Discrete Structures 2024

Pigeonhole Principle - Practice Problems and Solutions

September 3, 2024

1. You pick six points in a 3 x 4 rectangle. Prove that two of these points must be at a
distance < /5.

Solution: Divide the rectangle into 5 parts and then apply PHP. One way of
partitioning: connect (1,0), (2,1),(1,2), and then (1,2),(2,3),(1,4) (Considering the
lowest point in the leftmost corner is (0,0)). Five partitions: 2 quadrilaterals and
3 Pentagons

Now we can apply PHP. (5 partitions (boxes) and 6 points (pigeons).

2. Let p be a prime number, and z an integer not divisible by p. Prove that there exist
non-zero integers a and b of absolute values less than /p such that p divides ax — b.

Let p be a prime and x an integer not divisible by p. We are tasked to show that
there exist non-zero integers a and b of absolute values less than /p such that
p| (az —b).

Consider the integers a and b with a,b € {—[\/p|,..., |/p]}. There are 2|,/p|+1
possible values for both a and b, and hence, there are (2|,/p] + 1) pairs (a, b).

Now, consider the values of ax — b mod p for each pair. There are at most p
distinct values for az — b mod p.

Since the number of pairs (a, b) exceeds p (i.e., (2|\/p|+1)* > p, by the pigeonhole
principle, there must exist distinct pairs (ag, b1) and (ag, by) such that:

a1x — by = asx — by mod p.
This implies:

(a1 —az)xr = by — by mod p.

Since x is not divisible by p, it follows that a; # as, so p divides a1x—asz — (b —bs).
Therefore, we have found integers a = a; — as and b = by — by, both non-zero, with
absolute values less than ,/p, such that p | (ax —b).

3. Let a,b € N with ged(a,b) = 1. Use the pigeonhole principle to prove that ua +vb =1
for some u,v € 7Z.



Solution:

ged(a,b) =1

Consider the set S = {a,2a,...,(b—1)a}.
Take mod b, we get S" = {ry,...,r_1}.
Observe that remainder 0 does not occur.

Now, assume that remainder 1 does not occur either. So we can apply the Pigeon-
hole Principle (since there are b — 1 remainders and only b — 2 possible values):

Thus, we can find positive integers m,n, where 0 < m < n < b such that:
ma =na (mod b)

But since ged(a, b) = 1, it follows that b | (n —m). This is a contradiction because
0<n—m<b.

Thus, there exists a u such that:
ua=1 (mod b)

which implies
ua +vb =1

for some integer v.

4. Let p be a prime number, and x an integer not divisible by p. Now assume that p is
of the form 4k + 1. We know from number theory that in this case, there exists an
integer x such that p divides 22 + 1. Show that p = a® + b? for some integers a, b.
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5. Let n > 10 be an integer. You choose n distinct elements from the set {1,2,3,...,n%}.
Prove that there must exist two disjoint subsets of the chosen numbers whose sums are



equal.

The sum of the elements of a subset of {1,2,3,...,n*} of size less than n is < n®. The
chosen collection has 2" — 1 non-empty subsets. For n > 10, we have 2" — 1 > n3,
so by PHP, there must exist two different non-empty subsets A and B of the chosen
numbers such that ) _,a =3, b If Aand B are not disjoint, take A — (AN B)
and B — (AN B) as A and B.

. Let p(z) be a polynomial with integer coefficients, having three distinct integer roots
a, b, c. Prove that the polynomials p(z) £ 1 cannot have any integer roots.

Suppose that an integer d exists with p(d) £1 = 0, that is, with p(d) = £1. Clearly, d
is different from a,b,c. For all u,v € Z and n € Ny, we have (u — v)|(u" — v™), and so
(u—v)|(p(uw) — p(v)). But then, the non-zero differences d — a,d — b,d — ¢ all divide
+1 — 0 = +1, and so can only be +1. Therefore, at least two of the three differences
d—a,d—0b,d— c must be the same, contradicting the fact that a, b, ¢ are distinct from
one another.

. 65 distinct integers are chosen in the range 1,2,3,...,2022. Prove that there must
exist four of the chosen integers (call them a, b, ¢, d) such that a — b+ ¢ —d is a
multiple of 2022.

The total count of 2-subsets of the 65 chosen integers is (625) = 2080 > 2022. So we can
find two distinct subsets S = {a,c} and T = {b,d} of the chosen integers such that
(a+ ¢)rem 2022 = (b + d) rem 2022, that is, (a — b+ ¢ — d) rem 2022 = 0 (where rem
means remainder of Euclidean division). We need to show that SNT = (). Suppose not.
Since S and T are distinct, we must have [SNT'| = 1. Say, a = b (but ¢ # d). But then,
the condition (a + ¢) rem 2022 = (b+ d) rem 2022 implies that crem 2022 = d rem 2022.
But ¢ and d are chosen in the range [1,2022], so they must be equal, a contradiction.
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1. Prove that in any group of 10 distinct positive integers between 1 and 50, there are at
least, two numbers whose difference is at most 5.

Solution:
Consider dividing the numbers 1 to 50 into 9 groups as follows:

{1,2,3,4,5,6},{7,8,9,10,11,12}, ..., {43,44, 45, 46, 47, 48}, {49, 50}.

Fach group has either 6 or 2 elements, so there are 9 groups in total. Now, if
you select 10 distinet numbers, by the pigeonhole principle, at least two of those
numbers must come from the same group.

Since the maximum difference between any two numbers within a single group
is 5 (for example, the difference between 1 and 6 in the first group), there must
be at least two numbers among the selected 10 whose difference is at most 5.

[Tutorial Q2] A repunit is an integer of the form 111 ... 1. Prove that any n € N with
gcd(n,10) = 1 divides a repunit.

Solution: Note that, a repunit is a number of the form 111 ... 1, which can also be
represented as:

_10°1
Rk__9 , k€N

Let’s consider the sequence 101, 102, 10° mod 9n. This sequence can take on a limited
number of possible values since there are only 9n different remainders possible when
dividing by 9n (i.e., 0, 1, 2,...,9n-1).

By the Pigeonhole Principle, after considering 9n + 1 terms in the sequence

101m0d n, 102 mod n, 103 modn, ..., 109n+1mod 9n, at least two of these must be the same

(because there are 9n + 1 terms but only 9n possible remainders).

Now, Suppose 10' = 10’ (mod 9n) for some i < j. This means:
10/ — 10' = 0 (mod 9n)

Or
1010 = 1) = 0 (mod 9n)

. i
Since ged(n, 10) = 1 = gcd(9n,10), 9n| (10 — 1) Therefore, n|R _, ==

[Tutorial Q3] Show that there exists an integer n such that 0 < sinn < 2 3%



Solution: Consider the function cos x. Divide the interval [— 1, 1] into (22022)2 equal

partitions. This gives us the partition size of _(22322)2 — 2(2—2022)2.

Now, consider 2(22022)2 + 1 elements cos 1, cos 2, cos 3,....., cos(2(22022)2 + 1). Atleast 1

partition will have 3 elements by Pigeonhole Principle. Let them be cos x, cos y and cos z
Now, atleast 2 of x, y, z will have the same parity. Without loss of generality, let those
elements be x and y, with cos x > cos y. So, we have

-2022.2
0 <cosx —cosy < 2(2 )
-2022.2

0 < 2sin(5X)sin(E5) < 227 )

2
0 < sin(—Lx; )sin(-L;x) < (2_2022)2

Now (x—erL) and (55*) are integers since x and y have the same parity. Now,

0 <ab <k

= 0 < min(lal, |b]) < k (trivial)
So, one of n = 2% or n = -2 satisfies the inequality denoted by 0 < |sinn| < 2729 ¢
0 < sinn < 2% nisthe required integer. Otherwise, if 0 > sinn > — 2729 then

0 <sin(-n) < 2 °?*and — nis the required integer.

[Tutorial Q4] Let§ be an irrational number. Prove that given any real € > 0 (no matter how
small), there exist infinitely many pairs of integers a, bsuchthat0 < a§ — b < e.

Solution: Consider the irrational number . Since, € is irrational, it cannot be expressed as a
ratio of two integers. For any € > 0, fix a positive number N such that N > 1/¢. Define N+1
numbers of the form {k&} for k = 0, 1, 2,., N, where {x} denotes the fractional part of x. The
fractional parts {k&} are real numbers in the interval [0, 1). By PHP, since there are N+1
fractional parts but only N subintervals of length 1/N that partition in the interval [0, 1), at
least two of these fractional parts, say {m&} and {n&} with m > n, must lie in the same
subinterval. Thus, we have |{m&} — {n&}| < 1/N. Since {m&} — {n&} = (m — n)¢ —
|[(m — n)& |, there exist integersa = m — nand b = |(in — n)¢ | such that:

l[at — b]| < 1/N
Notice thata = m — n > 0 and 1/N < ¢ by the choice of N. Therefore, 0 < af — b < &.
Since there are infinitely many choices of N, we have infinitely many pairs (a, b) that satisfy
the given condition.

5. Let n > 2 be an integer. You choose n distinet integers from the set {1,2,3,...,n2—1}.
Prove that there must be two of the chosen integers (call them z and y) satisfying
0<yr—y<Ll

This follows from a direct application of the pigeon-hole principle.

The n — 1 holes are {1,2,3},{4.5,6,7,8},{9,10,11,12,13, 14,15}, ..., {(n — 1)%, (n —
D?+1,(n—1)%2+2,...,n% —1}.

The pigeons are the n chosen integers.



