CS21201 Discrete Structures Solutions Proof Techniques, Induction

1. Prove that every positive integer greater than one can be factored as a product of primes. [Hint: Prove this using well-ordering theorem]

2. Prove that every positive integer can be written as a product of prime factors, and this product is unique up to the reordering of factors (also known as the Fundamental Theorem of Arithmetic). [Hint: Prove this using Principle of Mathematical Induction]

Define	$m = C p_1 p_3 \dots p_r = S_1 \dots S_u p_2 \dots p_r$
$m = (p_1 - q_1) p_2 \dots p_r = n + 1 \dots q_4 p_2 \dots p_r$	
$m = (p_1 - q_1) p_2 \dots p_r = n + 1 \dots q_4 p_2 \dots p_r$	
$m = S_1 \dots S_u P_2 \dots p_r $ is unique.	
$m = n + 1 - q_1 p_1 \dots p_r$	
$m = n + 1 - q_1 p_2 \dots p_r$	
$q = q_1 (q_2 \dots q_r - p_2 \dots p_r)$	
$q = q_1 (q_2 \dots q_r - p_2 \dots p_r)$	
$q = q_1 (q_2 \dots q_r - p_2 \dots p_r)$	
$q = p_1 \dots p_r$	

3. Prove that \sqrt{n} is irrational if and only if n is not a perfect square.

4. Using mathematical induction, prove that $2^n < n! < 2^{n \log_2 n}$, $\forall n > = 4$. $\overline{1}$

5. Let a,b be two positive integers, and $d = \gcd(a, b) = ua + vb$ with u, $v \in \mathbb{Z}$. Prove that u and v can be so chosen that $|u| < \frac{b}{d}$ and $|v| \leq \frac{a}{d}$. $\frac{b}{d}$ and $|v| \leq \frac{a}{d}$ d

6. You have coins of two integral denominations $a,b > 1$ with $gcd(a,b) = 1$. Prove that any integer amount n ≥ (a−1)(b−1) can be changed by coins of these two denominations. $[\exists x, y > 0, n = xa + yb]$

Solution:

Because a and b are relatively prime, there exist integers $x_{_0}$ and $y_{_0}$ (not necessarily both ≥ 0) such that $a x_{_{0}} + b y_{_{0}} = 1.$ Thus, (multiplying through by n), we find that there exist integers x_1 , y_1 such that $ax_1 + by_1 = n$.

Infinitely many solutions of the equation $ax + by = n$ are given by $x = x_1 - tb$, $y = y_1 + ta$, where t ranges over the integers.

Let t be the smallest positive integer such that $y^-_1 + ta \geq 0.$ We show that

 $x_{1} - tb \geq 0$. We have $a(x_1 - tb) + b(y_1 + ta) = n \ge (a - 1)(b - 1),$ thus, $a(x_1 - tb) \ge (a - 1)(b - 1) - b(y_1 + ta).$ But $y_1 + ta \leq a - 1$, else we could decrement t. Thus $a(x₁ - tb) \ge (a - 1)(b - 1) - b(a - 1) = - (a - 1) > - a,$ and therefore $x_{_1}$ – $\,t\bar{b}$ $\,>$ – 1, so that $x_{_1}$ – $\,t\bar{b}$ \geq 0. So, we have produced the required non-negative solution.

7. Let a,b be as in the last question. Prove that the amount (a−1)(b−1)−1 cannot be changed by coins of denominations a and b.

Solution:

Let the max number which cannot be represented using a and b denominations be x.

Now, notice that we can denote the number $x + a = pa + yb$, for some p $>= 0$ & y >=0. Since x can't be represented as : (some positive number) * a + (some positive number)*b, $p = 0$, So, $x + a = yb$ and $x + b = za$, for some y and z. This implies $a(z + 1) = b(y + 1)$. Since a and b are coprimes, $z = nb - 1$ and $y = na - 1$, where n is an integer. This gives $x = nab - a - b$. If n>1, let n=j+k, where j>0 and k>0. $x = jab + kab - a - b \Rightarrow x = a(b - 1) + b(ka - 1)$, which cannot be true. Therefore, n=1 and $x = ab - a - b = (a - 1)(b - 1) - 1$.

- 8. Let F_n denote the n-th Fibonacci number.
	- a. Prove that for all integers m,n with $m \ge 1$ and $n \ge 0$, we have $F_{m+n} = F_m F_{n+1} + F_{m-1} F_n.$
	- b. Let m,n $\in \mathbb{N}$. Prove that if m|n, then F_m | F_n .
	- c. What about the converse of Part (b)?
	- d. Prove $gcd(F_{m'}^{\text{}}F_{n}) = F_{gcd(m,n)}^{\text{}} \forall m, n \geq 1$.

8.
$$
\frac{d.3}{d.3} \quad \frac{[Gayb] - For m=1; n=1, 3, 3, 4 (F, F_1) = F_1 = 1 = F_god(n, f)
$$

\n[Subfront loss of geometricity, assume that
\n
$$
m \ge n
$$
.
\n
$$
\frac{F_m = F_{m=m+1}F_m + F_{m-m}F_{m-1} (using (d.))}{F_m = F_{m=m+1}F_m + F_{m-m}F_{m-1} (using (d.))}
$$

\n
$$
\frac{GabinB}{(babnB - F_m) = \frac{F_{m-1} + F_{m-2}}{F_m = F_{m-1} + F_{m-2}}
$$

\n
$$
\frac{G_{m,m}G}{d} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} = \frac{1}{\frac{G_g}{d}}
$$

\n
$$
\frac{G_{m,m}G}{d} \frac{d}{dt} \frac{d}{dt} = \frac{1}{\frac{G_g}{d}}
$$

\n
$$
\frac{G_{m,m}G}{d} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt}
$$

\n
$$
\frac{G_g}{d} \frac{d}{dt} \frac{d}{dt}
$$

\n
$$
\frac{G_g}{d} \frac{d}{dt} \frac
$$

9. Using the principle of mathematical induction, prove the following statements.

a. $\forall n \geq 4$, the nth-Catalan number satisfies $C_n \leq 2^{2n-4}$.

Solution: [Basis] for $n = 4$, $C_4 = 14 \le 2^{8-4} = 16$ [Induction] Assume, $C_n \leq 2^{2n-4}$ $C_{n+1} = \frac{1}{n+1}$ $n+2$ $\binom{2n+2}{n+1} = \frac{1}{n+1}$ $n+2$ $(2n+2)(2n+1)$ $\frac{(n+1)^2}{(n+1)^2} \binom{2n}{n} = \frac{2(2n+1)}{n+2}$ $\frac{2n+1}{n+2}C_n$ Now, $(2n + 1) \leq 2(n + 2)$ $C_{n+1} = \frac{2(2n+1)}{n+2}$ $\frac{2n+1}{n+2}C_n \leq 4C_n \leq 2^{2(n+1)-4}$

b. The harmonic numbers $H_n = \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{n}$ satisfy n $\ln(n + 1) \le H_n \le \ln n + 1, \forall n \ge 1.$

Solution: [Basis] $ln(1 + 1) = ln(2) \le H_1 = 1 \le ln1 + 1 = 1$ [Induction] Assume the condition holds for H_n

$$
H_{n+1} = H_n + \frac{1}{n+1} \le 1 + \ln n + \frac{1}{n+1}
$$

= 1 + \ln(n + 1) + \frac{1}{n+1} + (\ln n - \ln (n + 1))
= 1 + \ln(n + 1) + \frac{1}{n+1} + \ln(1 - \frac{1}{n+1})
= 1 + \ln(n + 1) + \frac{1}{n+1} - \frac{1}{n+1} - \frac{1}{2(n+1)^2} - \frac{1}{3(n+1)^3} ... (n \ge 1)
= 1 + \ln(n + 1) - [\frac{1}{2(n+1)^2} + \frac{1}{3(n+1)^3} ...]
\le 1 + \ln(n + 1)

Similarly,

$$
H_{n+1} = H_n + \frac{1}{n+1} \ge \ln(n+1) + \frac{1}{n+1}
$$

\n
$$
H_{n+1} \ge \ln(n+1) + \frac{1}{n+1} - \ln(n+2) + \ln(n+2)
$$

\n
$$
H_{n+1} \ge \ln(\frac{n+1}{n+2}) + \frac{1}{n+1} + \ln(n+2)
$$

\n
$$
= -\ln(1 + \frac{1}{n+1}) + \frac{1}{n+1} + \ln(n+2)
$$

\n
$$
H_{n+1} \ge \frac{1}{n+1} - (\frac{1}{n+1} - \frac{1}{2(n+1)^2} + \frac{1}{3(n+1)^3} \dots) + \ln(n+2) \ge \ln(n+2)
$$

10. For all positive integers n, show that there exists a prime > n.

*Correction: $c = p_1^{-1} \cdot p_2^{-2} \cdot p_3^{-3} \dots p_k^{-k} + 1$, $\alpha_i \in N$, $c > n$ for arbitrarily large $\frac{\alpha_1}{1}$, $p_2^{\alpha_1}$ $\frac{\alpha_2}{2}$. $p_3^{\alpha_3}$ $\frac{\alpha_3}{3}$ p_k^{α} $\frac{\alpha_{_k}}{k}$ + 1, $\alpha_{_i}$ ∈ *N, c* > *n* for arbitrarily large $\alpha_{_i}$ 11. Let x be a non-zero real number such that $x + \frac{1}{x}$ is an integer. Prove by induction on $\boldsymbol{\chi}$ n that $x^n + \frac{1}{n}$ is an integer for all n ≥ 1. x^n

12. Let *n* be a positive integer. Consider all non-empty subsets of $\{1, 2, 3, \ldots, n\}$ that do not contain consecutive integers. Let \overline{s}_n denote the sum of the squares of the products of the elements in these subsets.

For example, for $n = 5$, these subsets are {1}, {2}, {3}, {4}, {5}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5}, {1, 3, 5}

Therefore $S_{\frac{1}{5}}$ is equal to:

 $1^2 + 2^2 + 3^2 + 4^2 + 5^2 + (1 * 3)^2 + (1 * 4)^2 + (1 * 5)^2 + (2 * 4)^2 + (2 * 5)^2 +$ $+(3 * 5)^2 + (1 * 3 * 5)^2 = 719$

Prove that $S_n = (n + 1)! - 1$ for all $n \ge 1$.

 $\mathfrak{Z}.$ Proceed by generalized weak induction on in with \hookrightarrow $n_0 = 1$, $k = 2$. [Basis] We need two base ases. For n= 1, we have $S_1 = t^2 = 1$ and $(1 + 1)/-1 = 1$. For n=2, $S_2 = 1^2 + 2^2 = 5$ and $(2+1)\left(-1 - 6 - 1\right) = 5$ [Induction] $Assume$ that $S_{n-i} = n_i - 1$ and S_{n-2} = $(n-1)1 - 1$ for some $n \ge 3$. All non-empty sulsets of [1,2,3,... n] that do not contain consecutive integers can be classified in three groups 1.) Non-empty subsets of {1,2,3,... n-1} that do not contain consecutive integers 2.) A non-empty saliset with the desired property that contains n and one or more dements from f1, 2, 3,... n-1}. Since these subsets are not allowed to contain consecutive integers, the elements other than n must come from \$1,2,3. m2} 3.) The subset friz By subluction, $S_{1} = S_{n-1} + n^2 S_{n-2} + n^2$: $= (n|1) + n^2((n+1)|-1) + n^2$ $= n! + n^2x(n-1)! - 1 = (n-1) (n+n^2) - 1$ $=$ $(n+1)1 - 1$

13. Show by induction that $\forall n \in \mathbb{N}$,

$$
f(n) = \sum_{k=0}^{n} {n+k \choose k} \frac{1}{2^{k}} = 2^{n}
$$
\n
\n
\n
$$
\frac{f(n) = \sum_{k=0}^{n} {n+k \choose k} \frac{1}{2^{k}} = 2^{n}
$$
\n
\n
$$
\frac{f(n) = \sum_{k=0}^{n} {n+k \choose k} \frac{1}{2^{k}} = \sum_{k=0}^{n} {n+k \choose k} \frac{1}{2^{k}} = \frac{1}{2} \frac{
$$

14. Are there three consecutive positive integers whose product is a perfect square - that is, do there exist m, $n \in \mathbf{Z}^{+}$ with $m * (m + 1) * (m + 2) = n^{2}$?

5. We know that gcd $(m, m+1) = 1 = gcd(m+1, m+2)$ \rightarrow any prime p, if p $(m+1)$ then p $\begin{cases} m \\ m+2 \end{cases}$. Let $m * (m+1) * (m+2) = n^2$. For any χ $\rho |n^2$ Furthermore, If p(m+1) $\rho |n$ \Rightarrow $\rho^2 |n^2$ \Rightarrow 3 p /m & p / (m+2) p^2 $m+1$ \Rightarrow This is true for all prime divisors of $(n+1)$. So (M+1) és a perfect square. <u>° m^{*} (M+2) is a perfect square.</u> m^2 $<$ m^2 $+$ $2m$ $+$ However, $m * (m+2)$ is such that $M^2 + 2m + 1 = (M+1)^2$ lies b/o too consecutive perfect squares $m * (m+2)$ $\Rightarrow m*$ ($m+2$) \dot{a} not a perfect square We arrive at a contradiction. There are no there consecutive positive integers chose product is a perfect square.