CS21201 Discrete Structures ## **Practice Problems** ## **Abstract Algebraic Structures** J 1. Define two operations on \mathbb{Z} as $$a \oplus b = a+b+u,$$ $a \odot b = a+b+vab,$ where u, v are constant integers. For which values of u and v, is $(\mathbb{Z}, \oplus, \odot)$ a ring? - **2.** Take u = v = 1 is Exercise 1. - (a) Find the units of (Z, ⊕, ⊙). Find their respective inverses. - (b) Prove that the set of all odd integers is a subring of this ring. What about the set of all even integers? - **3.** Let \mathbb{Z}_1 be the ring of Exercise 1 with u = v = 1, and \mathbb{Z}_2 the ring of Exercise 1 with u = v = -1. Define a ring isomorphism $\mathbb{Z}_1 \to \mathbb{Z}_2$. 4. Let K, L be fields, and $f: K \to L$ a non-zero ring homomorphism. - (a) Prove/disprove: $f(1_K) = 1_L$. - (b) Prove that f is injective. 5. What is the inverse of an element a in the group $G = \{a \in \mathbb{R} \mid a > 0\}$ under the operation \odot defined by $a \odot b = a^{\ln b}$? - 6. Let $(R,+,\cdot)$ be a ring such that for every $x \in R$, $x \cdot x = x$. Prove or disprove that R is a commutative - 7. Let A,B are subgroups of a group G. Prove or disprove that A∩B is also a subgroup of G.