > 0, and f((n+1)/2) =
2[(n+ 1)/2]� 1 = (n+ 1)� 1 = n.

Hence f is onto.

(b) The determination of f�1 is left as an exercise.

5. In ten days, Ms. Rosatone typed 84 letters to di↵erent clients. She typed 12 of these letters on
the first day, seven on the second day, and three on the ninth day, and she finished the last eight
on the tenth day. Show that for three consecutive days, Ms. Rosatone typed at least 25 letters.

Solution:

For 1  i  10, let xi be the number of letters typed on day i. Then x1 + x2 + x3 + . . . +
x8 + x9 + x10 = 84, or x3 + . . . + x8 = 54. Suppose that x1 + x2 + x3 < 25, x2 + x3 + x4 <
25, . . . , x8 + x9 + x10 < 25. Then x1 + 2x2 + 3(x3 + . . . + x8) + 2x9 + x10 < 8(25) = 200, or
3(x3 + . . .+ x8) < 160. Consequently, 54 = x3 + . . .+ x8 < (160)/3 = 53 1

3 .

6. Suppose you set your computer password of length m from a fixed chosen set of n di↵erent
characters available in the keyboard (m � n). How many di↵erent passwords can you set so
that at least one occurrence of each symbol (from the n chosen set of keyboard symbols) will
be present?

Solution:

1. We want to find the number of passwords that:

• Have length m

• Use n di↵erent characters

• Include at least one of each of the n characters

2. This is an application of the Inclusion-Exclusion Principle.

3. The total number of possible passwords of length m using n characters is nm.

4. We need to subtract the number of passwords that are missing at least one character.

5. Let Ai be the set of passwords missing the i-th character. We want to find |A1[A2[. . .[An|.
6. Thus,

|A1[A2[. . .[An| =
nX

i=1

|Ai|�
X

i<j

|Ai\Aj |+
X

i<j<k

|Ai\Aj\Ak|�. . .+(�1)n�1|A1\A2\. . .\An|

7. Calculating each term:

• |Ai| = (n� 1)m (passwords using only n� 1 characters)

• |Ai \Aj | = (n� 2)m (passwords using only n� 2 characters)

•
...

• |A1 \A2 \ . . . \An| = 0 (no password can miss all characters)

8. The number of valid passwords is:

nm �
✓
n

1

◆
(n� 1)m +

✓
n

2

◆
(n� 2)m � . . .+ (�1)n�1

✓
n

n� 1

◆
(1)m
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Therefore, the number of di↵erent passwords of lengthm using n characters where each character
appears at least once is:

nm �
n�1X

k=1

(�1)k�1

✓
n

k

◆
(n� k)m

7. For m,n 2 Z+ with m < n, prove that,

nX

k=0

(�1)k
✓

n

n� k

◆
(n� k)m = 0.

Solution: Application of Inclusion-Exclusion Principle

8. Let A = R⇥ R be the set of all ordered pairs of real numbers. Define a binary relation ⇧ on A
as follows:

For (a1, b1), (a2, b2) 2 A,

(a1, b1) ⇧ (a2, b2) = (a1a2 � b1b2, a1b2 + b1a2)

(a) Prove or disprove that ⇧ is commutative.

(b) Prove or disprove that ⇧ is associative.

(c) Find the identity element for ⇧, if it exists.
(d) For any (a, b) 2 A where a2 + b2 6= 0, find the inverse element under ⇧.

Solution:

(a) Commutativity:

Let (a1, b1), (a2, b2) 2 A. We need to show that (a1, b1) ⇧ (a2, b2) = (a2, b2) ⇧ (a1, b1).

(a1, b1) ⇧ (a2, b2) = (a1a2 � b1b2, a1b2 + b1a2)

(a2, b2) ⇧ (a1, b1) = (a2a1 � b2b1, a2b1 + b2a1)

Since multiplication of real numbers is commutative, these are equal. Thus, ⇧ is commu-
tative.

(b) Associativity:

Let (a1, b1), (a2, b2), (a3, b3) 2 A. We need to show that ((a1, b1) ⇧ (a2, b2)) ⇧ (a3, b3) =
(a1, b1) ⇧ ((a2, b2) ⇧ (a3, b3)).
Left side:

((a1, b1) ⇧ (a2, b2)) ⇧ (a3, b3)
= (a1a2 � b1b2, a1b2 + b1a2) ⇧ (a3, b3)
= ((a1a2 � b1b2)a3 � (a1b2 + b1a2)b3, (a1a2 � b1b2)b3 + (a1b2 + b1a2)a3)

= (a1a2a3 � b1b2a3 � a1b2b3 � b1a2b3, a1a2b3 � b1b2b3 + a1b2a3 + b1a2a3)

Right side:

(a1, b1) ⇧ ((a2, b2) ⇧ (a3, b3))
= (a1, b1) ⇧ (a2a3 � b2b3, a2b3 + b2a3)

= (a1(a2a3 � b2b3)� b1(a2b3 + b2a3), a1(a2b3 + b2a3) + b1(a2a3 � b2b3))

= (a1a2a3 � a1b2b3 � b1a2b3 � b1b2a3, a1a2b3 + a1b2a3 + b1a2a3 � b1b2b3)

These are equal, so ⇧ is associative.
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(c) Identity element:

Let (e, f) be the identity element. Then for any (a, b) 2 A:

(a, b) = (a, b) ⇧ (e, f) = (ae� bf, af + be)

This implies ae� bf = a and af + be = b for all a, b. The only solution is e = 1 and f = 0.

Therefore, the identity element is (1, 0).

(d) Inverse element:

For (a, b) 2 A where a2 + b2 6= 0, let (x, y) be its inverse. Then:

(a, b) ⇧ (x, y) = (1, 0)

This gives us:

ax� by = 1

ay + bx = 0

Solving this system:

x =
a

a2 + b2
, y =

�b

a2 + b2

Therefore, the inverse of (a, b) is ( a
a2+b2 ,

�b
a2+b2 ).

9. Let S = Z+ ⇥Z+. Define a relation R1 on S as, (x, y)R1(m,n) if and only if x  m and y  n.
Prove or disprove that R1 is a total-order on S.

Solution: Given an counter example and explain. For example, (6,7),(7,6) does not belong to
R1.

10. A total of 1232 students have taken a course in Spanish, 879 have taken a course in French,
and 114 have taken a course in Russian. Further, 103 have taken courses in both Spanish and
French, 23 have taken courses in both Spanish and Russian, and 14 have taken courses in both
French and Russian. If 2092 students have taken a course in at least one of Spanish French and
Russian, how many students have taken a course in all 3 languages.

Solution: Let S be the set of students who have taken a course in Spanish, F the set of students
who have taken a course in French, and R the set of students who have taken a course in Russian.
Then, we have |S| = 1232, |F | = 879, |R| = 114, |S \ F | = 103, |S \R| = 23, |F \R| = 14, and
|S [ F [R| = 2092.

Using the equation:

|S [ F [R| = |S|+ |F |+ |R|� |S \ F |� |S \R|� |F \R|+ |S \ F \R|

we obtain:

2092 = 1232 + 879 + 114� 103� 23� 14 + |S \ F \R|

Solving for |S \ F \R| yields:

|S \ F \R| = 7

11. Professor Bailey has just completed writing the final examination for his course in advanced
engineering mathematics. This examination has 12 questions, whose total value is to be 200
points. In how many ways can Professor Bailey assign the 200 points if (a) each question must
count for at least 10, but no more than 25, points? (b) each question must count for at least
10, but not more than 25, points and the point value for each question is to be a multiple of 5?

(a) Each question must count for at least 10, but no more than 25 points:

1) First, we need to allocate the minimum 10 points to each question: 12 × 10 = 120 points
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2) Now we have 200 - 120 = 80 points left to distribute among the 12 questions.

3) Each question can receive up to 15 additional points (because 25 - 10 = 15).

4) This is equivalent to distributing 80 indistinguishable objects (points) into 12 distinguishable
boxes (questions), where each box can hold up to 15 objects.

12X

k=0

(�1)k
✓
12

k

◆✓
80 + 12� 1� k(15 + 1)

12� 1

◆

(b) Each question must count for at least 10, but not more than 25, points and the point value
for each question is to be a multiple of 5:

Similar to part (a), but now we’re partitioning 40 (because 200/5 = 40) into 12 parts After
subtracting the minimum (2 for each part, because 10/5 = 2), we’re partitioning 16 into 12 parts
Each part can now be from 0 to 3 (because (25-10)/5 = 3) 3)So, our new problem is: distribute
16 indistinguishable objects (each representing 5 points) into 12 distinguishable boxes, where
each box can contain 0 to 3 objects.
We want to find the number of integer solutions to:

P12
i=1 xi = 16, where 0  xi  3 for all i 2

{1, 2, . . . , 12}
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Discrete Structures 2024

Sets, Relation, Function - Tutorial Problems

September 12th 2024

1. S = {(1, 2), (2, 1)} is a binary relation on the set A = {1, 2, 3}. Is it irreflexive? Add the
minimum number of ordered pairs to S to make it an equivalence relation. What is the modified
S?

Solution:

(a). Is S irreflexive?

A relation is irreflexive if no element in the set is related to itself, i.e., for all a 2 A, (a, a) /2 S.
Since none of the pairs (1, 1), (2, 2), or (3, 3) are in S, the relation is irreflexive.

(b). Add the minimum number of ordered pairs to S to make it an equivalence relation.

For S to be an equivalence relation, it must satisfy the following properties:

• Reflexivity: For all a 2 A, (a, a) 2 S. We need to add the pairs (1, 1), (2, 2), and (3, 3).

• Symmetry: For all (a, b) 2 S, (b, a) 2 S. The relation S is already symmetric because
(1, 2) 2 S and (2, 1) 2 S.

• Transitivity: For all (a, b) 2 S and (b, c) 2 S, (a, c) 2 S. We need to check for transitivity
once the reflexive pairs are added.

Thus, the minimum number of ordered pairs to be added are:

(1, 1), (2, 2), (3, 3)

The modified relation S becomes:

S = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}

2. Let m,n 2 Z+ with 1 < n  m. Then, S(m+ 1, n) = S(m,n� 1) + n · S(m,n), where S(m,n)
denotes a Stirling number of the second kind. Also, prove O(m,n) = n! ·S(m,n), where O(m,n)
is the number of onto functions in f : A ! B.

Solution:
Part 1: Proving S(m+ 1, n) = S(m,n� 1) + n · S(m,n)

Consider partitioning m+ 1 elements into n non-empty subsets. We can do this in two ways:

1) Place the (m+1)-th element in a new subset by itself: This leavesm elements to be partitioned
into n� 1 subsets, which can be done in S(m,n� 1) ways.

2) Place the (m+1)-th element into one of the existing subsets: First, partition m elements into
n subsets (S(m,n) ways), then choose one of these n subsets to place the (m + 1)-th element
(can be done in n ways).

By the addition principle, the total number of ways is the sum of these two cases:

S(m+ 1, n) = S(m,n� 1) + n · S(m,n)

Thus, the recurrence relation is proved.

Part 2: Proving O(m,n) = n! · S(m,n)
We can also prove this by considering the relationship between onto functions and surjections:
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1) Every onto function is a surjection.

2) For each partition of A into n subsets (corresponding to the preimages of elements in B),
there are n! ways to assign these subsets to elements of B.

3) The number of ways to partition A into n subsets is given by S(m,n).

Therefore, the total number of onto functions is:

O(m,n) = S(m,n) · n!
Thus, we have proved that O(m,n) = n! · S(m,n).

3. Give an example of a poset A and a non-empty subset S of A such that S has lower bounds in
A, but the greatest lower bound(S) does not exist.

Solution: Take A = Q under the standard  on rational numbers. Also take S = {x 2 Q :
x
2
> 2}. Every rational number <

p
2 is a lower bound on S. Since

p
2 is irrational, glb(S)

does not exist.

Another example: Take A to be the set of all irrational numbers between 1 and 5, and S to be
the set of all irrational numbers between 2 and 3.

A simpler (but synthetic) example: Take A = {a, b, c, d} and the relation on A as,

⇢ = {(a, a), (a, c), (a, d), (b, b), (b, c), (b, d)(c, c), (d, d)}
The subset S = {c, d} of A has two lower bounds a and b, but these bounds are not comparable
to one another.

4. How many permutations of the 10 digits either begin with the 3 digits 987, contain the digits
45 in the fifth and sixth positions, or end with the 3 digits 123?

Solution: We need to use inclusion-exclusion with three sets. There are 7! permutations that
begin 987, since there are 7 digits free to be permuted among the last 7 spaces (we are assuming
that it is meant that the permutations are to start with 987 in that order, not with 897, for
instance). Similarly, there are 8! permutations that have 45 in the fifth and sixth positions, and
there are 7! that end with 123. (We assume that the intent is that these digits are to appear
in the order given.) There are 5! permutations that begin with 987 and have 45 in the fifth
and sixth positions; 4! that begin with 987 and end with 123; and 5! that have 45 in the fifth
and sixth positions and end with 123. Finally, there are 2! permutations that begin with 987,
have 45 in the fifth and sixth positions, and end with 123 (since only the 0 and the 6 are left to
place). Therefore the total number of permutations meeting any of these conditions is 7! + 8!
+ 7! - 5! - 4! - 5! + 2! = 50,138.

5. Define a relation ⇢ on A = Z ⇥ N as (a, b)⇢(c, d) if and only if ad = bc. Prove that ⇢ is an
equivalence relation. Argue that A/⇢ is essentially the set Q of rational numbers. In abstract
algebra, we say that Q is the field of fractions of the integral domain Z. The equivalence class
[(a, b)] is conventionally denoted by a/b.

Solution:

1. Proving ⇢ is an Equivalence Relation:

a) Reflexivity: We need to show (a, b)⇢(a, b) for all (a, b) 2 A.

Proof: For any (a, b), we have ab = ba (commutativity of multiplication). Therefore, (a, b)⇢(a, b)
holds for all (a, b) 2 A.

b) Symmetry: If (a, b)⇢(c, d), we need to show (c, d)⇢(a, b).

Proof: Given (a, b)⇢(c, d), we know ad = bc. Multiplying both sides by 1 (which equals 1
cd since

c, d 6= 0): ad · 1
cd = bc · 1

cd
a
c = b

d Cross-multiplying: da = cb Therefore, (c, d)⇢(a, b).

c) Transitivity: If (a, b)⇢(c, d) and (c, d)⇢(e, f), we need to show (a, b)⇢(e, f).

Proof: Given (a, b)⇢(c, d) and (c, d)⇢(e, f), we have: ad = bc and cf = de Multiplying these
equations: ad · cf = bc · de acdf = bcde Dividing both sides by cd (note c, d 6= 0 as d 2 N):
af = be Therefore, (a, b)⇢(e, f).

Thus, ⇢ satisfies all three properties and is an equivalence relation on A.
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2. Connection to Rational Numbers:

The equivalence classes of A/⇢ are of the form: [(a, b)] = a
b = {an

bn | n 2 N}
This representation shows that each equivalence class corresponds to a rational number a

b , and
includes all fractions equivalent to a

b .

For example, the equivalence class [(2, 3)] includes (2, 3), (4, 6), (6, 9), etc., all representing the
rational number 2

3 .

A unique representative from each equivalence class can be chosen as a
b with gcd(a, b) = 1. This

is the reduced form of the fraction, ensuring each rational number is represented uniquely.

For instance, in the equivalence class of 2
3 , we choose (2, 3) as the representative because

gcd(2, 3) = 1.
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