CS21201 Discrete Structures

Practice Problems

Proof Techniques, Induction

- 1. Prove that every positive integer greater than one can be factored as a product of primes. [Hint: Prove this using well-ordering theorem]
- 2. Prove that every positive integer can be written as a product of prime factors, and this product is unique up to the reordering of factors (also known as the Fundamental Theorem of Arithmetic). [Hint: Prove this using Principle of Mathematical Induction]
- 3. Prove that \sqrt{n} is irrational if and only if n is not a perfect square.
- 4. Using mathematical induction, prove that $2^n < n! < 2^{n\log_2 n}$, $\forall n >= 4$.
- 5. Let a,b be two positive integers, and d = gcd(a,b) = ua + vb with u, $v \in \mathbb{Z}$. Prove that u and v can be so chosen that $|u| < \frac{b}{d}$ and $|v| \le \frac{a}{d}$.
- 6. You have coins of two integral denominations a,b > 1 with gcd(a,b) = 1. Prove that any integer amount $n \ge (a-1)(b-1)$ can be changed by coins of these two denominations. $[\exists x, y > 0, n = xa + yb]$
- 7. Let a,b be as in the last question. Prove that the amount (a-1)(b-1)-1 cannot be changed by coins of denominations a and b.
- 8. Let F_n denote the n-th Fibonacci number.
 - a. Prove that for all integers m,n with m \geq 1 and n \geq 0, we have $F_{m+n} = F_m F_{n+1} + F_{m-1} F_n$.
 - b. Let m,n $\in \mathbb{N}$. Prove that if m|n, then $F_m|F_n$.
 - c. What about the converse of Part (b)?
 - d. Prove $gcd(F_m, F_n) = F_{gcd(m,n)} \forall m, n \ge 1$.
- 9. Using the principle of mathematical induction, prove the following statements.
 - a. $\forall n \geq 4$, the nth-Catalan number satisfies $C_n \leq 2^{2n-4}$.
 - b. The harmonic numbers $H_n=\frac{1}{1}+\frac{1}{2}+\ldots+\frac{1}{n}$ satisfy $ln(n+1)\leq H_n\leq ln\,n+1,\,\forall n\geq 1.$