CS21201 Discrete Structures Tutorial Generating Functions

- 1. Let F_n , $n \ge 0$, denote the Fibonacci numbers. Prove that $\sum_{n \in \mathbb{N}_0} \frac{F_n}{2^n} = 2$.
- 2. Let l_n be the number of lines printed by the call f(n) for some integer $n \ge 0$.

```
void f ( int n )
{
    int i, j;
    printf("Hi\n");
    if (n == 0) return;
    for (i=0; i<=n-1; ++i)
        for (j=0; j<=i; ++j)
            f(j);
}</pre>
```

- (a) Let $L(x) = l_0 + l_1 x + l_2 x^2 + \dots + l_n x^n + \dots$ be the generating function of the sequence l_0, l_1, l_2, \dots Prove that $L(x) = \frac{1-x}{1-3x+x^2}$.
- (b) Derive an explicit formula for *l_n* (valid for all *n* ≥ 0) from the generating function *L*(*x*).
- 3. Let $a_0, a_1, a_2, \dots, a_n, \dots$ be the sequence generated by $\sum_{r \in \mathbb{N}} \frac{x^r}{1-x^r}$. Denote by p_n the parity of a_n , that is, $p_n = 0$ if a_n is even and $p_n = 1$ if a_n is odd. Determine all $n \in \mathbb{N}$, for which $p_n = 1$. Justify.