CS21201 Discrete Structures

Practice Problems

Abstract Algebraic Structures

1. Define two operations on $\mathbb Z$ as

 $a \oplus b = a+b+u$ $a \odot b = a+b+vab.$

where u, v are constant integers. For which values of u and v, is $(\mathbb{Z}, \oplus, \odot)$ a ring?

Solution [Additive axioms] \oplus is clearly commutative. For associativity, we note that $(a \oplus b) \oplus c = (a+b+u) \oplus c =$ $a+b+c+2u$, whereas $a\oplus (b\oplus c)=a\oplus (b+c+u)=a+b+c+2u$, that is, $(a\oplus b)\oplus c=a\oplus (b\oplus c)$ irrespective of u. The additive identity is $-u$, because $a \oplus (-u) = a + (-u) + u = a$ and $(-u) \oplus a = (-u) + a + u = a$. Finally, $a + (-2u - a) + u = (-2u - a) + a + u = -u$, so $-2u - a$ is the additive inverse of a. In short, the additive axioms do not impose any constraints on u (and v is not involved in this addition).

[*Multiplicative axioms*] We have $(a \odot b) \odot c = (a+b+vab) \odot c = a+b+vab+c+v(a+b+vab)c =$ $a+b+c+v(ab+ac+bc+abc)$, whereas $a\odot (b\odot c)=a\odot (b+c+vbc)=a+(b+c+vbc)+va(b+c+vbc)=a$ $a+b+c+v(ab+ac+bc+abc)$, so \odot is associative for any value of v. Although not needed in a general ring, this multiplication is commutative and has the identity 0. Again, no conditions on v (and u) are imposed.

[Distributivity] Because of commutativity, it suffices to look only at $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$, that is, $a \odot (b+c+u) = (a+b+vab) \oplus (a+c+vac)$, that is, $a+(b+c+u)+va(b+c+u) = (a+b+vab)+(a+b+ubc)$ $c+vac$) + u, that is, $a+b+c+u+vab+vac+uva = 2a+b+c+u+vab+vac$, that is, $uva = a$. Since this must hold for all integers a, we must have $uv = 1$.

The only possibilities are therefore $u = v = 1$ and $u = v = -1$.

- 2. Take $u = v = 1$ is Exercise 1.
	- (a) Find the units of $(\mathbb{Z}, \oplus, \odot)$. Find their respective inverses.
- Solution The multiplicative identity is 0. So $a \odot b = 0$ (with $a \neq -1$) implies $a+b+ab = 0$, that is, $b(a+1) = -a$, that is, $b = -\left(\frac{a}{a+1}\right)$. This *b* is an integer if and only if $a = 0$ or $a = -2$. The inverse of 0 is 0, and of -2 is -2 .
	- (b) Prove that the set of all odd integers is a subring of this ring. What about the set of all even integers?
- Solution It suffices to verify that $a \ominus b$ and $a \odot b$ are odd if a, b are odd. The additive inverse of b is $-2u b = -2 b$, which is odd if a is odd. But then, $a \ominus b = a \oplus (-2 - b) = a - 2 - b + 1 = a - b - 1$ is odd if a, b are odd. Also, $a \odot b = a + b + ab$ is odd if a, b are odd.

Even integers do not constitute a subring, because closure of \oplus does not hold.

- 3. Let \mathbb{Z}_1 be the ring of Exercise 1 with $u = v = 1$, and \mathbb{Z}_2 the ring of Exercise 1 with $u = v = -1$. Define a ring isomorphism $\mathbb{Z}_1 \to \mathbb{Z}_2$.
- Solution Consider the map $f : \mathbb{Z}_1 \to \mathbb{Z}_2$ as $f(a) = -a$. Then, $f(a \oplus_1 b) = f(a+b+1) = -(a+b+1)$, whereas $f(a) \oplus_2 f(b) = (-a) \oplus_2 (-b) = (-a) + (-b) - 1 = -(a+b+1)$. Moreover, $f(a \odot_1 b) = f(a+b+ab) =$ $-(a+b+ab)$, and $f(a)\odot_2 f(b) = (-a)\odot_2 (-b) = (-a)+(-b)-(-a)(-b) = -(a+b+ab)$.

- Let K, L be fields, and $f: K \to L$ a non-zero ring homomorphism.
- (a) Prove/disprove: $f(1_K) = 1_L$.
- *dution True.* Since f is non-zero, there exists $a \in K$ such that $f(a) \neq 0_L$. But then, $f(a) = f(a \cdot 1_K) = f(a) \cdot f(1_K)$. Since $f(a) \neq 0_L$, it is a unit, so by cancellation, we have $f(1_K) = 1_L$.
- (b) Prove that f is injective.
- *lution* Let $f(a) = f(b)$. If $a \neq b$, then $u = a b$ is non-zero and so a unit of K. But then, we have $1_L = f(1_K) = f(uu^{-1}) = f(u)f(u^{-1}) = f(a-b)f(u^{-1}) = (f(a) f(b))f(u^{-1}) = 0_L \cdot f(u^{-1}) = 0_L$. By definition, a field is a non-zero ring. Therefore $0_L = 1_L$ is a contradiction.

5.

What is the inverse of an element a in the group $G = \{a \in \mathbb{R} \mid a > 0\}$ under the operation \odot defined by $a \odot b = a^{\ln b}$?

- (D) $e^{1/\ln a}$ (A) $1/e^a$ (B) $1/a$ (C) $1/\ln a$
- *olution* The identity element x is computed from: $a^{\ln x} = a \Rightarrow x = e$. Inverse of a is computed as: $a^{\ln a^{-1}} = e \Rightarrow \ln a^{-1} \ln a = \ln e = 1 \Rightarrow a^{-1} = e^{1/\ln a}$.

6. Let $(R, +, \cdot)$ be a ring such that for every $x \in R$, $x \cdot x = x$. Prove or disprove that R is a commutative

$$
\begin{array}{rcl}\n\text{Let } & \mathbf{a} & \mathbf{x}, \mathbf{v} \in \mathbb{R} \\
(\mathbf{a} + \mathbf{v})^2 &= (2 + \mathbf{v}) \cdot (2 + \mathbf{v}) \\
&= \mathbf{x}^2 + 2\mathbf{v} + 2\mathbf{v} + \mathbf{v}^2 \\
\text{Sinc, } & \mathbf{x}^2 \times \mathbf{v}^2 = \mathbf{v}^2 \\
&= \mathbf{x} + 2\mathbf{v} + 3\mathbf{x} + \mathbf{v}^2 \\
\text{Sinc, } & \mathbf{x}^2 \times \mathbf{v}^2 = \mathbf{x} + 2\mathbf{v} + 3\mathbf{x} + \mathbf{v}^2 \\
&= \mathbf{x} + 2\mathbf{v} + 3\mathbf{x} + \mathbf{v}^2 \\
&= \mathbf{x} + 2\mathbf{v} + 3\mathbf{x} + \mathbf{v}^2 \\
&= \mathbf{x} + 2\mathbf{v} + 3\mathbf{x} + \mathbf{v}^2 \\
&= \mathbf{x} + 3\mathbf{v} + 3\mathbf{v} + \mathbf{v}^2 \\
&= \mathbf{x} + 3\mathbf{v} + 3\mathbf{v} + \mathbf{v}^2 \\
&= \mathbf{x} + 3\mathbf{v} + 3\mathbf{v} + \mathbf{v}^2 \\
&= \mathbf{x} + 3\mathbf{v} + 3\mathbf{v} + \mathbf{v}^2 \\
&= \mathbf{x} + 3\mathbf{v} + 3\mathbf{v} + \mathbf{v}^2 \\
&= \mathbf{x} + 3\mathbf{v} + 3\mathbf{v} + \mathbf{v}^2 \\
&= \mathbf{x} + 3\mathbf{v} + 3\mathbf{v} + \mathbf{v}^2 \\
&= \mathbf{x} + 3\mathbf{v} + 3\mathbf{v} + \mathbf{v}^2 \\
&= \mathbf{x} + 3\mathbf{v} + 3\mathbf{v} + \mathbf{v}^2 \\
&= \mathbf{x} + 3\mathbf{v} + 3\mathbf{v} + 3\mathbf{v}^2 \\
&= \mathbf{x} + 3\mathbf{v} + 3\mathbf{v} + 3\mathbf{v}^2 \\
&
$$

 $4.$

7. Let A,B are subgroups of a group G. Prove or disprove that $A \cap B$ is also a subgroup of G.

Solution.

To solve the problem of proving whether $A \cap B$ is a subgroup of G, let A and B be subgroups of a group $G.$ We need to check if $A\cap B$ satisfies the subgroup criteria:

- 1. Closure: For any $a, b \in A \cap B$, $ab \in A \cap B$.
- 2. Identity: The identity element $e \in G$ must be in $A \cap B$.
- 3. Inverses: For any $a \in A \cap B$, $a^{-1} \in A \cap B$.

Proof:

- 1. Closure: Since A and B are subgroups of G , for any $a, b \in A$, $ab \in A$, and for any $a, b \in B$, $ab \in B$. Therefore, for any $a, b \in A \cap B$, $ab \in A$ and $ab \in B$. Thus, $ab \in A \cap B$.
- 2. Identity: Since A and B are subgroups, the identity element $e \in G$ is in both A and B. Hence, $e \in A \cap B$.
- 3. Inverses: For any $a \in A \cap B$, since A and B are subgroups, $a^{-1} \in A$ and $a^{-1} \in B$. Therefore, $a^{-1} \in A \cap B$.

Conclusion:

Since $A \cap B$ satisfies closure, contains the identity element, and includes inverses for all its elements, $A \cap B$ is indeed a subgroup of G.

Result: $A \cap B$ is a subgroup of G.

CS21201 Discrete Structures

Tutorial 10

Abstract Algebraic Structures

- 1. Let R be a commutative ring with identity, and R[x] the set of univariate polynomials with coefficients from R. Define addition and multiplication of polynomials in the usual way. Prove that R[x] is an integral domain if and only if R is an integral domain.
- *Solution* $[\Rightarrow]$ Take non-zero elements $a, b \in R$. Then a and b are non-zero (constant) polynomials. Since $R[x]$ is an integral domain, *ab* is not the zero polynomial. But *ab* is again a constant polynomial. It follows that $ab \neq 0$.

 $[\Leftarrow]$ Suppose that there exist $A(x), B(x) \in R[x]$ such that $A(x)B(x) = 0$, $A(x) \neq 0$, and $B(x) \neq 0$. Write $A(x) = a_0 + a_1x + a_2x^2 + \dots + a_dx^d$ with $a_d \neq 0$ and $d \geq 0$, and $B(x) = b_0 + b_1x + b_2x^2 + \dots + b_ex^e$ with $b_e \neq 0$ and $e \geq 0$. Since $A(x)B(x) = 0$, we have $a_d b_e = 0$. This implies that R is not an integral domain.

2. Prove that $Z[\sqrt{5}] = \{a+b\sqrt{5} | a,b \in \mathbb{Z}\}$ is an integral domain.

Solution Closure under subtraction and multiplication is easy to check. Since $\mathbb R$ is commutative, $\mathbb Z[\sqrt{5}]$ is so too. Finally, take $a = 1$ and $b = 0$ in the definition to conclude that $\mathbb{Z}[\sqrt{5}]$ contains the multiplicative identity.

3. Let G be a (multiplicative) group, and H,K subgroups of G. Prove that H∪K is a subgroup of G if and only if H ⊆K or K ⊆H

Solution [If] Obvious.

[Only if] $H \cup K$ is a subgroup of G. Suppose that H is not contained in K. Then, there exists $h \in H$ such that $h \notin K$. Take any $k \in K$. Since h, k are both in $H \cup K$, and $H \cup K$ is a subgroup, we have $hk \in H \cup K$. Suppose that $hk \in K$. Since $k \in K$, we have $k^{-1} \in K$, so $(hk)k^{-1} = h \in K$, a contradiction. Therefore $hk \in H$. But $h \in H$, so $h^{-1} \in H$, and therefore $h^{-1}(hk) = k \in H$. It follows that $K \subseteq H$.