Discrete Structures 2024

Pigeonhole Principle - Practice Problems

September 3, 2024

- 1. You pick six points in a 3×4 rectangle. Prove that two of these points must be at a distance $\leq \sqrt{5}$.
- 2. Let p be a prime number, and x an integer not divisible by p. Prove that there exist non-zero integers a and b of absolute values less than \sqrt{p} such that p divides ax b.
- 3. Let $a, b \in \mathbb{N}$ with gcd(a, b) = 1. Use the pigeonhole principle to prove that ua + vb = 1 for some $u, v \in \mathbb{Z}$.
- 4. Let p be a prime number, and x an integer not divisible by p. Now assume that p is of the form 4k + 1. We know from number theory that in this case, there exists an integer x such that p divides $x^2 + 1$. Show that $p = a^2 + b^2$ for some integers a, b.
- 5. Let $n \ge 10$ be an integer. You choose *n* distinct elements from the set $\{1, 2, 3, ..., n^2\}$. Prove that there must exist two disjoint subsets of the chosen numbers whose sums are equal.
- 6. Let p(x) be a polynomial with integer coefficients, having three distinct integer roots a, b, c. Prove that the polynomials $p(x) \pm 1$ cannot have any integer roots.
- 7. 65 distinct integers are chosen in the range $1, 2, 3, \ldots, 2022$. Prove that there must exist four of the chosen integers (call them a, b, c, d) such that a b + c d is a multiple of 2022.