CS21201 Discrete Structures

Tutorial

Proof Techniques, Induction

- 1. For all positive integers n, show that there exists a prime > n.
- 2. Let x be a non-zero real number such that $x + \frac{1}{x}$ is an integer. Prove by induction on n that $x^n + \frac{1}{x^n}$ is an integer for all $n \ge 1$.
- 3. Let n be a positive integer. Consider all non-empty subsets of $\{1,2,3,...,n\}$, that do not contain consecutive integers. Let S_n denote the sum of the squares of the products of the elements in these subsets.

For example, for n = 5, these subsets are

$$\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{1, 3, 5\}$$

Therefore S_{ϵ} is equal to:

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2} + (1 * 3)^{2} + (1 * 4)^{2} + (1 * 5)^{2} + (2 * 4)^{2} + (2 * 5)^{2} + (3 * 5)^{2} + (1 * 3 * 5)^{2} = 719$$

Prove that $S_n = (n + 1)! - 1$ for all $n \ge 1$.

4. Show by induction that $\forall n \in \mathbb{N}$,

$$f(n) = \sum_{k=0}^{n} {n+k \choose k} \frac{1}{2^k} = 2^n$$

5. Are there three consecutive positive integers whose product is a perfect square - that is, do there exist $m, n \in \mathbf{Z}^+$ with $m * (m + 1) * (m + 2) = n^2$?