
Discrete Structures 2024

Pigeonhole Principle - Practice Problems and Solutions

September 3, 2024

1. You pick six points in a 3 × 4 rectangle. Prove that two of these points must be at a
distance ≤

√
5.

Solution: Divide the rectangle into 5 parts and then apply PHP. One way of
partitioning: connect (1,0), (2,1),(1,2), and then (1,2),(2,3),(1,4) (Considering the
lowest point in the leftmost corner is (0,0)). Five partitions: 2 quadrilaterals and
3 Pentagons

Now we can apply PHP. (5 partitions (boxes) and 6 points (pigeons).

2. Let p be a prime number, and x an integer not divisible by p. Prove that there exist
non-zero integers a and b of absolute values less than

√
p such that p divides ax− b.

Let p be a prime and x an integer not divisible by p. We are tasked to show that
there exist non-zero integers a and b of absolute values less than

√
p such that

p | (ax− b).

Consider the integers a and b with a, b ∈ {−⌊√p⌋, . . . , ⌊√p⌋}. There are 2⌊√p⌋+1
possible values for both a and b, and hence, there are (2⌊√p⌋+ 1)2 pairs (a, b).

Now, consider the values of ax − b mod p for each pair. There are at most p
distinct values for ax− b mod p.

Since the number of pairs (a, b) exceeds p (i.e., (2⌊√p⌋+1)2 > p , by the pigeonhole
principle, there must exist distinct pairs (a1, b1) and (a2, b2) such that:

a1x− b1 ≡ a2x− b2 mod p.

This implies:
(a1 − a2)x ≡ b1 − b2 mod p.

Since x is not divisible by p, it follows that a1 ̸= a2, so p divides a1x−a2x−(b1−b2).
Therefore, we have found integers a = a1− a2 and b = b1− b2, both non-zero, with
absolute values less than

√
p, such that p | (ax− b).

3. Let a, b ∈ N with gcd(a, b) = 1. Use the pigeonhole principle to prove that ua+ vb = 1
for some u, v ∈ Z.
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Solution:

gcd(a, b) = 1

Consider the set S = {a, 2a, . . . , (b− 1)a}.
Take mod b, we get S ′ = {r1, . . . , rb−1}.
Observe that remainder 0 does not occur.

Now, assume that remainder 1 does not occur either. So we can apply the Pigeon-
hole Principle (since there are b− 1 remainders and only b− 2 possible values):

Thus, we can find positive integers m,n, where 0 < m < n < b such that:

ma ≡ na (mod b)

But since gcd(a, b) = 1, it follows that b | (n−m). This is a contradiction because
0 < n−m < b.

Thus, there exists a u such that:

ua ≡ 1 (mod b)

which implies
ua+ vb = 1

for some integer v.

4. Let p be a prime number, and x an integer not divisible by p. Now assume that p is
of the form 4k + 1. We know from number theory that in this case, there exists an
integer x such that p divides x2 + 1. Show that p = a2 + b2 for some integers a, b.
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5. Let n ≥ 10 be an integer. You choose n distinct elements from the set {1, 2, 3, . . . , n2}.
Prove that there must exist two disjoint subsets of the chosen numbers whose sums are
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equal.

The sum of the elements of a subset of {1, 2, 3, . . . , n2} of size less than n is < n3. The
chosen collection has 2n − 1 non-empty subsets. For n ≥ 10, we have 2n − 1 > n3,
so by PHP, there must exist two different non-empty subsets A and B of the chosen
numbers such that

∑
a∈A a =

∑
b∈B b. If A and B are not disjoint, take A − (A ∩ B)

and B − (A ∩B) as A and B.

6. Let p(x) be a polynomial with integer coefficients, having three distinct integer roots
a, b, c. Prove that the polynomials p(x)± 1 cannot have any integer roots.

Suppose that an integer d exists with p(d)± 1 = 0, that is, with p(d) = ±1. Clearly, d
is different from a, b, c. For all u, v ∈ Z and n ∈ N0, we have (u− v)|(un − vn), and so
(u − v)|(p(u) − p(v)). But then, the non-zero differences d − a, d − b, d − c all divide
±1 − 0 = ±1, and so can only be ±1. Therefore, at least two of the three differences
d− a, d− b, d− c must be the same, contradicting the fact that a, b, c are distinct from
one another.

7. 65 distinct integers are chosen in the range 1, 2, 3, . . . , 2022. Prove that there must
exist four of the chosen integers (call them a, b, c, d) such that a − b + c − d is a
multiple of 2022.

The total count of 2-subsets of the 65 chosen integers is
(
65
2

)
= 2080 > 2022. So we can

find two distinct subsets S = {a, c} and T = {b, d} of the chosen integers such that
(a + c) rem 2022 = (b + d) rem 2022, that is, (a − b + c − d) rem 2022 = 0 (where rem
means remainder of Euclidean division). We need to show that S∩T = ∅. Suppose not.
Since S and T are distinct, we must have |S∩T | = 1. Say, a = b (but c ̸= d). But then,
the condition (a+ c) rem 2022 = (b+ d) rem 2022 implies that c rem 2022 = d rem 2022.
But c and d are chosen in the range [1, 2022], so they must be equal, a contradiction.
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Discrete Structures
Tutorial Solutions

Pigeonhole Principle

[Tutorial Q2] A repunit is an integer of the form 111 ... 1. Prove that any with𝑛 ∈ 𝑁
divides a repunit.𝑔𝑐𝑑(𝑛, 10) = 1

Solution: Note that, a repunit is a number of the form 111 ... 1, which can also be
represented as:

𝑅
𝑘

= 10𝑘−1
9 ,  𝑘 ∈ 𝑁

Let’s consider the sequence . This sequence can take on a limited101, 102, 103 𝑚𝑜𝑑 9𝑛
number of possible values since there are only 9n different remainders possible when
dividing by 9n (i.e., 0, 1, 2,...,9n-1).

By the Pigeonhole Principle, after considering 9n + 1 terms in the sequence
, at least two of these must be the same101𝑚𝑜𝑑 𝑛, 102 𝑚𝑜𝑑 𝑛, 103 𝑚𝑜𝑑 𝑛,  ....,  109𝑛+1𝑚𝑜𝑑 9𝑛

(because there are 9n + 1 terms but only 9n possible remainders).

Now, Suppose for some . This means:10𝑖 ≡  10𝑗 (𝑚𝑜𝑑 9𝑛) 𝑖 < 𝑗
10𝑗 − 10𝑖 ≡  0 (𝑚𝑜𝑑 9𝑛)

Or
10𝑖(10𝑗−𝑖 − 1) ≡  0 (𝑚𝑜𝑑 9𝑛)

Since , .Therefore, .𝑔𝑐𝑑(𝑛,  10) =  1 =  𝑔𝑐𝑑(9𝑛, 10) 9𝑛 | (10𝑗−𝑖 − 1) 𝑛 | 𝑅
𝑗−𝑖

= 10𝑗−𝑖−1
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[Tutorial Q3] Show that there exists an integer n such that .0 <  𝑠𝑖𝑛 𝑛 <  2−2022



Solution: Consider the function . Divide the interval into equal𝑐𝑜𝑠 𝑥 [− 1, 1] (22022)2

partitions. This gives us the partition size of .2

(22022)2 = 2(2−2022)2

Now, consider elements . Atleast 12(22022)2 + 1 𝑐𝑜𝑠 1,  𝑐𝑜𝑠 2,  𝑐𝑜𝑠 3,....., 𝑐𝑜𝑠(2(22022)2 + 1)
partition will have 3 elements by Pigeonhole Principle. Let them be , and𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠 𝑦 𝑐𝑜𝑠 𝑧
Now, atleast 2 of will have the same parity. Without loss of generality, let those𝑥, 𝑦, 𝑧
elements be and , with . So, we have𝑥 𝑦 𝑐𝑜𝑠 𝑥 > 𝑐𝑜𝑠 𝑦

0 < 𝑐𝑜𝑠 𝑥 − 𝑐𝑜𝑠 𝑦 <  2(2−2022)2

0 <  2 𝑠𝑖𝑛 ( 𝑥+𝑦
2 ) 𝑠𝑖𝑛( 𝑦−𝑥

2 ) <  2(2−2022)2

0 < 𝑠𝑖𝑛( 𝑥+𝑦
2 ) 𝑠𝑖𝑛( 𝑦−𝑥

2 ) < (2−2022)2

Now and are integers since and have the same parity. Now,( 𝑥+𝑦
2 ) ( 𝑥−𝑦

2 ) 𝑥 𝑦

     0 <  𝑎𝑏 <  𝑘2

(trivial)⇒ 0 < 𝑚𝑖𝑛(|𝑎|, |𝑏|) < 𝑘
So, one of or satisfies the inequality denoted by . If𝑛 = 𝑥+𝑦

2 𝑛 = 𝑥−𝑦
2 0 < |𝑠𝑖𝑛 𝑛| < 2−2022

, n is the required integer. Otherwise, if then0 < 𝑠𝑖𝑛 𝑛 <  2−2022 0 > 𝑠𝑖𝑛 𝑛 >  − 2−2022

and is the required integer.0 < 𝑠𝑖𝑛 (− 𝑛) <  2−2022 − 𝑛

[Tutorial Q4] Let be an irrational number. Prove that given any real > 0 (no matter howξ ε
small), there exist infinitely many pairs of integers such that .𝑎,  𝑏 0 <  𝑎ξ −  𝑏 < ε

Solution: Consider the irrational number . Since, is irrational, it cannot be expressed as aξ ξ
ratio of two integers. For any > 0, fix a positive number N such that . Define N+1ε 𝑁 >  1/ε
numbers of the form for , where denotes the fractional part of . The{𝑘ξ} 𝑘 = 0, 1, 2,.., 𝑁 {𝑥} 𝑥
fractional parts are real numbers in the interval . By PHP, since there are N+1{𝑘ξ} [0, 1)
fractional parts but only N subintervals of length that partition in the interval , at1/𝑁 [0, 1)
least two of these fractional parts, say and with m > n, must lie in the same{𝑚ξ} {𝑛ξ}
subinterval. Thus, we have . Since|{𝑚ξ} − {𝑛ξ}| < 1/𝑁 {𝑚ξ} − {𝑛ξ} = (𝑚 − 𝑛)ξ −

, there exist integers and such that:⌊(𝑚 − 𝑛)ξ ⌋ 𝑎 = 𝑚 − 𝑛 𝑏 = ⌊(𝑚 − 𝑛)ξ ⌋
⌊𝑎ξ − 𝑏 ⌋ < 1/𝑁

Notice that and by the choice of N. Therefore, .𝑎 = 𝑚 − 𝑛 > 0 1/𝑁 < ε 0 < 𝑎ξ − 𝑏 < ε
Since there are infinitely many choices of N, we have infinitely many pairs that satisfy(𝑎, 𝑏)
the given condition.


