CS21201 Discrete Structures

Practice Problems

Abstract Algebraic Structures

J

1. Define two operations on \mathbb{Z} as

$$a \oplus b = a+b+u,$$

 $a \odot b = a+b+vab,$

where u, v are constant integers. For which values of u and v, is $(\mathbb{Z}, \oplus, \odot)$ a ring?

- **2.** Take u = v = 1 is Exercise 1.
 - (a) Find the units of (Z, ⊕, ⊙). Find their respective inverses.
 - (b) Prove that the set of all odd integers is a subring of this ring. What about the set of all even integers?
- **3.** Let \mathbb{Z}_1 be the ring of Exercise 1 with u = v = 1, and \mathbb{Z}_2 the ring of Exercise 1 with u = v = -1. Define a ring isomorphism $\mathbb{Z}_1 \to \mathbb{Z}_2$.

4.

Let K, L be fields, and $f: K \to L$ a non-zero ring homomorphism.

- (a) Prove/disprove: $f(1_K) = 1_L$.
- (b) Prove that f is injective.

5.

What is the inverse of an element a in the group $G = \{a \in \mathbb{R} \mid a > 0\}$ under the operation \odot defined by $a \odot b = a^{\ln b}$?

- 6. Let $(R,+,\cdot)$ be a ring such that for every $x \in R$, $x \cdot x = x$. Prove or disprove that R is a commutative
- 7. Let A,B are subgroups of a group G. Prove or disprove that A∩B is also a subgroup of G.