CS21201 Discrete Structures

Practice Problems

Recurrence Relations

- 1. Let a_n , $n \ge 0$ be the count of strings over $\{0, 1, 2\}$ containing no consecutive 1's and no consecutive 2's. Find a recurrence relation for a_n and solve it.
- 2. Let $a_{_{n}}$, $n \geq 1$ satisfy $a_{_{1}} = 1$ and

$$a_n = \begin{cases} 2a_{n-1} & \text{if } n \text{ is odd} \\ 2a_{n-1} + 1 & \text{if } n \text{ is even} \end{cases} \text{ for } n \geqslant 2$$

Develop a recurrence relation for a_n that holds for both odd and even n, and solve it.

3. Solve the following recurrence relation and deduce the closed-form expression for T(n).

$$T(n) = \left\{ \begin{array}{ll} \sqrt{n}T(\sqrt{n}) + n(\log_2 n)^d, & \text{if } n > 2 \\ 2, & \text{if } n = 2 \end{array} \right. (d \geqslant 0)$$

- 4. Deduce the running times of divide-and-conquer algorithms in the big-Θ notation if their running times satisfy the following relations:
 - a. $T(n) = T(2n/3) + T(n/3) + n \log n$
 - b. T(n) = T(n/5) + T(7n/10) + n
- 5. Pell numbers are defined as $P_0 = 0$, $P_1 = 2$, $P_n = 2P_{n-1} + P_{n-2}$ for $n \ge 2$.
 - a. Deduce a closed-form formula for P_n .
 - b. Prove that $\begin{pmatrix} P_{n+1} & P_n \\ P_n & P_{n-1} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}^n$ for all $n \ge 1$.
 - c. Prove that $\lim_{n\to\infty} \frac{P_{n-1}+P_n}{P_n} = \sqrt{2}$.
 - d. Prove that if P_n is prime, then n is also prime.
- 6. Consider a non-homogeneous recurrence of the form:

$$a_n = c_{k-1}a_{n-1} + c_{k-2}a_{n-2} + \dots + c_0a_{n-k} + p_1(n)s_1^n + p_2(n)s_2^n$$

Here, c_{k-1} , c_{k-2} ,..., c_0 are constants (with $c_0 \neq 0$), $p_1(n)$ and $p_2(n)$ are non-zero polynomials in n, and s_1 , s_2 are distinct non-zero constants. Propose a method to solve this recurrence.

- 7. Let $\{a_n\}$ be a sequence such that $a_1=1$, $a_{n+1}=\frac{1}{16}\left(1+4a_n+\sqrt{1+24a_n}\right)$, $n\geq 1$. Find a_n .
- 8. Let $a_1 = 1$, $a_n = \sum_{k=1}^{n-1} (n-k)a_k$, $\forall n \ge 2$. Find a_n .
- 9. $a_0 = 0, a_1 = 1, a_n = 2a_{n-1} + a_{n-2}, n \ge 2$. Prove that $2^k | a_n$ if and only if $2^k | n$.