
CS21201 Discrete Structures
Solutions

Proof Techniques, Induction

1. Prove that every positive integer greater than one can be factored as a product of
primes. [Hint: Prove this using well-ordering theorem]

2. Prove that every positive integer can be written as a product of prime factors, and
this product is unique up to the reordering of factors (also known as the Fundamental
Theorem of Arithmetic). [Hint: Prove this using Principle of Mathematical Induction]





3. Prove that √n is irrational if and only if n is not a perfect square.



4. Using mathematical induction, prove that .2𝑛 < 𝑛! < 2
𝑛𝑙𝑜𝑔

2
𝑛
,  ∀ 𝑛 >= 4



5. Let a,b be two positive integers, and d = gcd(a,b) = ua + vb with u, v∈ ℤ. Prove that
u and v can be so chosen that and .|𝑢| < 𝑏

𝑑  |𝑣| ≤ 𝑎
𝑑  

6. You have coins of two integral denominations a,b > 1 with gcd(a,b) = 1. Prove
that any integer amount n ≥ (a−1)(b−1) can be changed by coins of these two
denominations. [∃𝑥, 𝑦 > 0,  𝑛 = 𝑥𝑎 + 𝑦𝑏]

Solution:
Because a and b are relatively prime, there exist integers and (not necessarily𝑥

0
𝑦

0

both ≥ 0) such that . Thus, (multiplying through by n), we find that there𝑎𝑥
0

+ 𝑏𝑦
0

= 1

exist integers , such that .𝑥
1

𝑦
1

𝑎𝑥
1

+ 𝑏𝑦
1

= 𝑛

Infinitely many solutions of the equation are given by𝑎𝑥 + 𝑏𝑦 = 𝑛
, where t ranges over the integers.𝑥 = 𝑥

1
− 𝑡𝑏,  𝑦 = 𝑦

1
+ 𝑡𝑎

Let t be the smallest positive integer such that . We show that𝑦
1

+ 𝑡𝑎 ≥ 0

. We have𝑥
1

− 𝑡𝑏 ≥ 0

,𝑎(𝑥
1

− 𝑡𝑏) + 𝑏(𝑦
1

+ 𝑡𝑎) = 𝑛 ≥ (𝑎 − 1)(𝑏 − 1)

thus,
.𝑎(𝑥

1
− 𝑡𝑏) ≥ (𝑎 − 1)(𝑏 − 1) − 𝑏(𝑦

1
+ 𝑡𝑎)

But , else we could decrement t. Thus𝑦
1

+ 𝑡𝑎 ≤ 𝑎 − 1

,𝑎(𝑥
1

− 𝑡𝑏) ≥ (𝑎 − 1)(𝑏 − 1) − 𝑏(𝑎 − 1) =  − (𝑎 − 1) >  − 𝑎

and therefore , so that . So, we have produced the required𝑥
1

− 𝑡𝑏 >− 1 𝑥
1

− 𝑡𝑏 ≥ 0

non-negative solution.

7. Let a,b be as in the last question. Prove that the amount (a−1)(b−1)−1 cannot be
changed by coins of denominations a and b.



Solution:
Let the max number which cannot be represented using a and b denominations be x.

Now, notice that we can denote the number , for some p >= 0 & y𝑥 + 𝑎 = 𝑝𝑎 + 𝑦𝑏
>=0. Since x can’t be represented as : (some positive number) * a + (some positive
number)*b , p = 0, So, and , for some y and z.𝑥 + 𝑎 = 𝑦𝑏 𝑥 + 𝑏 = 𝑧𝑎
This implies .𝑎(𝑧 + 1) = 𝑏(𝑦 + 1)
Since a and b are coprimes, and , where n is an integer.𝑧 = 𝑛𝑏 − 1 𝑦 = 𝑛𝑎 − 1
This gives .𝑥 = 𝑛𝑎𝑏 − 𝑎 − 𝑏
If n>1, let n=j+k, where j>0 and k>0.

, which cannot be true.𝑥 = 𝑗𝑎𝑏 + 𝑘𝑎𝑏 − 𝑎 − 𝑏 ⇒  𝑥 = 𝑎(𝑗𝑏 − 1) + 𝑏(𝑘𝑎 − 1)
Therefore, n=1 and .𝑥 = 𝑎𝑏 − 𝑎 − 𝑏 = (𝑎 − 1)(𝑏 − 1) − 1

8. Let denote the n-th Fibonacci number.𝐹
𝑛

a. Prove that for all integers m,n with m ≥ 1 and n ≥ 0, we have
.𝐹

𝑚+𝑛
= 𝐹

𝑚
𝐹

𝑛+1
+ 𝐹

𝑚−1
𝐹

𝑛

b. Let m,n∈ ℕ. Prove that if m|n, then | .𝐹
𝑚

𝐹
𝑛

c. What about the converse of Part (b)?
d. Prove 𝑔𝑐𝑑(𝐹

𝑚
, 𝐹

𝑛
) = 𝐹

𝑔𝑐𝑑(𝑚,𝑛)
∀𝑚, 𝑛 ≥ 1.





9. Using the principle of mathematical induction, prove the following statements.

a. the nth-Catalan number satisfies .∀𝑛 ≥ 4, 𝐶
𝑛
≤ 22𝑛−4

Solution: [Basis] for 𝑛 =  4,  𝐶
4

= 14 ≤  28−4 = 16

[Induction] Assume, 𝐶
𝑛

≤ 22𝑛−4

𝐶
𝑛+1

= 1
𝑛+2

2𝑛+2
𝑛+1( ) = 1

𝑛+2
(2𝑛+2)(2𝑛+1)

(𝑛+1)2
2𝑛
𝑛( ) = 2(2𝑛+1)

𝑛+2 𝐶
𝑛

Now, (2𝑛 + 1) ≤ 2(𝑛 + 2)

𝐶
𝑛+1

= 2(2𝑛+1)
𝑛+2 𝐶

𝑛
≤ 4𝐶

𝑛
≤ 22(𝑛+1)−4



b. The harmonic numbers satisfy𝐻
𝑛

= 1
1 + 1

2 +  .  .  . + 1
𝑛

, .𝑙𝑛(𝑛 + 1) ≤ 𝐻
𝑛

≤ 𝑙𝑛 𝑛 + 1 ∀𝑛 ≥ 1
Solution: [Basis] 𝑙𝑛(1 + 1) = 𝑙𝑛(2) ≤ 𝐻

1
= 1 ≤ 𝑙𝑛1 +  1 =  1

[Induction] Assume the condition holds for 𝐻
𝑛

𝐻
𝑛+1

    = 𝐻
𝑛

+ 1
𝑛+1 ≤ 1 + 𝑙𝑛 𝑛 + 1

𝑛+1

= 1 + 𝑙𝑛(𝑛 + 1) + 1
𝑛+1 + (𝑙𝑛 𝑛 −  𝑙𝑛 (𝑛 + 1))

= 1 + 𝑙𝑛(𝑛 + 1) + 1
𝑛+1 + 𝑙𝑛(1 − 1

𝑛+1 )

= 1 + 𝑙𝑛(𝑛 + 1) + 1
𝑛+1 − 1

𝑛+1 − 1

2(𝑛+1)2 − 1

3(𝑛+1)3 ...   (𝑛 ≥ 1)

= 1 + 𝑙𝑛(𝑛 + 1) − [ 1

2(𝑛+1)2 + 1

3(𝑛+1)3 ...]

≤ 1 + 𝑙𝑛(𝑛 + 1)
Similarly,
𝐻

𝑛+1
 = 𝐻

𝑛
+ 1

𝑛+1 ≥ 𝑙𝑛(𝑛 + 1) + 1
𝑛+1

𝐻
𝑛+1

 ≥ 𝑙𝑛(𝑛 + 1) + 1
𝑛+1 − 𝑙𝑛(𝑛 + 2) + 𝑙𝑛(𝑛 + 2)

𝐻
𝑛+1

≥ 𝑙𝑛( 𝑛+1
𝑛+2 ) + 1

𝑛+1 + 𝑙𝑛(𝑛 + 2)

=  − 𝑙𝑛(1 + 1
𝑛+1 ) + 1

𝑛+1 + 𝑙𝑛(𝑛 + 2)

𝐻
𝑛+1

≥ 1
𝑛+1 − ( 1

𝑛+1 − 1

2(𝑛+1)2 + 1

3(𝑛+1)3 ...) + 𝑙𝑛(𝑛 + 2) ≥  𝑙𝑛(𝑛 + 2)

10. For all positive integers n, show that there exists a prime > n.

*Correction: for arbitrarily large𝑐 =  𝑝
1

α
1. 𝑝

2

α
2. 𝑝

3

α
3.... 𝑝

𝑘

α
𝑘 + 1,  α

𝑖
∈ 𝑁,  𝑐 > 𝑛 α

𝑖



11. Let x be a non-zero real number such that is an integer. Prove by induction on𝑥 + 1
𝑥

n that is an integer for all n ≥ 1.𝑥𝑛 + 1

𝑥𝑛

12. Let be a positive integer. Consider all non-empty subsets of {1,2,3,...,n} that do not𝑛

contain consecutive integers. Let denote the sum of the squares of the products of𝑆
𝑛

the elements in these subsets.

For example, for n = 5, these subsets are
{1}, {2}, {3}, {4}, {5}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5}, {1, 3, 5}

Therefore is equal to:𝑆
5

12 + 22 + 32 + 42 + 52 + (1 * 3)2 + (1 * 4)2 + (1 * 5)2 + (2 * 4)2 + (2 * 5)2 +

+ (3 * 5)2 + (1 * 3 * 5)2 =  719

Prove that for all .𝑆
𝑛

= (𝑛 + 1)! − 1 𝑛 ≥ 1



13. Show by induction that ,∀𝑛 ∈ ℕ



𝑓(𝑛) =
𝑘=0

𝑛

∑ 𝑛+𝑘
𝑘( ) 1

2𝑘 = 2𝑛

14. Are there three consecutive positive integers whose product is a perfect square - that

is, do there exist with ?𝑚,  𝑛 ∈  𝒁+ 𝑚 *  (𝑚 + 1) *  (𝑚 +  2) =  𝑛2




