CS21201 Discrete Structures

Practice Problems

Generating Functions

- 1. Find the generating function of the sequence 1, 2, 0, 3, 4, 0, 5, 6, 0, 7, 8, 0,....
- 2. Let the two-variable sequence $a_{m,n}$ be recursively defined as follows.

$$a_{m,n} = \begin{cases} 1 & \text{if } m = 0 \text{ or } n = 0, \\ a_{m-1,n} + a_{m,n-1} & \text{if } m \geqslant 1 \text{ and } n \geqslant 1. \end{cases}$$

Find the generating function $A(x,y) = \sum\limits_{m,n\geq 0} a_{m,n} x^m y^n$. From this, derive a closed-form formula for $a_{m,n}$.

- 3. Prove that the generating function for Catalan numbers is $f(x) = \frac{1-\sqrt{1-4x}}{2x}$.
- 4. Let a_n , $n \ge 0$, be the sequence satisfying

$$a_0 = 1$$

 $a_n = 2 + 2a_0 + 2a_1 + 2a_2 + ... + 2a_{n-2} + a_{n-1}$ for $n \ge 1$

Deduce that the generating function of this sequence is $\frac{1+x}{1-2x-x^2}$. Solve for a_n .

- 5. Let $m \geqslant 1$ be an integer constant. Let $b_n^{(m)}$ denote the number of ordered partitions (that is, compositions) of the integer $n \geq 0$ such that no summand is larger than m.
 - (a) Prove that the (ordinary) generating function of $b_n^{(m)}$ is

$$B^{(m)}(x) = \frac{1-x}{1-2x+x^{m+1}}$$

- (b) From the formula of Part (a), deduce that $b_n^2 = F_{n+1}$, where F_0 , F_1 , F_2 ,.... is the sequence of Fibonacci numbers.
- 6. How many bit strings of length n are there in which 1's always occur in contiguous pairs? You should consider strings of the form 0011011110, but not of the form 0110111110, because the last 1 is not paired.
- 7. Let $a_n = \sum_{i=n}^{\infty} \frac{2^i}{i!}$ for all integers $n \ge 0$.
 - (a) Find a closed-form expression for the (ordinary) generating function $A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$ of the sequence $a_0, a_1, a_2, \dots a_n, \dots$
 - (b) Use the expression for A(x) in Part (a) to prove that $\sum_{n=0}^{\infty} a_n = 3e^2$.

8. Let u, v, s, t be positive constant values. Consider the sequence a_0, a_1, a_2, \dots defined recursively as follows.

$$\begin{aligned} &a_0 = u\\ &a_1 = v\\ &a_n = sa_{n-1} + ta_{n-2} \text{ for all } n \geq 2. \end{aligned}$$

For $n \ge 3$, we have

$$a_n = sa_{n-1} + ta_{n-2} = s(sa_{n-2} + ta_{n-3}) + ta_{n-2} = (s^2 + t)a_{n-2} + sta_{n-3}$$
 In view of this, consider the sequence b_0 , b_1 , b_2 ,... defined recursively as follows:

$$b_0 = u$$

 $b_1 = v$
 $b_n = (s^2 + t)b_{n-2} + stb_{n-3}$ for all $n \ge 3$.

Demonstrate that the generating functions of both the sequences are the same.