CS21201 Discrete Structures Solutions Proof Techniques, Induction

1. Prove that every positive integer greater than one can be factored as a product of primes. [Hint: Prove this using well-ordering theorem]

1.	
	Let S be the set of all integers (>1) that can't
1	he factored as product of primes.
	Assume Sits not compte
	I S + D = I a least element a E S [well ordering]
	= 2 is not prime [prime is a product of
	itself to otherwise it
	can't be in S]
1257	= 2 must be a product of two int x, y
	sit. 1 < x, y < a.
2.4	Suice X, Y <2 [least element in S]
	⇒ x,y¢S
	> x can be written as a product of primes
uh haine	of primes $\mathcal{X} = \mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_k$
_	$y'' - y' = 9_1 \cdot 9_2 \cdot \dots \cdot 9_1$
Same?	=) 2 = xy = p, px 9, 9p which is a
	conforadiction 1

2. Prove that every positive integer can be written as a product of prime factors, and this product is unique up to the reordering of factors (also known as the Fundamental Theorem of Arithmetic). [Hint: Prove this using Principle of Mathematical Induction]

Define
$$m = C p_2 p_3 \dots p_r = S_1 \dots S_u p_2 \dots p_r$$

 $m = (p_1 - q_1) p_2 \dots p_r = n+1 - q_2 p_2 \dots p_r$
 $\Rightarrow m < n+1 \Rightarrow by strong inde hyp
 $m = S_1 \dots S_u p_2 \dots p_r$ is unique
 p_n the other hand,
 $m = n+1 - q_1 p_2 \dots p_r$
 $= q_1 (q_2 \dots q_r - p_2 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_2 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_2 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_2 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_2 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_2 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_2 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_2 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_2 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_2 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_1 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_1 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_1 \dots p_r)$
 $= q_1 (q_2 \dots q_r - p_r)$
 $= q_1 (q_2 \dots q_r - q_r)$
 $= mine fortonization q_1 (k = q_2 - \dots q_r)$
 $= k_{n+1} \Rightarrow this must be unique
 $= 3$ Jhus, in either case, the prime factorization
 $q_1 n+1$ is unique [upto reordeling)$$

3. Prove that \sqrt{n} is irrational if and only if n is not a perfect square.

3.	
	[=>] if In is isjational = n is not a perf. 8 que
	contrapositive : n is a perfect sq. =) In is anational
	lat n = k ² for some k E Z
<u>16</u>	$\Rightarrow 5n = 5k^2 = k$
- 54	JN EZ,
1499. F	> JN is rational
i	the second second
÷.	[=] if n is not a perfect sy. I In is mational
-	Assume n is not a perfect sq. & In is rational
is A	=) JU = f juthere p, g are coprime & g = 0
	$P_{ig} \in \mathbb{Z}$
CNS ST 4	=) $n = p^2 = nq^2 = p^2$
	= q2/p2 = q = 1 (since p & q are coprime)
) n=p ² - nis a perfect square
4 35	This is a contradiction de in sur is issortional

4. Using mathematical induction, prove that $2^n < n! < 2^{n \log_2 n}$, $\forall n \ge 4$.

4.	
\rightarrow	[Basis] $n = 4$ = $24 = 16 < 4! = 24 < 2^{4 \log_2 4} = 256$
	[Induction] Buopose 2n < n1 < 2 hogen for some n 24
Martin de las	we have $(n+1) = (n+1) \times n! > (n+1) \times 2^n >$
	$2 \times 2^n = 2^{n+1}$
L.F.	$k = (n+1)! = (n+1) \times n! < (n+1) \cdot 2^{n \log_2 n}$
an in is	$= (n+1) \cdot n^n \leq (n+1)^{n+1}$
	$= 2^{(n+1)\log(n+1)}$

5. Let a,b be two positive integers, and d = gcd(a,b) = ua + vb with u, v $\in \mathbb{Z}$. Prove that u and v can be so chosen that $|u| < \frac{b}{d}$ and $|v| \le \frac{a}{d}$.

5.	
\rightarrow	By extended GLD, we always have a representation of the
	form 1 = u (a) + v (b) for some integers u, v.
	Write $u = q\left(\frac{b}{d}\right) + v$ with $0 \le v < \frac{b}{d}$ (Euclidean Division).
- K.	We have,
	$\underline{4} = \left(q\left(\frac{b}{d}\right) + \gamma\right)\left(\frac{a}{d}\right) + V\left(\frac{b}{d}\right)$
	and a survey of a series of
	$= \chi\left(\frac{a}{d}\right) + 2\left(\frac{b}{d}\right),$
	where $S = V + q\left(\frac{2}{T}\right)$.
	$9f = 0, S = d < 1 < \theta$.
	b
_	9f $r > 0$, $ s = \frac{d}{d} \left(r \left(\frac{a}{d} \right) - \frac{d}{d} \right) < \left(r \left(\frac{d}{d} \right) \right) \frac{a}{d} < \frac{a}{d}$
1	

You have coins of two integral denominations a,b > 1 with gcd(a,b) = 1. Prove that any integer amount n ≥ (a−1)(b−1) can be changed by coins of these two denominations. [∃x, y > 0, n = xa + yb]

Solution:

Because a and b are relatively prime, there exist integers x_0 and y_0 (not necessarily both ≥ 0) such that $ax_0 + by_0 = 1$. Thus, (multiplying through by n), we find that there exist integers x_1 , y_1 such that $ax_1 + by_1 = n$.

Infinitely many solutions of the equation ax + by = n are given by $x = x_1 - tb$, $y = y_1 + ta$, where t ranges over the integers.

Let t be the smallest positive integer such that $y_1 + ta \ge 0$. We show that $x_1 - tb \ge 0$. We have $a(x_1 - tb) + b(y_1 + ta) = n \ge (a - 1)(b - 1)$, thus, $a(x_1 - tb) \ge (a - 1)(b - 1) - b(y_1 + ta)$. But $y_1 + ta \le a - 1$, else we could decrement t. Thus $a(x_1 - tb) \ge (a - 1)(b - 1) - b(a - 1) = -(a - 1) > -a$, and therefore $x_1 - tb > -1$, so that $x_1 - tb \ge 0$. So, we have produced the required non-negative solution.

7. Let a,b be as in the last question. Prove that the amount (a−1)(b−1)−1 cannot be changed by coins of denominations a and b.

Solution:

Let the max number which cannot be represented using a and b denominations be x.

Now, notice that we can denote the number x + a = pa + yb, for some $p \ge 0$ & y ≥ 0 . Since x can't be represented as : (some positive number) * a + (some positive number)*b, p = 0, So, x + a = yb and x + b = za, for some y and z. This implies a(z + 1) = b(y + 1). Since a and b are coprimes, z = nb - 1 and y = na - 1, where n is an integer. This gives x = nab - a - b. If n>1, let n=j+k, where j>0 and k>0. $x = jab + kab - a - b \Rightarrow x = a(jb - 1) + b(ka - 1)$, which cannot be true. Therefore, n=1 and x = ab - a - b = (a - 1)(b - 1) - 1.

- 8. Let F_n denote the n-th Fibonacci number.
 - a. Prove that for all integers m,n with m \ge 1 and n \ge 0, we have $F_{m+n} = F_m F_{n+1} + F_{m-1} F_n$.
 - b. Let m,n $\in \mathbb{N}$. Prove that if m|n, then $F_m | F_n$.
 - c. What about the converse of Part (b)?
 - d. Prove $gcd(F_m, F_n) = F_{gcd(m,n)} \forall m, n \ge 1$.

8.	
(2.)	
\rightarrow	Using induction on m: For m=1, Fn+1 = F, Fn+1 + Fo Fn
	V For m=2, Fn+2 = Fn+1 + Fn =
	$= F_{2}F_{1+1} + F_{1}F_{2}$
	Suppose the statement is true for some on & m++ (& for
11	all n).
	Fm+n = Fm Fn+1 + Fm-1 Fn,
1	Fm+n+1 = Fm+1 · Fn+1 + Em Fn
	Adding these two equations gives
1.000	Fm+n+2 = Fm+n+1 + Fm+n = (Fm+1 + Fm) Fn+1 +
	(Fm+ Fm-1) for
	- Frank + frank + frank fra

(b)	
-9	Write n = gm.
1. N.	For q=1; n=m = n/m=& fm/Fn
States -	Suppose . Fm [form
	$F_{(2+1)m} = F_{m+qm} = F_m F_{qm+1} + F_{m+1} F_{qm} ((2))$
	Smee Fin Fignet is a multiple of Fin
	be fm- Form is a multiple of for
	-> fatt) is a multiple of fm.
(0)	
->	Can be disproved by taking m=2, n=3
	I = 0

9. Using the principle of mathematical induction, prove the following statements.

a. $\forall n \ge 4$, the nth-Catalan number satisfies $C_n \le 2^{2n-4}$.

Solution: [Basis] for n = 4, $C_4 = 14 \le 2^{8-4} = 16$ [Induction] Assume, $C_n \le 2^{2n-4}$ $C_{n+1} = \frac{1}{n+2} {2n+2 \choose n+1} = \frac{1}{n+2} \frac{(2n+2)(2n+1)}{(n+1)^2} {2n \choose n} = \frac{2(2n+1)}{n+2} C_n$ Now, $(2n + 1) \le 2(n + 2)$ $C_{n+1} = \frac{2(2n+1)}{n+2} C_n \le 4C_n \le 2^{2(n+1)-4}$ b. The harmonic numbers $H_n = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}$ satisfy $ln(n + 1) \le H_n \le ln n + 1, \forall n \ge 1.$

 $[\text{Basis}] \ln(1 + 1) = \ln(2) \le H_1 = 1 \le \ln 1 + 1 = 1$ Solution: [Induction] Assume the condition holds for H_n

$$\begin{split} H_{n+1} &= H_n + \frac{1}{n+1} \leq 1 + \ln n + \frac{1}{n+1} \\ &= 1 + \ln(n+1) + \frac{1}{n+1} + (\ln n - \ln (n+1)) \\ &= 1 + \ln(n+1) + \frac{1}{n+1} + \ln(1 - \frac{1}{n+1}) \\ &= 1 + \ln(n+1) + \frac{1}{n+1} - \frac{1}{n+1} - \frac{1}{2(n+1)^2} - \frac{1}{3(n+1)^3} \dots (n \geq 1) \\ &= 1 + \ln(n+1) - [\frac{1}{2(n+1)^2} + \frac{1}{3(n+1)^3} \dots] \\ &\leq 1 + \ln(n+1) \end{split}$$

Similarly,

$$\begin{split} H_{n+1} &= H_n + \frac{1}{n+1} \ge \ln(n+1) + \frac{1}{n+1} \\ H_{n+1} \ge \ln(n+1) + \frac{1}{n+1} - \ln(n+2) + \ln(n+2) \\ H_{n+1} \ge \ln(\frac{n+1}{n+2}) + \frac{1}{n+1} + \ln(n+2) \\ &= -\ln(1+\frac{1}{n+1}) + \frac{1}{n+1} + \ln(n+2) \\ H_{n+1} \ge \frac{1}{n+1} - (\frac{1}{n+1} - \frac{1}{2(n+1)^2} + \frac{1}{3(n+1)^3} ...) + \ln(n+2) \ge \ln(n+2) \end{split}$$

10. For all positive integers n, show that there exists a prime > n.

1.	\$ b
->	Assume there exists no prime > n.
	is we have a finite set of primes. Let the set
· · ·	be $P = \oint p_1, p_2, \dots P_k$ for some $k \in N$.
	Consider a number $c = p_1 * p_2 * g p_k + 1$
	=) C & P =) C is composite and the
	However, we have $C = \pm (mod p_i) + i \in [1, k]$.
n thuến	=) no prime numbers divide C
L.	=) c is not composite
	We arrive at a contradiction

*Correction: $c = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \dots p_k^{\alpha_k} + 1$, $\alpha_i \in N$, c > n for arbitrarily large α_i

11. Let x be a non-zero real number such that $x + \frac{1}{x}$ is an integer. Prove by induction on n that $x^n + \frac{1}{x^n}$ is an integer for all $n \ge 1$.

2.	
->	[Basis] For n= 1, the statement is obvious (it is
	~ part of the hypothesis). For n=2, we use the
	fact that
	$=) \begin{pmatrix} \chi + \underline{z} \\ \chi \end{pmatrix} = \chi^{2} + \underline{z} + \underline{z} + \underline{z}$
4	$\exists \chi^2 + \frac{1}{\chi^2}$ is an integer.
I	[Induction] For n 23, assume 21"+++, 2"-2+
	are integers.
*	we have,
	$\frac{\chi^{n} + \frac{1}{2}}{\chi^{n}} = \left(\frac{\chi^{n} + \frac{1}{2}}{\chi^{n}} + \frac{\chi^{n-2}}{\chi^{n-2}} - \frac{\chi^{n-2} + \frac{1}{2}}{\chi^{n-2}} \right)$
nan de	$\frac{\chi^{m} + \frac{1}{2}}{\chi^{n}} = \frac{\chi^{n-1} + \frac{1}{\chi^{n-1}}}{\chi^{n-1}} \frac{\chi^{n} + \frac{1}{\chi^{n-1}}}{\chi^{n-1}} - \frac{\chi^{n} + \frac{1}{\chi^{n-1}}}{\chi^{n-2}}$
	Hence, n+ = 1 the is also an integer.
	2

12. Let *n* be a positive integer. Consider all non-empty subsets of $\{1,2,3,...,n\}$ that do not contain consecutive integers. Let S_n denote the sum of the squares of the products of the elements in these subsets.

For example, for n = 5, these subsets are $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{1, 3, 5\}$

Therefore S_5 is equal to:

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2} + (1 * 3)^{2} + (1 * 4)^{2} + (1 * 5)^{2} + (2 * 4)^{2} + (2 * 5)^{2} + (3 * 5)^{2} + (1 * 3 * 5)^{2} = 719$$

Prove that $S_n = (n + 1)! - 1$ for all $n \ge 1$.

3. Proceed by generalized weak induction on n with ÷ n=1, k=2. [Basis] We need two base cases. For n= 1, we have $S_1 = J^2 = 1$ and (1+1)(-1 = J. For n=2, $S_2 = 1^2 + 2^2 = 5$ and (2+1)[-1 = 6 - 1 = 5[Induction] Assume that Sn-i = n]-1 and $S_{n-2} = (n-1) - 1$ for some $n \ge 3$, All non-empty subsets of \$1,2,3,....ng that do not contain consecutive integers can be classified in three groups 1.) Non-empty subsets of 21,2,3, ... n-1 & that do not contain consecutive non-empty subset with the desired 2.) A property that contains n pud one or more dements from ({1,2,3, ... n-1 }. Since these subsets are not allowed to contain consecutive integers, the elements other than n must come from \$1,2,3 ... n 2] 3.) The subset [n] By induction, $S_{n} = S_{n-1} + n^2 S_{n-2} + n^2$: $= (n|-1) + n^{2}((n+1)|-1) + n^{2}$ $= n! + n^2 \times (n-1) - 1 = (n-1) (n+n^2) - 1$ = (n+1) | -1

13. Show by induction that $\forall n \in \mathbb{N}$,

$$f(n) = \sum_{k=0}^{n} (k)_{2^{k}} = 2$$

$$\frac{4}{k}$$

$$\xrightarrow{\rightarrow} f(n) = \sum_{k=0}^{n} (n+k)_{\frac{1}{2^{k}} = 2^{n}}$$

$$f(n) = \frac{1}{2} (n+k)_{\frac{1}{2^{k}} = 2^{n}}$$

$$f(1) = \frac{1}{2} (n+k)_{\frac{1}{2^{k}} = \frac{1}{2^{k}} (n$$

14. Are there three consecutive positive integers whose product is a perfect square - that is, do there exist $m, n \in \mathbb{Z}^+$ with $m * (m + 1) * (m + 2) = n^2$?

$$f(n) = \sum_{k=0}^{n} {\binom{n+k}{k} \frac{1}{2^k}} = 2^n$$

5. We know that ged (m, m+1) = 1 = ged (m+1, m+2) -For any prime p, if p(m+1) then p/m k p/(m+2). Let $m * (m+1) * (m+2) = n^2$. Furthermore, S. p (m+1) pm2 pm =) p^2/n^2 =) 5 p/m & p/(m+2) p2/m+1 ヨ This is true for all prime divisors of (n+1). So (m+1) is a perfect square. 3. m * (m+2) is a justect square m2 < m = 2m < However, m to (m+2) is such that $M^2 + 2m + 1 = (m+1)^2$ =) m* (m+2) lies blo too consecutive perfect squares = m * (m+2) is not a perfect square We arrive at a contradiction. There are no flored consecutive positive integers chose product is a perfect square.